County of Los Angeles

Parcel 44 Project, Marina del Rey Draft Environmental Impact Report Project # R2013-01647-(4) SCH #2013081040

> Volume II Appendix 1.0 through 4.7

Prepared For: County of Los Angeles Department of Regional Planning 320 Temple Street Los Angeles, CA 90012

Parcel 44 Project, Marina del Rey

Draft Environmental Impact Report

Project # R2013-01647-(4) SCH #2013081040

Volume II Appendix 1.0 through 4.7

Prepared for:

County of Los Angeles
Department of Regional Planning
320 Temple Street
Los Angeles, CA 90012

Prepared by:

Impact Sciences, Inc. 803 Camarillo Springs Road, Suite A Camarillo, California 93012

February 2015

TABLE OF CONTENTS

Volume 1

Section	n		Page
1.0	Execu	ıtive Summary	1.0-1
2.0	Introd	duction	2.0-1
3.0	Projec	ct Description	3.0-1
4.0	Envir	onmental Impact Analysis	4.0-1
	4.1	Aesthetics	4.1-1
	4.2	Air Quality	4.2-1
	4.3	Biological Resources	4.3-1
	4.4	Geology and Soils	4.4-1
	4.5	Greenhouse Gases	4.5-1
	4.6	Hydrology and Water Quality	4.6-1
	4.7	Noise and Vibration	4.7-1
	4.8	Traffic and Access	4.8-1
	4.9	Public Services	4.9-1
		4.9.1 Police Protection	4.9.1-1
		4.9-2 Fire Protection	4.9-2-1
	4.10	Utilities and Service Systems	4.10-1
		4.10.1 Wastewater	4.10.1-1
		4.10.2 Water	4.10.2-1
		4.10.3 Solid Waste	4.10-3.1
5.0	Alterr	natives	5.0-1
6.0	Other	CEQA Considerations	6.0-1
7.0	Signif	ficant Irreversible Environmental Changes	7.0-1
8.0	Effect	ts Found Not To Be Significant	8.0-1
9.0	List of	f EIR Preparers, Organizations, and Persons Consulted	9.0-1
10.0		ences	

Appendices

Volume 2

- Notice or Preparation (NOP), Initial Study, and Comments
 Notice of Preparation
 Initial Study
 NOP Comment Letters
 Scoping Meeting Transcript
- 4.2 Air Quality Calculations Emissions Calculations CO Hotspots
- 4.4 Geotechnical Reports
 Geotechnical Engineering Report
 Addendum 1 to the Geotechnical Engineering Report
 Methane Investigation Report
 Geological Review Sheet and Soils Engineering Review Sheet
- 4.6 Drainage Concept
- 4.7 Noise Monitoring Study

Volume 3

- 4.8 Traffic Impact Analysis
- 4.10.1 Sewer Area Study
- 4.10.2 Water Availability Study
- 4.10.3 Demolition and Hazardous Materials Reports Pre-Demolition Assessment Lead Based Paint Inspection Report

County of Los Angeles

Parcel 44 Project, Marina del Rey Draft Environmental Impact Report Project # R2013-01647-(4) SCH #2013081040

> Volume III Appendix 4.8 through 4.10.3

Prepared For: County of Los Angeles Department of Regional Planning 320 Temple Street Los Angeles, CA 90012

Parcel 44 Project, Marina del Rey

Draft Environmental Impact Report

Project # R2013-01647-(4) SCH #2013081040

Volume III Appendix 4.8 through 4.10.3

Prepared for:

County of Los Angeles
Department of Regional Planning
320 Temple Street
Los Angeles, CA 90012

Prepared by:

Impact Sciences, Inc. 803 Camarillo Springs Road, Suite A Camarillo, California 93012

February 2015

TABLE OF CONTENTS

Volume 1

Section	n		Page
1.0	Execu	ıtive Summary	1.0-1
2.0	Introd	duction	2.0-1
3.0	Projec	ct Description	3.0-1
4.0	Envir	onmental Impact Analysis	4.0-1
	4.1	Aesthetics	4.1-1
	4.2	Air Quality	4.2-1
	4.3	Biological Resources	4.3-1
	4.4	Geology and Soils	4.4-1
	4.5	Greenhouse Gases	4.5-1
	4.6	Hydrology and Water Quality	4.6-1
	4.7	Noise and Vibration	4.7-1
	4.8	Traffic and Access	4.8-1
	4.9	Public Services	4.9-1
		4.9.1 Police Protection	4.9.1-1
		4.9-2 Fire Protection	4.9-2-1
	4.10	Utilities and Service Systems	4.10-1
		4.10.1 Wastewater	4.10.1-1
		4.10.2 Water	4.10.2-1
		4.10.3 Solid Waste	4.10-3.1
5.0	Alterr	natives	5.0-1
6.0	Other	CEQA Considerations	6.0-1
7.0	Signif	ficant Irreversible Environmental Changes	7.0-1
8.0	Effect	ts Found Not To Be Significant	8.0-1
9.0	List of	f EIR Preparers, Organizations, and Persons Consulted	9.0-1
10.0		ences	

Appendices

Volume 2

- Notice or Preparation (NOP), Initial Study, and Comments
 Notice of Preparation
 Initial Study
 NOP Comment Letters
 Scoping Meeting Transcript
- 4.2 Air Quality Calculations Emissions Calculations CO Hotspots
- 4.4 Geotechnical Reports
 Geotechnical Engineering Report
 Addendum 1 to the Geotechnical Engineering Report
 Methane Investigation Report
 Geological Review Sheet and Soils Engineering Review Sheet
- 4.6 Drainage Concept
- 4.7 Noise Monitoring Study

Volume 3

- 4.8 Traffic Impact Analysis
- 4.10.1 Sewer Area Study
- 4.10.2 Water Availability Study
- 4.10.3 Demolition and Hazardous Materials Reports Pre-Demolition Assessment Lead Based Paint Inspection Report

Los Angeles County Department of Regional Planning

Richard J. Bruckner

Planning for the Challenges Ahead

NOTICE OF PREPARATION AND NOTICE OF SCOPING MEETING

DATE: August 15, 2013

PROJECT TITLE: Parcel 44 – Project Number R2013-01647

Environmental Review No. 201300142

PROJECT LOCATION: Parcel 44 is bordered to the north by Bali Way, the east by

Admiralty Way and the south by Mindanao Way. The U-shaped site wraps partially around Basin G of the Marina del Rey small-craft harbor. The parcel consists of 8.39 landside acres and 7.18

waterside or submerged acres (15.37 acres total).

PROJECT APPLICANT: Pacific Marina Venture, LLC

13737 Fiji Way, C-10

Marina del Rey, CA 90292

CEQA LEAD AGENCY: County of Los Angeles

Department of Regional Planning 320 West Temple Street, Room 1362

Los Angeles, CA 90012

The County of Los Angeles is the lead agency and will prepare an Environmental Impact Report (EIR) for the Project identified below. In compliance with Section 15082 of the California Environmental Quality Act (CEQA) Guidelines, the County of Los Angeles is sending this Notice of Preparation (NOP) to each responsible agency, interested parties and federal agencies involved in approving the Project and to trustee agencies responsible for natural resources affected by the Project. Within 30 days after receiving the Notice of Preparation, each agency shall provide the County of Los Angeles with specific details about the scope and content of the environmental information related to that agency's area of statutory responsibility.

The purpose of this NOP is to solicit the views of your agency as to the scope and content of the environmental information germane to your agency's statutory authority with respect to the Project. Your agency will need to use the EIR prepared by our agency when considering your permit or other approval for the Project.

PROJECT LOCATION AND ENVIRONMENTAL SETTING

Parcel 44 is a U-shaped site that wraps partially around Basin G of the Marina del Rey small-craft harbor. The parcel consists of a total of 8.39 landside acres and 7.18 waterside (or submerged) acres. There are seven existing structures on the site totaling 14,724 square feet. The existing landside structures were developed as office space for boat brokers, a boat repair shop, and a yacht club currently. The site provides a boaters' bathroom facility.

PROJECT SUMMARY

The proposed project consists of the demolition of all existing landside structures on Parcel 44 and redevelopment of the landside parcel. (The project does not include redevelopment of the Parcel 44 anchorage that is located on the waterside portion of the subject parcel. Development approval for demolition of the existing Parcel 44 anchorage and the subsequent construction of a new private boat anchorage on the waterside portion of the subject parcel has already been granted by the California Coastal Commission pursuant to Coastal Development Permit (CDP) No. 5-11-131; final issuance of this CDP was given by the Coastal Commission staff on June 26, 2012.

The following is a description of the proposed new structures on Parcel 44, which total approximately 83,778 square feet of building area. Building I (as denoted on the site plan) will serve as boaters' bathrooms with an area of 386 square feet. Building II will serve a Trader Joe's (or similar) grocery market of 13,625 square feet. Building III (386 square feet) is similar to Building I and will serve as boaters' bathrooms. Building IV is a two-story structure. The ground floor of this building will be occupied entirely by a West Marine (or similar) retail store (25,000 square feet). The second floor of this building will contain marine administrative offices (6.901 square feet), boat brokers' offices (5,133 square feet), boaters' bathroom and laundry (542 square feet), additional offices to replace existing office space to be demolished (4,554 square feet) and a community room/boaters' lounge (840 square feet). Building V will accommodate retail space (4,260 square feet) and a restaurant (2,367 square feet). Building VI will contain a two-story, waterfront-oriented restaurant (8,278 square feet) with a prominent "tower" feature to serve as an entry foyer to the restaurant, which will be accessible from Admiralty Way and Bali Way. The first floor of this building will also accommodate commercial retail space (9,270 square feet). Building VII will serve as boaters' bathrooms with an area of 386 square feet. Building VIII will accommodate a yacht club (1,150 square feet) and a boat repair shop (700 square feet).

In addition, an open-air boat stacking/rack system is included, allowing outdoor storage of up to 44 boats (stacked 3-boats-high), as are 13 "mast-up"/small sail boat storage spaces (adjacent to the proposed yacht club/boat repair shop structure). The project proposes 479 on-grade parking spaces on the subject parcel, of which 284 are standard-dimensioned spaces, 11 are accessible spaces and 184 are compact parking spaces. Seventy (70) of the parking spaces are in a tandem configuration. The project also proposes 74 bicycle parking spaces. With the 25 maximum vehicle parking reduction allowed under County Code for the bicycle parking spaces being provided on-site (County Code allows a reduction of one parking space for every two bicycle parking spaces provided above the required number, not to exceed five percent of the total number of spaces otherwise required), the project's proposed uses require 485 spaces per Code. (The Applicant will be filling for a Parking Permit to authorize a modest parking reduction for the project, in order to provide some flexibility regarding parking configuration and numbers to account for site installation of infrastructure improvements, i.e., transformers, etc., during construction, and to allow for commercial tandem parking.) The project also includes

development of a waterfront pedestrian promenade along the parcel's bulkhead and realignment of the Marvin Braude Bike Path adjacent to the Admiralty Way-fronting waterfront pedestrian promenade; an interactive water feature is planned for the courtyard space fronting the promenade at project's main entrance on Admiralty Way.

ENTITLEMENT REQUIREMENTS AND DISCRETIONARY APPROVALS

Discretionary approvals required for implementation of the proposed project may include, but are not limited to, the following:

- Certification of an Environmental Impact Report
- Approval of a Coastal Development Permit
- Approval of a Conditional Use Permit
- Approval of a Variance
- Approval of a Parking Permit

POTENTIAL PROJECT IMPACTS: Because of the requested entitlement requirements identified above, and based on the Initial Study determination, an Environmental Impact Report (EIR) is necessary for the proposed project. Based on a preliminary assessment of potential environmental impacts that may occur as a result of the proposed project (see attached initial study), the areas of potential environmental impact to be addressed in the Project EIR will include at least the following:

Potential Hazards

- Geology
- Flood
- Noise

Potential Impacts to Resources

- Water Quality
- Air Quality
- Greenhouse Gas Emissions
- Biota
- Visual Qualities

Potential Impacts to Services

- Traffic/Access
- Sewage Disposal
- Fire/Sheriff Services
- Utilities/Other Services

Potential Other Impacts

• General (change in pattern, scale, or character, light and glare)

To provide a complete record of the County's environmental decision making, environmental issues that do not rise to the level of significant impacts will be addressed in the EIR in a separate section entitled "Impacts Found to Be Less Than Significant."

NOTICE OF PREPARATION REVIEW AND COMMENTS

The review period for the NOP will be from August 19, 2013 to September 19, 2013.

Due to the time limits mandated by State law, your response must be sent at the earliest possible date, but not later than **September 19, 2013**. Please direct all written comments to the following address. In your written response, please include the name of a contact person in your agency.

Anita Gutierrez, AICP County of Los Angeles Department of Regional Planning 320 Temple Street Los Angeles, California 90012 Telephone: (213) 974-4813

Fax (213) 626-0434

Email: marinaplanner@planning.lacounty.gov

SCOPING MEETING

To assist in local participation, a Scoping Meeting will be held to present the proposed project and to solicit suggestions from the public and responsible agencies on the content of the Draft EIR. The Scoping Meeting will be held at Burton Chase Park, Community Room, located at 13650 Mindanao Way, Marina del Rey, CA 90292 on September 10, 2013 from 6pm to 8pm.

REVIEW MATERIALS

The County of Los Angeles Department of Regional Planning is soliciting input based on your views and opinions concerning the scope of the EIR for the proposed project. To facilitate your review, the following materials are attached:

- Los Angeles County Initial Study
- 500-foot Radius Land Use Map
- Site Plan

Additional copies of the notice of Preparation are available for public review on the Department of Regional Planning website: http://planning.lacounty.gov/ as well as at the following libraries:

Lloyd Taber-Marina del Rey Library 4533 Admiralty Way Marina del Rey, CA 90292 Culver City Julian Dixon Library 4975 Overland Avenue Culver City, CA 90230

Abbot Kinney Memorial Library 501 S. Venice Boulevard Venice. CA 90291

Environmental Checklist Form (Initial Study)

County of Los Angeles, Department of Regional Planning

Project title: Parcel 44 Development/ Project No. R2013-01647/ Case No(s). ENV201300142

Lead agency name/address: Los Angeles County, 320 West Temple Street, Los Angeles, CA 91020

Contact Person and phone number: Anita Gutierrez, Special Projects Section, (213) 974-4813

Project sponsor's name/address: Pacific Marina Venture c/o Pacific Ocean Management, LLC.

13737 Fiji Way, C10 Marina del Rey, California 90292

Project location: Lease Parcel 44, Marina del Rey, California 90292

APN: 4224 008 901 Thom as Guide: Page 672 B-7 USGS Quad: Venice (T2S, R15W)

Gross Acreage: 17.41 acres (Total), 8.39 acres (Landside), 7.18 acres (Water)

General plan designation: Marina del Rey Specific Plan

Community/Area wide Plan designation: Marina del Rey Specific Plan

Zoning: Marina del Rey Specific Plan: "Bali Area," Boat Storage (portion of parcel at corner of Admiralty Way and Mindinao Way), Marine Commercial (portion adjacent to Admiralty Way), Visitor-Serving/Convenience Commercial (on mole road portions) and Water with a Waterfront Overlay.

Description of project:

Parcel 44 is a U-shaped site that wraps partially around Basin G of the Marina del Rey small-craft harbor. The parcel consists of a total of 8.39 landside acres and 7.18 waterside (or submerged) acres. There are seven existing structures on the site totaling 14,724 square feet and a paved surface parking lot with 110 boat parking spaces and 383 vehicle parking spaces. The existing landside structures are developed as office space for boat brokers, a boat repair shop, and a yacht club currently. The site provides only a single boaters' bathroom facility.

The proposed project consists of the demolition of all existing landside structures on Parcel 44 and redevelopment of the landside parcel. (The redevelopment of the Parcel 44 anchorage that is located on the waterside portion of the subject parcel is not a part of this project. Development approval for demolition of the existing Parcel 44 anchorage and the subsequent construction of a new private boat anchorage on the waterside portion of the subject parcel has already been granted by the California Coastal Commission pursuant to Coastal Development Permit (CDP) No. 5-11-131; final issuance of this CDP was given by the Coastal Commission staff on June 26, 2012.)

The following is a description of the proposed new structures on Parcel 44, which total approximately 83,778 square feet of building area.

- Building I (as denoted on the site plan) will serve as boaters' bathrooms with an area of 386 square feet.
- Building II will serve a "Trader Joe's" (or similar) grocery market of 13,625 square feet.
- Building III (386 square feet) is similar to Building I and will serve as boaters' bathrooms.
- Building IV is a two-story structure. The ground floor of this building will be occupied entirely by a "West Marine" (or similar) retail store (25,000 square feet). The second floor will contain offices for boat brokers (5,133 square feet), offices to replace existing offices located on the parcel (4,554 square feet), marine administrative offices (6,901 square feet), a community room/lounge (840 square feet) and a boater's laundry room (542 square feet).
- Building V will accommodate retail space (4,260 square feet) and a restaurant (2,367 square feet).
- Building VI will contain a two-story, waterfront-oriented restaurant (8,278 square feet) with a prominent "tower" feature to serve as an entry foyer to the restaurant, which will be accessible from Admiralty Way and Bali Way. The first floor of this building will also accommodate commercial retail space (9,270 square feet).
- Building VII will serve as boaters' bathrooms with an area of 386 square feet.
- Building VIII will accommodate the yacht club (1,150 square feet) and a boat repair shop (700 square feet).

In addition, an open-air boat stacking/rack system will be included on the northwest portion of the project site along Bali Way, allowing outdoor storage of up to 44 boats (stacked three-boats-high), along with 13 "mast-up"/small sailboat storage spaces adjacent to the yacht club/boat repair building.

The project proposes 479 on-grade parking spaces on the subject parcel, of which 284 are standard-dimensioned spaces, 11 are accessible spaces and 184 are compact parking spaces. 70 of the parking spaces are in a tandem configuration. The project also proposes 74 bicycle parking spaces. County Code allows a maximum reduction of 25 vehicle parking spaces for this project, given the number of bicycle parking spaces being provided on-site. With the parking reduction, the project's proposed uses require 485 spaces per Code. (Note the Applicant will be filing for a Parking Permit to allow a modest parking reduction for the project and to allow tandem parking, in order to provide some flexibility regarding parking configuration and numbers to account for installation of site infrastructure improvements—i.e., transformers, etc.—during construction.) The project also includes development of a waterfront pedestrian promenade along the parcel's bulkhead and realignment of the Marvin Braude Bike Path to run parallel to the waterfront pedestrian promenade.

Surrounding land uses and setting: The Marina del Rey Hotel is located to the west on the south side and terminous of Bali Way and a vacant office building as well as Burton Chase Park are located

to the southwest on Mindanao Way. Office and retail commercial uses are located to the east and southeast on the east side of Admiralty Way. A public parking lot and boat storage lot (to be developed into an expansion of Burton Chase Park) are located directly south of the project on the south side of Mindanao Way. Parcel 44 surrounds Marina Basin "G," an existing boat anchorage.

Other public agencies whose approval may be required (e.g., permits, financing approval, or participation agreement):

Public Agency

• California Coastal Commission Approval Required

- Coastal Commission review would only be required in the event the County's Coastal Development Permit approval for the project is appealed to the Coastal Commission; the Coastal Commission otherwise retains no permitting authority over the project.
- LACO Board of Supervisors
- LACO Div. of Building & Safety
- For parcel lease extension documentation approval.
- For Building Permit and related approvals.

Major projects in the area:

Project/Case No.	Description and Status
CDP No.: 5-11-131	Parcels 10, 21, 42/43, 44, 47, 48, 49R, 53, 77, 125, EE and BW/9U: California Coastal Commission-approved Coastal Development Permit for "master" waterside anchorage redevelopment authorizing demolition of existing anchorages and construction of new anchorages and facilities appurtenant thereto on the waterside portions of the above-referenced Marina parcels.
R2010-00669/ RENV201000022	Parcels 42 and 43 (APN No. 4224-008-900): Site Plan Review for rehabilitation of the Marina del Rey Hotel, an existing 154-room hotel, and the demolition and subsequent redevelopment of the hotel's private boat anchorage.
R2006-03647/ CDP200600008	Parcel 10R (APN No. 4224-003-900): Approved Coastal Development Permit to authorize the demolition of an existing 136-unit apartment complex and the development of a 400-unit complex.
R2006-03652/ CDP200600009	Parcel 14 (APN No. 4224-003-900): Approved Coastal Development Permit to authorize the demolition of an existing parking lot and the development of a 126-unit apartment complex.
CDP200600007	Parcel 9U, Northern Portion (APN No. 4224-002-900): Pending Coastal Development Permit to authorize the construction of a 288-room hotel with a restaurant and other auxiliary facilities.
R2006-03643/ CDP200600006	Parcel 9U, Southern Portion (APN No. 4224-002-900): Coastal Development Permit to authorize the development of a public wetland and upland park.

R2007-01480/ Parcels 55, 56 &W (APN No. 4224-011-901): Pending Coastal Development CDP200700001 Permit to authorize the demolition of Fisherman's Village and all existing parking, landscaping, and hardscaping, and the development of a new mixed-use commercial plaza and multi-story parking structure. R2006-01510/ Parcels 147 &21 (APN No. 4224-006-900): Coastal Development Permit to CDP200600002 & authorize the demolition of all existing landside improvements and the CDP 20060003 construction of a 114 unit senior accommodations facility, 5000 square feet of retail space and other site amenities and facilities; &447-space parking structure, marine commercial &community park (Parcel 21) Parcel 145R (APN No. 4224-006-900): (Interior and exterior renovation of the R2009-00924 existing 132-room Marina International Hotel (Under Construction) Parcel 64 (APN No. 4224-011-901): Interior and exterior renovation of the R2009-00752 PP201000954 existing 224-unit Villa Venetia apartment complex (Under Construction) R2008-02340/ Parcels 52R (APN No. 4224-003-900): Coastal Development Permit CDP200800007 authorizing a dry stack boat storage facility, with capacity for 345 boats, along

with appurtenant office space and customer lounge, 30 mast up storage spaces, parking, and a new Sheriff's Department/Lifeguard Boatwright facility.

Reviewing Agencies: [See CEQA Appendix B to help determine which agencies should review your project Responsible Agencies Special Reviewing Agencies Regional Significance None None X None Regional Water Quality Coastal Commission SCAG Criteria Control Board: Santa Monica Mountains Air Quality Los Angeles Region Conservancy Water Resources Lahontan Region National Parks Santa Monica Mtns. Area Coastal Commission National Forest Army Corps of Engineers Edwards Air Force Base City of Culver Resource Conservation Los Angeles City Bureau of District of Santa Monica Sanitation Mountains Area Local Native American Tribe Trustee Agencies County Reviewing Agencies DPW: X None Fire Department State Dept. of Fish and - Forestry, Environmental - Land Development Game Division (Grading & Division State Dept. of Parks and Drainage) - Planning Division Recreation - Geotechnical & Materials - Land Development Unit State Lands Commission Engineering Division - Health Hazmat University of California - Watershed Management Sanitation District Public (Natural Land and Water Division (NPDES) Reserves System) - Traffic and Lighting Health/Environmental Division Health Division: Land Use - Environmental Programs Program (OWTS), Drinking Division Water Program (Private - Waterworks Division Wells), Toxics Epidemiology - Sewer Maintenance Program (Noise) Division Sheriff Department Parks and Recreation Subdivision Committee

ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED:

Signa	ture (Approved by)		Date	
Signa	ture (Prepared by)		Date	
	because all potential NEGATIVE DECI or mitigated pursua revisions or mitigate is required.	lly significant effects (a) have b ARATION pursuant to appli nt to that earlier EIR or NEG	ave a significant effect on the environmence analyzed adequately in an earlier Elicable standards, and (b) have been avoid ATIVE DECLARATION, including upon the proposed project, nothing fur	IR o
	significant unless m adequately analyzed been addressed by n	itigated" impact on the environal in an earlier document pursuanitigation measures based on the DNMENTAL IMPACT REPORT	nentially significant impact" or "potentian nment, but at least one effect (1) has been ant to applicable legal standards, and (2) he earlier analysis as described on attach ORT is required, but it must analyze on	en) has ned
		osed project MAY have a signi AL IMPACT REPORT is req	ficant effect on the environment, and as uired.	n
	there will not be a s	ignificant effect in this case be o by the project proponent. <u>A</u>	ave a significant effect on the environme cause revisions in the project have been A MITIGATED NEGATIVE	
		osed project COULD NOT has DECLARATION will be pre	ave a significant effect on the environment pared.	ent,
	ERMINATION: (To ne basis of this initial	be completed by the Lead Depevaluation:	partment.)	
_	eology/Soils		of Significance	
=	ultural Resources nergy	☐ Mineral Resources ☐ Noise	✓ Utilities/Services✓ Mandatory Findings	
Bi	ological Resources	Land Use/Planning	Transportation/Traffic	
	ir Quality	☐ Hydrology/Water Qual	ity Recreation	
	griculture/Forest	Hazards/Hazardous Mai		
⊠ A	esthetics	Greenhouse Gas Emissic	ons Population/Housing	
The e	environmental factors	checked below would be pote	entially affected by this project.	

EVALUATION OF ENVIRONMENTAL IMPACTS:

- 1) A brief explanation is required for all answers except "No Impact" answers that are adequately supported by the information sources the Lead Department cites in the parentheses following each question. A "No Impact" answer is adequately supported if the referenced information sources show that the impact simply does not apply to projects like the one involved (e.g., the project falls outside a fault rupture zone). A "No Impact" answer should be explained where it is based on project-specific factors as well as general standards (e.g., the project will not expose sensitive receptors to pollutants, based on a project-specific screening analysis).
- 2) All answers must take account of the whole action involved, including off-site as well as on-site, cumulative as well as project-level, indirect as well as direct, and construction as well as operational impacts.
- 3) Once the Lead Department has determined that a particular physical impact may occur, then the checklist answers must indicate whether the impact is potentially significant, less than significant with mitigation, or less than significant. "Potentially Significant Impact" is appropriate if there is substantial evidence that an effect may be significant. If there are one or more "Potentially Significant Impact" entries when the determination is made, an EIR is required.
- 4) "Negative Declaration: Less Than Significant With Mitigation Incorporated" applies where the incorporation of mitigation measures has reduced an effect from "Potentially Significant Impact" to a "Less Than Significant Impact." The lead agency must describe the mitigation measures, and briefly explain how they reduce the effect to a less than significant level. (Mitigation measures from Section XVII, "Earlier Analyses," may be cross-referenced.)
- 5) Earlier analyses may be used where, pursuant to the tiering, program EIR, or other CEQA processes, an effect has been adequately analyzed in an earlier EIR or negative declaration. (State CEQA Guidelines § 15063(c)(3)(D).) In this case, a brief discussion should identify the following:
 - a) Earlier Analysis Used. Identify and state where they are available for review.
 - b) Impacts Adequately Addressed. Identify which effects from the above checklist were within the scope of, and adequately analyzed in, an earlier document pursuant to applicable legal standards, and state whether such effects were addressed by mitigation measures based on the earlier analysis.
 - c) Mitigation Measures. For effects that are "Less than Significant with Mitigation Measures Incorporated," describe the mitigation measures which were incorporated or refined from the earlier document and the extent to which they address site-specific conditions for the project.
- 6) Supporting Information Sources: A source list should be attached, and other sources used or individuals contacted should be cited in the discussion.
- 7) The explanation of each issue should identify: the significance threshold, if any, used to evaluate each question, and; mitigation measures identified, if any, to reduce the impact to less than significance. Sources of thresholds include the County General Plan, other County planning documents, and County ordinances. Some thresholds are unique to geographical locations.
- 8) Climate Change Impacts: When determining whether a project's impacts are significant, the analysis should consider, when relevant, the effects of future climate change on: (1) worsening hazardous conditions that pose risks to the project's inhabitants and structures (e.g., floods and wildfires), and (2) worsening the project's impacts on the environment (e.g., impacts on special status species and public health).

1. AESTHETICS

	Potentially Significant	Less Than Significant Impact with Mitigation	Less Than Significant	No
	Impact	Incorporated	Impact	Impac
Would the project:				
a) Have a substantial adverse effect on a scenic vista?				
The Marina del Rey Specific Plan contains view corriefeasible, a minimum of 20 percent of the water frontage of The project site faces the water along approximately 1,5 Mindanao Way, 600 feet along Admiralty Way, and 434 frequirement (which applies when, as here, building heiproject would be required to provide view corridors to project site. 1	of a site shall 529 linear f feet along B ghts are ke	be preserved eet, consisting ali Way. Based pt under 45	as a view cog of 495 feed on the 20 feet), the properties of the p	orridor et along percent roposed
The proposed project would provide a total of 822 linear which is well in excess of that required by the Mark (i.e., 306 linear feet). The proposed project would not ex del Rey Specific Plan as no structure would be over 45 would increase the intensity of development within the with County standards for the preservation and enhancement vistas would be less than significant.	ina del Reyceed the he feet. Therefer, project site,	y Specific Plaight limit allow fore, while the the project w	an for the owed in the e proposed yould be co	project Marina project nsistent
b) Be visible from or obstruct views from a regional riding or hiking trail?				

The Marvin Braude Bike Path, a Class I Bike Path, crosses the project site southwest of Admiralty Way.² New structures within the project site would be visible from this path. However, project landside development would occur between the bike path and Admiralty way and would thus not obstruct views of the marina from the path (the proposed realignment of the bike path represents a significant public safety and Marina water viewshed enhancement for bikers, as the path currently meanders haphazardly through the parcel's surface parking area along the parcel's Admiralty Way frontage). Class II bike lanes are provided along both Bali Way and Mindanao Way. The proposed project would be visible by bicyclist traveling along these bike lanes. However, view corridors would be provided along both streets to allow for views of the marina. As discussed above under **threshold 1a**, the proposed project would exceed County requirements for view corridors. Impacts would be less than significant.

¹ County of Los Angeles, Marina del Rey Specific Plan, Sec. 22.46.1060

² County of Los Angeles, Bicycle Master Plan.

c) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?				
The nearest designated state scenic highway is State Route project site. State Route 1/Lincoln Boulevard, located apprisite, is an eligible state scenic highway. However, views obscured by intervening development. The project site is state scenic highway, and impacts would therefore be less	proximately s of the pro s not visible	200 feet nor oject site from e from any de	theast of the n State Rou	e project ite 1 are
Source: Caltrans, "Officially Designated State Scenhttp://www.dot.ca.gov/hq/LandArch/scenic_highways/		•	istoric Par	kways,'
d) Substantially degrade the existing visual character or quality of the site and its surroundings because of height, bulk, pattern, scale, character, or other features?				
The proposed project would increase development 14,274 square feet of existing commercial space to approx and marine commercial space, retail and restaurant us capability of blocking views to the marina. Proposed commercial and boat-related character of surrounding d degrade the site's existing visual character; however, furth project EIR. As discussed above under threshold 1a , threquirements for view corridors. Impacts would be scorridors.	simately 83, ses. Proposed evelopment evelopment analysis he proposed	778 square feed improvement would be of and would on this topic d project wo	eet of visitor nents will he consistent ve not be exp is warrante uld exceed	e-serving have the with the ected to ed in the County
e) Create a new source of substantial shadows, light, or glare which would adversely affect day or nighttime views in the area?				
The new commercial structures proposed within the	nroject site	would incre	ease the am	ount of

The new commercial structures proposed within the project site would increase the amount of shadow cast within and beyond the project site. The proposed "West Marine" retail building (Building IV) and the restaurant/retail building oriented to the corner of Bali Way and Admiralty Way (Building VI) would be the only two-story structures included in the proposed project and therefore would be the tallest structures within the project site. Shadows cast by structures within the project site would be cast toward Basin G (west) during morning hours and toward the Admiralty Way (east) during evening hours. The tall commercial structures northeast of the project site across Admiralty Way would not be considered sensitive to increased shadow. Since the structures northeast of the project site are taller than the proposed structures, new shadows cast in the evening hours would be minimal. The project's shade and shadow impacts are nonetheless considered potentially significant, and additional analysis is thus warranted in the project EIR.

New lighting within the project site would potentially increase the amount of light within the project site and surrounding areas. However, the project site and adjacent parcels currently have security and safety lighting. Project development would result in an incremental increase in light that

would not adversely affect nighttime views.

Glare can result from the use of reflective building materials such as metal or glass. While project development would involve the use of such materials, the project does not proposed to use broad expanses of reflective building materials that could potentially create a source of glare that could affect passing motorists. Impacts under this threshold would be less than significant after mitigation and project design features.

2. AGRICULTURE / FOREST

In determining whether impacts to agricultural resources are significant environmental effects, lead agencies may refer to the California Agricultural Land Evaluation and Site Assessment Model (1997) prepared by the California Department of Conservation as an optional model to use in assessing impacts on agriculture and farmland. In determining whether impacts to forest resources, including timberland, are significant environmental effects, lead agencies may refer to information compiled by the California Department of Forestry and Fire Protection regarding the state's inventory of forest land, including the Forest and Range Assessment Project and the Forest Legacy Assessment project; and forest carbon measurement methodology provided in Forest Protocols adopted by the California Air Resources Board.

	Potentially Significant Impact	Less Than Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impact
Would the project: a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?				
The project site is not located in an area that is designated Farmland of Statewide Importance pursuant to the Farmthe California Department of Conservation. ³ Further and	nland Mapp	oing and Mon	itoring Prog	gram of
b) Conflict with existing zoning for agricultural use, with a designated Agricultural Opportunity Area, or with a Williamson Act contract?				

The project site is located in the County unincorporated community of Marina del Rey, which is designated as Specific Plan Zone as zoned under the County of Los Angeles. Parcel 44's land use designations per the certified Local Coastal Program (LCP) are Marine Commercial, Boat Storage, Visitor-serving/Convenience-commercial and Water with a Waterfront Overlay Zone designation. The project site does not support and is not zoned for, nor is it located near an area that is zoned for or developed with, forestland or timberland. Therefore, no impacts would occur to agricultural land uses or conflict with any agricultural zones and further analysis on this topic is not required.

³ California Department of Conservation, Farmland Mapping & Monitoring Program ftp://ftp.consrv.ca.gov/pub/dlrp/FMMP/pdf/2010/

⁴ County of Los Angeles, Marina del Rey Specific Plan, Land Use Plan.

c) Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code § 12220 (g)), timberland (as defined in Public Resources Code § 4526), or timberland zoned Timberland Production (as defined in Government Code § 51104(g))?				
The project site is located in the County unincorporated designated as Specific Plan Zone as zoned under the County designations per the certified LCP are Marine serving/Convenience-commercial and Water with a Water project site does not support and is not zoned for, nor is it developed with, forestland or timberland. Therefore, no uses or conflict with any agricultural zones and further analysis.	unty of Los Commerc terfront Ov it located no impacts we	s Angeles. F sial, Boat verlay Zone ear an area t ould occur t	Parcel 44's lastorage, designation that is zone to agriculture.	and use Visitor- n. ⁵ The d for or
d) Result in the loss of forest land or conversion of forest land to non-forest use?				
The project site is located in the County unincorporated designated as Specific Plan Zone as zoned under the County designations per the certified LCP are Marine serving/Convenience-commercial and Water with a Water project site does not support and is not zoned for, nor is it developed with, forestland or timberland. Therefore, no uses or conflict with any agricultural zones, and further and	unty of Los Commerc terfront Ov it located no impacts we	s Angeles. P cial, Boat verlay Zone ear an area t culd occur t	Parcel 44's lastorage, designation that is zoned agriculture.	and use Visitor- n. ⁶ The d for or
e) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use?				
The project site is located in the County unincorporated designated as Specific Plan Zone as zoned under the County designations per the certified LCP are Marine serving/Convenience-commercial and Water with a Water proposed project site does not contain agricultural farmless.	unty of Los Commerc terfront Ov	s Angeles. P cial, Boat verlay Zone	Parcel 44's la Storage, designation	and use Visitor- n. ⁷ The

farmland. Therefore, implementation of the proposed project would not convert farmland to non-

agricultural land. No further analysis on this topic is required.

⁵ County of Los Angeles, Marina del Rey Specific Plan, Land Use Plan.

⁶ County of Los Angeles, Marina del Rey Specific Plan, Land Use Plan.

⁷ County of Los Angeles, Marina del Rey Specific Plan, Land Use Plan.

3. AIR QUALITY

Where available, the significance criteria established by the applicable air quality management or air pollution control district may be relied upon to make the following determinations.

Would the project:	Potentially Significant Impact	Less Than Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Conflict with or obstruct implementation of applicable air quality plans of either the South Coast AQMD (SCAQMD)?				
The proposed project falls under the jurisdiction of the So California Association of Governments (SCAG), the SO implementing air pollution control strategies in the South Air Quality Management Plan (AQMP) was adopted it comprehensive air pollution control program leading to Quality Standards (CAAQS) and National Ambient Air The AQMP also addresses the requirements set forth in Potential impacts on local and regional air quality in construction and operation of the proposed project. It project may exceed the SCAQMD significance thresh proposed project may have a significant impact. Consequence the frequency or severity of existing air quality quality violations, delay timely attainment of air quality quality violations, delay timely attainment of air quality conflict with applicable regional plans or power the project. Therefore, the proposed project may in have a potentially significant impact with respect to this control of the proposed project may in the proposed	CAQMD is h Coast Air n 2003 and of the attains Quality St the Califormay exceeds Because compolds, the period of the consideriterion.	responsible for Basin (SCAF) and updated in ment of California and Federal SCAQMD astruction and air quality exproposed projudents, or the ion, the proted by agencia	or formulates. The SCA 2007 to est cornia Ambia AQS) in the ral Clean A thresholds doperation emissions frect may potentribute to exposed projects with juri	ing and QMD's ablish a ient Air e SCAB. ir Acts. due to a of the om the tentially new air emission ect may sdiction
b) Violate any air quality standard or contribute substantially to an existing or projected air quality				

The proposed project is a redevelopment of Parcel 44 located in the community of Marina Del Rey in unincorporated Los Angeles County. The proposed project would replace 14,724 square feet (sf) of development consisting of office space, boat repair, and a yacht club with 83,778 sf, to include a grocery store, retail and restaurant space, a yacht club, offices, a lounge, a boat repair facility and boat storage uses. The project does not propose the addition of any new dwelling units. The additional square footage of space as part of the proposed project is not expected to exceed the state's criteria for regional significance; however, there is the potential for a significant project impact in this regard, and additional analysis is thus warranted in the project EIR.

violation?

c) Result in a cumulatively considerable net increase		
of any criteria pollutant for which the project region	 	
is non-attainment under an applicable federal or		
state ambient air quality standard (including		
releasing emissions which exceed quantitative		
thresholds for ozone precursors)?		

In 1993, the SCAQMD prepared its California Environmental Quality Act (CEQA) Air Quality Handbook to assist local government agencies and consultants in preparing environmental documents for projects subject to CEQA. The SCAQMD is in the process of developing an Air Quality Analysis Guidance Handbook to replace the CEQA Air Quality Handbook. While the Air Quality Analysis Guidance Handbook is being developed, supplemental information has been adopted by the SCAQMD. These include revisions to the air quality significance thresholds and a new procedure referred to as "localized significance thresholds," which has been added as a significance threshold under the Final Localized Significance Threshold Methodology. The applicable portions of the CEQA Air Quality Handbook, the Air Quality Analysis Guidance Handbook supplemental information, and other revised methodologies were used in preparing the air quality analysis for this section.

Traffic Congestion

The proposed project includes the redevelopment of Parcel 44 with retail and boater-serving land uses in an existing commercial use corridor bounded by Bali Way to the north, Admiralty Way to the east, and Mindanao Way to the south, in Marina Del Rey. The proposed project may result in substantial additional traffic and consequent congestion due to the addition of retail space and other amenities. Additional analysis is warranted in the Project EIR.

CO Hotspots

Traffic congested roadways and intersections have the potential to generate localized high levels of carbon monoxide (CO). Localized areas where ambient concentrations exceed the state 1-hour standard of 20 parts per million (ppm) or the 8-hour standard of 9.0 ppm are termed CO hotspots. CO is produced in greatest quantities from vehicle combustion and is usually concentrated at or near ground level because it does not readily disperse into the atmosphere. As a result, potential air quality impacts to sensitive receptors are assessed through an analysis of localized CO concentrations. The project would replace 14,724 square feet (sf) of space with 83,778 sf of space which would represent a substantial expansion of its existing facilities, including new retail, restaurant and commercial space. As a result, the project would result in a substantial additional number of vehicle trips and would have the potential to create additional traffic congestion in the vicinity. Therefore, the proposed project may cause or contribute to CO hotspots and may be potentially significant with respect to this criterion. Additional analysis is warranted in the Project EIR.

South Coast Air Quality Management District, Final Localized Significance Threshold Methodology, (2008).

Construction Emissions

Construction activities have the potential to cause short-term impacts with respect to air quality standards. According to SCAQMD, project emissions are considered to cause a significant impact to air quality if they would exceed the SCAQMD threshold of significance for the following criteria pollutants: volatile organic compounds (VOC), nitrogen oxides (NOx), CO, sulfur oxides (SOx), respirable particulate matter (PM10), and fine particulate matter (PM2.5). The construction emissions associated with the proposed project will be estimated using the California Emissions Estimator Model (CalEEMod). CalEEMod is a program that calculates air pollutant emissions from land use development projects and incorporates factors specific to the Basin and the SCAQMD, such as VOC content in architectural coating and vehicle fleet mixes.

Site-specific or project-specific data to be used in the CalEEMod model will be provided by the project Applicant including the estimated construction schedule and information. The existing project site contains primarily commercial and retail space, including 584 sf of bathrooms, a 7,844 sf boat brokers' offices and buildings, a 1,080 sf yacht club, a 1,000 sf boat repair and a 4,216 sf office building. These existing uses would all be demolished as part of the proposed project. The proposed project would construct a variety of retail, office, restaurant and marine/boater-serving uses.

Project construction is anticipated to begin in the second quarter 2015 and to be completed by the end of 2016. Construction is anticipated to occur over a period of approximately 18 months. Project construction would include demolition, grading, trenching, building construction, architectural coating, and asphalt paving sub-phases. Due to the type and duration of construction activities, construction emissions from the proposed project may be potentially significant. The EIR will discuss this topic in greater detail.

Operational Emissions

Emissions from operation of the project have the potential to cause long-term impacts with respect to air quality standards. According to SCAQMD, a project's operational emissions are considered to cause a significant impact to air quality if they would exceed the SCAQMD threshold of significance for the following criteria pollutants: VOC, NOx, CO, SOx, PM10, and PM2.5. Operational emissions would be generated by both mobile and stationary sources as a result of normal day-to-day activities on the project site after occupation. Mobile emissions would be generated by the motor vehicles traveling to, from, and within the project site. Stationary emissions, both point source and area source, would be generated by the consumption of natural gas for space and water heating devices (including water heater and boilers). Given the size and types of development planned for the proposed project, operational emissions have the potential to exceed significance thresholds and may be significant. The EIR will discuss this topic in greater detail.

Localized Significance Thresholds

The SCAQMD recommends that the potential localized impacts be evaluated on the ambient air concentrations of NOx, CO, PM10, and PM2.5 due to on-site emissions. The evaluation requires that anticipated ambient air concentrations, determined using a computer based air quality dispersion model, be compared to localized significance thresholds. The thresholds for NOx and CO represent the allowable increase in concentrations above background levels in the vicinity of the project that would not cause or contribute to an exceedance of the National Ambient Air Quality Standards (NAAQS) or California Ambient Air Quality Standards (CAAQS). The threshold for PM10, which is 10.4 micrograms per cubic meter (µg/m³), represents compliance with SCAQMD's Rule 403 (Fugitive Dust). The threshold for PM2.5, which is also 10.4 µg/m³, is intended to constrain emissions to aid in progress toward attainment of the NAAQS and CAAQS.

The project site is located in Marina Del Rey, which is	in SRA 2	(Northwest L	os Angeles	County
Coastal). The entire project site area including water	side and s	submerged ar	eas is 17.4	1 acres.
Although the project site is located in a commercial use	area, with	n few sensitive	e receptors	nearby,
Burton Chase Park is located adjacent to the project site	to the sou	thwest. There	efore, the p	roposed
project has the potential to exceed local significance three	sholds and	therefore may	y have a sig	nificant
impact. The EIR will discuss this topic in greater detail.				
d) Expose sensitive receptors to substantial pollutant	\boxtimes			
concentrations?				
According to the SCAQMD's CEQA Air Quality Hand	<i>book</i> , proje	ects that are w	ithin the e	mission
thresholds identified above for construction and operatio	n should b	e considered l	ess than sig	nificant
on a cumulative basis, unless there is other pertinent is	nformation	to the conti	ary. ⁹ As d	iscussed
previously, emissions associated with construction and	operation	n of the prop	posed proje	ect may
potentially exceed SCAQMD-recommended significance to	thresholds	and may there	efore possib	ly cause
an individually significant impact. Since both construction	on and ope	ration emission	ons may exc	ceed the
thresholds of significance, the proposed project may p	ossibly re	sult in a sign	nificant cun	nulative
impact; additional analysis is warranted in the Project EIR				
a) Create objectionable adors offering a substantial			\square	
e) Create objectionable odors affecting a substantial				
number of people?				

The land uses associated with the proposed project are not expected to cause odor nuisances, dust, and hazardous emissions. Construction of the project is temporary and is not expected to cause an odor nuisance. Refuse associated with operation of the proposed project will continue to be disposed of in accordance with applicable regulations. Therefore, the proposed project would not have a significant impact on air quality with respect to this criterion.

⁹ South Coast Air Quality Management District, CEQA Air Quality Handbook, (1993) 9–12.

4. BIOLOGICAL RESOURCES

Loss Thor

Would the project:	Potentially Significant Impact	Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game (CDFG) or U.S. Fish and Wildlife Service (USFWS)?				
The project site is currently occupied by urbanized, conlots without any common or sensitive natural habitat armay support any federally or state-listed Endangered or may occur at Venice Beach or foraging over the marina any natural habitat areas that can be affected by project of the proposed project is not expected to have a substategulated by the California Department of Fish and C However, there is a slight possibility that special-status or adjacent to the project site that many affect the breed topic will be further analyzed in the Project EIR.	reas. There as Threatened waters. Sin construction antial adversame or the birds may re	are no landsices species, such a ce the project or infrastruces effect to see US Fish are lest in the landscape.	le habitat ar as the least t t site does n ture improv a terrestrial ad Wildlife	reas that ern that not have rements, species Service. s within
b) Have a substantial adverse effect on any sensitive natural communities (e.g., riparian habitat, coastal sage scrub, oak woodlands, non-jurisdictional wetlands) identified in local or regional plans, policies, regulations or by CDFG or USFWS?				

The project site is currently occupied by commercial-retail land uses and surface parking lots. The project site is urbanized and does not contain any natural habitat areas, sensitive or common. The proposed project is located within the state-designated Coastal Zone but is surrounded on all sides by urban land uses. The project site is not located within a designated Significant Ecological Area (SEA), coastal Sensitive Environmental Resource Area (SERA) or Environmentally Sensitive Habitat Area (ESHA). The closest SEA to the project site is the Ballona Creek SEA, located approximately 1 mile southeast of the project site. Because the project site is not located within or adjacent to an SEA or SERA, no impacts would occur from implementation of the proposed project. Impacts associated with sensitive nesting bird species is addressed in 4a, above. Therefore, no further analysis would be required on this topic with respect to the project.

c) Have a substantial adverse effect on federally or state protected wetlands (including, but not limited to, marshes, vernal pools, coastal wetlands, and drainages) or waters of the United States, as defined by § 404 of the federal Clean Water Act or California Fish & Game code § 1600, et seq. through direct removal, filling, hydrological interruption, or other means?				
The project site is currently occupied by urbanized, com lots without any common or sensitive natural habitat United States. Since the project site does not have any rethat can be affected, removed, or filled by const improvements, there would be no impacts.	areas, in natural te	cluding wetland rrestrial jurisdict	s or water tional habi	s of the tat areas
d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?				
The project site is not adjacent to or located in a wildlife linkage. The above discussion regarding impacts associate nesting and roosting birds such as the Great Blue Hercrested Cormorant, and the Great Egret conclude that Therefore, this topic will be further discussed in the Projection	ed with r ron, Blac there is	edevelopment of k-crowned Nigh	f the project nt Heron,	ct site to Double-
e) Convert oak woodlands (as defined by the state, oak woodlands are oak stands with greater than 10% canopy cover with oaks at least 5 inch in diameter measured at 4.5 feet above mean natural grade) or otherwise contain oak or other unique native trees (junipers, Joshuas, Southern California black walnut, etc.)?				
The project site is currently occupied by urbanized, con lots without any natural habitat areas. There are no habit				

native trees occur on the project site. Therefore, no oak resources would be impacted and no further

analysis is required.

protecting biological resources, including
Wildflower Reserve Areas (L.A. County Code, Title
12, Ch. 12.36), the Los Angeles County Oak Tree
Ordinance (L.A. County Code, Title 22, Ch. 22.56,
Part 16), the Significant Ecological Areas (SEAs)
(L.A. County Code, Title 22, § 22.56.215), and
Sensitive Environmental Resource Areas (SERAs)
(L.A. County Code, Title 22, Ch. 22.44, Part 6)?
The project site is currently occupied by urbanized, commercial-retail land uses and surface parking lots without any natural habitat areas. There are no habitat areas that support oak resources on the project site, so the Oak Tree Ordinance would not apply to the proposed project. The project site is not located in or near a Wildflower Reserve Area or a Significant Ecological Area. Although the project site is located within the Coastal Zone and special-status birds may potentially nest in the ornamental trees, a potential impact to nesting birds may occur. Therefore, this topic will be further discussed in the Project EIR.
g) Conflict with the provisions of an adopted state, regional, or local habitat conservation plan?

f) Conflict with any local policies or ordinances

 \boxtimes

The project site is currently occupied by urbanized, commercial-retail land uses and surface parking lots without any natural habitat areas. There are no habitat areas that support native biological resources on the project site. The proposed project would not conflict with any adopted state, regional, or local habitat conservation plan, as none exist in the project vicinity. Therefore, the proposed project would not conflict with provisions of any habitat conservation plan and no further analysis is required.

5. CULTURAL RESOURCES

	Potentially Significant Impact	Less Than Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impact
Would the project:				
a) Cause a substantial adverse change in the significance of a historical resource as defined in CEQA Guidelines § 15064.5?				
The project site is not considered a historical site no proposed project site does not contain known historic s according to the Office of Historic Preservation. ¹⁰ Furt does not identify any known historical structures or site Implementation of the proposed project would not in historic site. Therefore, the proposed project would has further analysis is required.	tructures an hermore, the es within the nclude renov	d is not consi e Marina del e community vation of a h	dered a hist Rey Land U of Marina I istoric struc	oric site Ise Plan Del Rey. cture or
b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to CEQA Guidelines § 15064.5?				

The project site is located in an area of Marina del Rey that is currently developed and has been developed for the past 50 years. The project site does not contain known archaeological resources, drainage courses, springs, knolls, rock outcroppings, or oak trees that indicate potential archaeological sensitivity. Demolition and export of underlying soil and debris would take place during the redevelopment process. The closest area containing known archaeological resources is the Ballona Creek Watershed area, approximately 1 mile south from the project site, where remnants of past human activity have been located. Any resources on Marina del Rey land already altered or designated for development have already been impacted. The proposed project would thus have a less than significant impact on archaeological resources and no further analysis is required.

Office of Historic Preservation, California State Parks, California Historical Resources, http://ohp.parks.ca.gov/listedresources/; Los Angeles County Local Coastal Program, Marina Del Rey Land Use Plan

c) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature, or contain rock formations indicating potential paleontological resources?				
The proposed project site is currently developed with As described above, the proposed project site has be likelihood of paleontological resources existing under would involve limited excavation on-site with no unisite is not adjacent to any unique geologic features. Similarizedly destroy a unique paleontological resource on no impacts. Further analysis on this topic would not be	een urbanized the project site ique geologic fence the proposer site or unique	over the pa is limited. T eature. Addit ed project w	st 50 years he proposed tionally, the ould not dis	and the project project or project or continuous and the project o
d) Disturb any human remains, including those interred outside of formal cemeteries?				

The project site is not known to contain any human remains. Furthermore, the proposed project entails minimal excavation and grading as only minor surface grading is proposed. Therefore, the proposed project would have no impact on human remains and no further analysis is required.

6. ENERGY

	Potentially Significant Impact	Less Than Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impact
Would the project:				
a) Conflict with Los Angeles County Green Building Ordinance (L.A. County Code Title 22, Ch. 22.52, Part 20 and Title 21, § 21.24.440) or Drought Tolerant Landscaping Ordinance (L.A. County Code, Title 21, § 21.24.430 and Title 22, Ch. 22.52, Part 21)?				
The proposed project would comply with the Count designed in compliance with the County of Los Ang project would be developed in compliance with all s conservation, and would comply with the County's Therefore, project impacts would be less than significant	eles Green l tate and loc Drought T	Building Stan cal regulations olerant Lands	dards. Furth s related to scaping Oro	her, the energy dinance.
b) Involve the inefficient use of energy resources (see Appendix F of the CEQA Guidelines)?				

Project energy use would consist of fuel during the construction of the proposed project and electricity and fuel during project operation. The commercial development proposed would comply with applicable state regulations regarding energy efficiency and would not be expected to use extraordinary amounts of energy or to involve inefficient use of energy resources. ¹¹ Therefore, project impacts would be less than significant and additional analysis is not required.

¹¹ California Energy Commission, 2008 Building Energy Efficiency Standards for Residential and Nonresidential Buildings, 2010.

7. GEOLOGY AND SOILS

Would the project:	Potentially Significant Impact	Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:				
i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known active fault trace? Refer to Division of Mines and Geology Special Publication 42.				

The project site is not located within a mapped Alquist-Priolo Earthquake Fault Zone. ¹² The Marina del Rey Specific Plan, which applies to the proposed project, requires that all projects within the specific plan area provide a comprehensive geologic and soils analysis to identify and delineate areas of potential seismic hazard, and to provide adequate mitigation for such hazards. Since the project site is not identified as an Alquist-Priolo Earthquake Fault Zone, impacts would be less than significant.

California Department of Conservation, "Alquist-Priolo Earthquake Fault Zones," http://www.consrv.ca.gov/cgs/rghm/ap/Pages/index.aspx; County of Los Angeles, Marina del Rey Specific Plan, Sec. 22.46.1180.

ii) Strong seismic ground shaking?				
As discussed under threshold 7a(i) , above, the project Priolo Earthquake Fault Zone. The project site is would be subjected to ground shaking during future Overland Fault, which lie respectively 2.75 miles an part of the major Newport-Inglewood Fault Zone from the project site Fourthermore, the Malibu Conorthwest of Marina del Rey and is considered a possible of producing earthquakes up to a magnitude	is located in are seismic ed d 5.5 miles to The Santa N Coast Fault li otentially acti	a seismically vents. The Co the east of Monica Fault es approxima	active regional Active region of the Charles alout 4 lies about 4 lies at the Charles at the Cha	ion, and ault and Rey, are 4.4 miles es to the
The Marina del Rey Specific Plan, which applies to construction use earthquake-resistant construction a these requirements and seismic safety standards prenforced by the County Department of Public Work effects of seismic ground shaking to less than signific	and engineering covided in the covided in the	ng practices ne California	Implement Building (tation of Code, as
iii) Seismic-related ground failure, including liquefaction and lateral spreading?				

The proposed project is an urban infill development that would increase the intensity of development on a currently developed site. The proposed project site is located in an area that has been designated as a liquefiable area. ¹⁶ Furthermore, the proposed project is located within an area having a high groundwater level. ¹⁷ Site-specific geotechnical studies would be required for new development under the Marina del Rey Specific Plan and DPW's geotechnical and seismic review procedures (see discussion under **threshold 7a[ii]**, above). Should the geotechnical study identify any potential for seismic-related ground failure, development in areas subject to such hazards would be prohibited unless adequate mitigation is identified and implemented. Additional analysis of potential seismic hazards associated with the project, and mitigation measures intended to reduce such impacts to a level of insignificance, is warranted in the Project EIR.

California Department of Conservation, "Alquist-Priolo Earthquake Fault Zones," http://www.consrv.ca.gov/cgs/rghm/ap/Pages/index.aspx; County of Los Angeles, Marina del Rey Specific Plan, Sec. 22.46.1180.

County of Los Angeles, Department of Regional Planning, Marina Del Rey Land Use Plan, February 9, 1996, pg. 10-1.

Group Delta Consultants. Geotechnical Engineering Report, Proposed Commercial and Retail Development, Marina del Rey – Parcel 44. June 1, 2012.

County of Los Angeles, Department of Regional Planning, County of Los Angeles General Plan, Safety Element, Plate 4, Liquefaction Susceptibility.

County of Los Angeles, Department of Regional Planning, County of Los Angeles General Plan, Safety Element, Plate 3, Shallow and Perched Groundwater.

iv) Landslides?				
The proposed project site is located on land the mounds, or mountains located on the proposed profession of the project site is topographically flat as well. containing a major landslide; therefore, there wou be required.	project site. Fur The proposed p	thermore, the project is no	ne surround t located in	ing area an area
b) Result in substantial soil erosion or the loss of topsoil?				
The proposed project site is located on land that is to or mountains located on the proposed project site. Further is topographically flat. The proposed project is of and commercial retail structures. An adequate drainst Since the project site is currently developed with developed with implementation of the proposed project erosion. Because the proposed project is not located would be no impacts, and no further analysis would required to comply with all applicable National Policand low-impact development building requirements and low-impact development building requirements.	arthermore, the currently develouse system currently develouse system currently develoused the project state of the project state of the project of the proj	surrounding ped with a ently exists surfaces and ite would no ining easily Moreover, the Elimination	g area of the surface park on the project would rest be subject erodible so the applicant of Service (N	projecting lotation lot site of the high will be NPDES
c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-si landslide, lateral spreading, subsidence, liquefaction or collapse?	te			
See discussion under threshold 7a(iii), above.				
d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property?				
See discussion under threshold 7a(iii), above.				
e) Have soils incapable of adequately supporting the use of onsite wastewater treatment systems where sewers are not available for the disposal of wastewater?	e \square			

No on-site wastewater treatment systems such as septic systems are proposed as part of the project. Therefore no further consideration of this issue is needed.

f) Conflict with the Hillside Management Area		
Ordinance (L.A. County Code, Title 22, § 22.56.215)		
or hillside design standards in the County General		
Plan Conservation and Open Space Element?		

The proposed project site is not located in a designated hillside management area. Therefore, no impact would occur.

8. GREENHOUSE GAS EMISSIONS

	Potentially Significant Impact	Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impac
Would the project:				
a) Generate greenhouse gas (GHGs) emissions, either directly or indirectly, that may have a significant impact on the environment?				

Construction of the proposed project would result in one-time emissions of greenhouse gases (GHGs). These emissions, primarily carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O), are the result of fuel combustion by construction equipment and motor vehicles. The other primary GHGs (hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride) are typically associated with specific industrial sources and are not expected to be emitted by the proposed project. The project's GHG emissions were estimated using CalEEMod using the same parameters for criteria pollutants.

The SCAQMD recommends amortizing construction-related GHG emissions over a project's lifetime in order to include these emissions as part of a project's annualized lifetime total emissions, so that GHG reduction measures will address construction GHG emissions as part of the operational GHG reduction strategies. The SCAQMD has defined a project lifetime to be a 30-year period. In accordance with this methodology, the project's construction GHG emissions have been amortized over a 30-year period.

At full buildout, the project would result in direct annual emissions of GHGs during project operation. These emissions, primarily CO₂, CH₄, and N₂O, are the result of fuel combustion from building heating systems and motor vehicles. Building and motor vehicle air conditioning systems may use hydrofluorocarbons (and hydrochlorofluorocarbons and chlorofluorocarbons to the extent that they have not been completely phased out at later dates).

The SCAQMD has not yet formally adopted significance thresholds for emissions of GHG. However, a SCAQMD working group has produced draft guidance that includes proposed significance thresholds for land use projects. The draft threshold applicable for mixed-use or all land use projects is 3,000 metric tons of carbon dioxide equivalents per year (MTCO2e/year).

It is generally the case that an individual project is of insufficient magnitude by itself to influence climate change or result in a substantial contribution to the global GHG inventory. ¹⁸ GHG impacts are recognized as exclusively cumulative impacts; there are no non-cumulative GHG emission impacts from a climate change perspective. ¹⁹ The proposed project includes a mix of retail and commercial land uses. As these types of land uses often result in increased traffic and substantial

¹⁹ CAPCOA, CEQA & Climate Change: Evaluating and Addressing Greenhouse Gas Emissions, (2008) 35.

California Air Pollution Control Officers Association, CEQA & Climate Change: Evaluating and Addressing Greenhouse Gas Emissions from Projects Subject to the California Environmental Quality Act, (2008) 35.

energy use, there is likely to be an associated substantia	l increas	e in GHG er	nissions fror	n the site.
These increased emissions may exceed the SCAQMI	D draft	significance	thresholds	for GHG
emissions. Therefore, the project may potentially have a	significa	int impact on	GHG emis	sions. The
EIR will discuss this topic in greater detail.				
b) Conflict with any applicable plan, policy, or	\boxtimes			
regulation adopted for the purpose of reducing the				
emissions of greenhouse gases?				

On January 16, 2007, the Los Angeles County Board of Supervisors instructed the Directors of Regional Planning and Public Works to create a green building program that would incorporate green building standards into all appropriate industrial, commercial, and residential development Projects within all unincorporated areas of the County. The green building program was approved by the Board on November 18, 2008 and became effective on January 1, 2009. However, the green building program applies to new buildings or first-time tenant improvements greater than or equal to 10,000 square feet. The Green Building Technical Manual²⁰ describes that the program would require non-residential projects greater than 10,000 to meet certain minimum standards.

The low impact development (LID) ordinance requires the use of LID principles in development projects. LID encourages site sustainability and smart growth in a manner that respects and preserves the characteristics of the County's watersheds, drainage paths, water supplies, and natural resources. Non-residential projects that alter less than 50 percent of the existing impervious surface must comply with LID best management practices that promote infiltration and beneficial use of stormwater runoff for the altered portion. If greater than 50 percent of the existing impervious surface is altered, the entire site must comply with LID best management practices.

The drought-tolerant landscaping ordinance establishes minimum standards for the design and installation of landscaping using drought-tolerant and native plants that require minimal use of water. The requirements ensures that the County conserves water resources by requiring landscaping that is appropriate to the region's climate and nature of the use. Projects consisting of new non-residential buildings or first-time tenant improvements greater than or equal to 10,000 square feet shall use drought-tolerant plants for at least 75 percent of all landscaping and require that all turf be water-efficient and limited to 25 percent of all landscaped area not to exceed 5,000 square feet (minimum of 5 feet width for all turf areas).

The proposed project is required to comply with the County of Los Angeles green building, LID, and drought-tolerant landscaping ordinances. Therefore, the new buildings will be constructed to exceed Title 24 (2005) by at least 15 percent and meet LEED certification or equivalent. The project will incorporate features in the project design to ensure that the project reduces GHG emissions consistent with the County of Los Angeles green building, LID, and drought-tolerant landscaping ordinances. However, specific project features to be included in the proposed project that will enable this compliance are not currently available. Consequently, there is the possibility that the proposed project may conflict with plans to reduce GHG emissions. The EIR will discuss this topic in greater detail.

²⁰ County of Los Angeles. Draft Green Building Technical Manual. 2011.

9. HAZARDS AND HAZARDOUS MATERIALS

Would the project:	Potentially Significant Impact	Less Than Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Create a significant hazard to the public or the environment through the routine transport, storage production, use, or disposal of hazardous materials?				
The development proposed under the project would not materials. Typical hazardous materials that would be include cleaning products associated with the retail, co and fuel for boats within the marina. The proposed prolarge quantities of boat fuel on-site. While some haza project site, the proposed project would not be expected materials. For example, paint, solvents, and cleaners of boat repair shop; however, any unused paint, solve conformance with applicable regulations and the spent significant and additional analysis is not warranted.	expected to be commercial and oject does not ardous material and to create a may be used in the create, or clean	the used on the did restaurant include provals would be significant had conjunction aners would	portions of isions for st present wi zard related with the p be dispose	the site orage of thin the to such proposed d of in
b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of				

The proposed project could use hazardous materials such as paints, cleaning agents, aerosol cans, landscaping-related chemicals, and common household substances such as bleaches during construction and renovation activities on the project site, as well as during operation of the uses on the project site upon buildout. All uses and storage of these materials would be subject to federal, state, and local laws pertaining to the use, storage, and transportation of these hazardous materials. Most of the hazardous materials indicated above are allowed to be disposed of at the local Class II and Class III landfills that serve the proposed project site and community of Marina del Rey. Since the proposed project would be required to abide by federal, state, and local laws pertaining to the use, storage, and transportation of these materials, the likelihood of an accidental release occurring and creating a significant hazard to the public would be minimal. Therefore, impacts would be less than significant. No further analysis is required on this topic.

hazardous materials or waste into the environment?

c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of sensitive land uses?				
The project site is located within 0.25 mile of sensitive would not include the storage of large quantities of h Consequently, there would be less than significant imparequired.	nazardous	materials or	pressurized	d tanks.
d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code § 65962.5 and, as a result, would it create a significant hazard to the public or the environment?				
The project site is not located on a parcel of land that materials sites compiled pursuant to Government Code included on a list of hazardous materials sites is located 0.5 mile north of the project site. Since the proposed project as a hazardous materials site, there would be no impacts. I required.	Section 65 l at 4144 (ect site is n	962.5 ²¹ . The Glencoe Ave ot located o	e closest site nue, approx n a site that	e that is ximately is listed
e) For a project located within an airport land use plan, or where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?				
The project site is located approximately 2.2 miles to the	ne northwe	est of Los A	ngeles Inter	national

The project site is located approximately 2.2 miles to the northwest of Los Angeles International Airport (LAX) and approximately 1.9 miles south of the Santa Monica Airport. The project site is not located within 2 miles of LAX, is not located within the Santa Monica Airport Influence Area,²² is not located in the LAX Airport Influence Area,²³ and would not result in a safety hazard for people in the project area. No impacts would occur and further analysis on this topic would not be required.

²¹ California Department of Toxic Substances Control, Envirostor Database

Los Angeles County Department of Regional Planning, Los Angeles County Airport Land Use Commission, Santa Monica Airport Influence Area, http://planning.lacounty.gov/assets/upl/project/aluc_airport-santa-monica.pdf.

Los Angeles County Department of Regional Planning, Los Angeles County Airport Land Use Commission, LAX Airport Influence Area, http://planning.lacounty.gov/assets/upl/project/aluc_airport-lax.pdf.

f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area?				
There are no private airstrips in the project site vicinity Further analysis is not required.	and no saf	ety hazard in	npact would	d occur.
g) Impair implementation of, or physically interfere with, an adopted emergency response plan or emergency evacuation plan?				
The project site is located in Marina del Rey, which is an Los Angeles. The project site would be subject to the Og (the OAERP), which is prepared by the Office of Emerge proposed project would not change current evacuation rou development of the proposed project would not physicall would occur and further analysis on this topic is not require	perational ncy Manag ates from o ly interfere	Area Emerge gement. ²⁴ Imp off the project	ncy Respor plementation site. Furth	nse Plan n of the ermore,
h) Expose people or structures to a significant risk of loss, injury or death involving fires, because the project is located:				
i) within a Very High Fire Hazard Severity Zones (Zone 4)?				
The project site is not located within a Very High Fire Hawould have no impact on fire safety.	azard Sever	rity Zone. Th	erefore, the	project
ii) within a high fire hazard area with inadequate access?				
The project site is not located in a high fire hazard zone addition, a fire lane is a component of the proposed projimpact on fire safety.		•	0 ,	
iii) within an area with inadequate water and pressure to meet fire flow standards?				
The proposed project will be required to meet all fire provide adequate fire flow in the event of a fire hazard; a required to be demonstrated by the applicant prior to is	dequate fir	e flows for the	ne project v	vill be a

²⁴ Los Angeles County Department of Regional Planning, Draft General Plan 2008, Safety Element, pg. 176.

would be a less than significant impact from the project to fire safety in regard to fire flow.

iv) within proximity to land uses that have the potential for dangerous fire hazard?				
The project site is not located in proximity to land uses The project site is surrounded by primarily residential the project would have a less than significant impact w have the potential for dangerous fire hazard; no further	and office co	ommercial la o its proxim	and uses. Thity to land u	nerefore
i) Does the proposed use constitute a potentially dangerous fire hazard?				

The project consists of commercial retail and boater-serving development, the majority of which would not constitute a potentially dangerous fire hazard. The project plans will be reviewed by Fire Department staff during the application review process and project design features, if necessary, will be incorporated into the plans, prior to their approval by the County, to mitigate potential fire hazards. Therefore, the proposed project will result in less than significant impacts related to a potentially dangerous fire hazard.

10. HYDROLOGY AND WATER QUALITY

	Potentially Significant Impact	Less Than Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impact
Would the project:			pwev	za pue
a) Violate any water quality standards or waste discharge requirements?				
Compliance with the County Department of Public would ensure that construction runoff does not exceed plan and study will be required to analyze potential run These plans will be further discussed in the EIR for the property of the proper	discharge ro noff from t	equirements. he project sit	A detailed o	drainage
b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?				
The project site is currently paved and developed with constorage areas, and the site, therefore, offers limited operoject does not propose any extraction of groundwater not cause any impacts to groundwater resources or to groundwater resources.	portunities r and there:	for groundw fore the prop	ater rechar osed projec	ge. The t would
c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?				
Compliance with the County Department of Public would ensure that construction runoff does not exceed plan and study will be required to analyze potential runo	discharge re	equirements.	A detailed o	drainage

d) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site?				
The proposed project site contains an existing drainage sybut requires upgrading in regards to modern stormwater of Development (LID) Program. For this reason, it is antiquantities of the project site would remain substantially with the addition of a belt of bio-retentive grasscrete an stormwater runoff. Runoff would continue to outlet the treatment. The aforementioned stormwater management is the existing drainage pattern of the site or area and wou runoff in compliance with the County's LID Program. The LID drainage requirements will ensure that site drainage in the County's most current standards.	management cipated that the same sind d gravel surrough the improvement ald only be the project's of	t and the Co t drainage p ze as under b base for p storm drain its would no introduced conformance	ounty's Low patterns and current con proper treate system aft of significan to treat and e with the C	Impact I runoff Inditions Iment of the such the
e) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?				
The project site is currently developed with commercial areas. The proposed project would have the same or less system as the current site condition. However, a detailed analyze potential runoff from the project site during operation.	s runoff en drainage pla	tering the st	cormwater o	drainage
f) Generate construction or post-construction runoff that would violate applicable stormwater NPDES permits or otherwise significantly affect surface water or groundwater quality?				
The project site is currently developed with commercial areas. Compliance with the County Department of Public would ensure that construction runoff does not exceed d plan and study will be required to analyze potential runoff	Works–adr ischarge red	ministered N quirements.	PDES/MS4 A detailed o	4 permit drainage

Title 12, Ch. 12.84 and Title 22, Ch. 22.52)?				
The project site contains an existing drainage system that upgrading in regards to modern stormwater man Development (LID) Program. For this reason, it is an quantities of the project site would remain substantiall with a gravel sub-base for proper treatment of stormwathrough the storm drain after such treatment. The improvements would not alter the existing drainage paintroduced to treat and retain runoff in compliance with the LID requirements will be achieved through the approved by Department of Public Works preceding the permits.	agement an atticipated the year the same aforement aforement the the Courte implement	d the Country at drainage pasize as under Runoff would ioned storms site or areauty's LID Protection of the	nty's Low patterns and continue to water mand and would ogram. Con Drainage (Impact Irunoff nditions to outlet agement only be impliance Concept,
h) Result in point or nonpoint source pollutant discharges into State Water Resources Control Board-designated Areas of Special Biological Significance?				
The Marina basin and, therefore, the project site is not of Special Biological Significance (ASBS). ²⁵ Therefore, ASBS. No further analysis is required.			_	
, 1				
i) Use onsite wastewater treatment systems in areas with known geological limitations (e.g. high groundwater) or in close proximity to surface water (including, but not limited to, streams, lakes, and drainage course)?				
i) Use onsite wastewater treatment systems in areas with known geological limitations (e.g. high groundwater) or in close proximity to surface water (including, but not limited to, streams, lakes, and	ater treatme	ent facilities. I	No further	study of
i) Use onsite wastewater treatment systems in areas with known geological limitations (e.g. high groundwater) or in close proximity to surface water (including, but not limited to, streams, lakes, and drainage course)? The proposed project would not provide on-site wastew	ater treatme	ent facilities. I	No further	study of

²⁵ State Water Resources Control Board, State Water Quality Protection Areas of Special Biological Significance, http://www.waterboards.ca.gov/water_issues/programs/ocean/asbs_areas.shtml

k) Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map, or within a floodway or floodplain?				
The project is not located within a floodway, floodplain, or proposed project contains no housing component. There with respect to this topic area and no further analysis is recommendately.	efore, the 1			
1) Place structures, which would impede or redirect flood flows, within a 100-year flood hazard area, floodway, or floodplain?				
The project site is not located within a floodway, flood structures would be placed within a floodway, floodplain, project would create no impacts with respect to this topic a	or other fl	ood hazard a	rea. There	fore, the
m) Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?				
The project site is not located within a floodway, flood structures would be placed within a floodway, floodplain, subject property is not located within the flood inundate potentially fail. Therefore, the project would create no impurither analysis is required.	or other f	lood hazard a of any dam o	area. Moreo or levee th	over, the at could
n) Place structures in areas subject to inundation by seiche, tsunami, or mudflow?				
The proposed project would not be subject to hazards from is located within the Marina del Rey Harbor, along the Scientists for communities along low-lying areas of the Society of the So	outhern Ca uthern Ca	alifornia coas lifornia coas	tline. The p	ootential

The proposed project would not be subject to hazards from mudflow or seiche. The proposed project is located within the Marina del Rey Harbor, along the Southern California coastline. The potential exists for communities along low-lying areas of the Southern California coastline to experience flooding due to tsunamis caused by earthquakes or underwater landslides. The maximum expected run-up of a tsunami in the local area of the project site is 9.6 feet in a 100-year interval and 15.3 feet in a 500-year interval. Tsunamis generated from local earthquakes may be larger than distant earthquakes but are less likely to occur. Potential tsunami hazards will require further evaluation in the EIR.

County of Los Angeles, Department of Regional Planning, Marina del Rey Land Use Plan, February 9, 1996, pg. 10-4.

11. LAND USE AND PLANNING

Less Than

	Potentially Significant Impact	Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impact
Would the project:	impaci	incorporated	impaci	impaci
a) Physically divide an established community?				
The project site is located in an area of Marina del Rey structures, commercial structures, parking lots, and par site. The proposed project would not divide an established impacts. No further analysis on this topic is required.	ks are locat	ted around th	e proposed	project
b) Be inconsistent with the applicable County plans for the subject property including, but not limited to, the General Plan, specific plans, local coastal plans, area plans, and community/neighborhood plans?				
The project site is designated as "Marine Commercial," "Boat Storage, with Waterfront Overlay," and "Water" in Plan. The proposed redevelopment of the existing commercial retail and boater-serving services is consister designations and development standards for project sit analysis on this topic is required.	n the Marin nercial struc nt with the	a del Rey Spe tures and stor applicable Sp	cific Plan La cage areas w ecific Plan l	and Use ith new and use
c) Be inconsistent with the County zoning ordinance as applicable to the subject property?				

The proposed project is zoned as Marina del Rey Specific Plan under the Los Angeles County Zoning Ordinance. Furthermore, the Marina del Rey Land Use Plan designates the project as "Marine Commercial," "Visitor-Serving/Convenience Commercial," "Boat Storage" and "Water" with the "Waterfront Overlay Zone" designation. Per the controlling Marina del Rey Local Coastal Program (of which the Specific Plan and Land Use Plan are a part), the subject property is zoned for the development of the project's proposed visitor-serving/convenience commercial, marine commercial and boat storage uses. As such, the proposed project would not be inconsistent with the County zoning ordinance as applicable to the subject property. There would be no impact. No further analysis on this topic is required.

d) Conflict with Hillside Management criteria,		
Significant Ecological Areas conformance criteria, or		
other applicable land use criteria?		

The proposed project is not located within an area subject to Hillside Management policies or within a Significant Ecological Area. Project development would therefore not conflict with policies or criteria of such programs. There would be no impact. No further analysis on this topic is required.

12. MINERAL RESOURCES

Loss Thor

W/ 11.1	Potentially Significant Impact	Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impact
Would the project: a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?				
The project site is not located within a Mineral Reso Angeles. ²⁷ The proposed project would not impact a analysis is required.			•	
b) Result in the loss of availability of a locally- important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?				

The project site is not located within a Mineral Resource Zone as mapped by the County of Los Angeles. However, the project site is located within an Oil and Gas Resource Zone. The project site is developed with commercial-retail land uses and does not currently contain existing drilling sites for the recovery of oil and natural gas, nor are any drilling sites located on the project site for the recovery of oil or natural gas proposed in the future. There would be no impacts to oil and natural gas resources with implementation of the proposed project. The proposed project would not result in the loss of availability of a locally important mineral resource recovery site delineated within the County of Los Angeles General Plan or the Marina del Rey Specific Plan. No further analysis is required.

²⁷ County of Los Angeles Draft General Plan, Chapter 6 Conservation and Open Spaces Element, Figure 6.5, Natural Resource Areas, 2008.

²⁸ County of Los Angeles Draft General Plan, Chapter 6 Conservation and Open Spaces Element, Figure 6.5, Natural Resource Areas, 2008.

13. NOISE

I ass Than

Would the project result in:	Potentially Significant Impact	Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Exposure of persons to, or generation of, noise levels in excess of standards established in the County General Plan or noise ordinance (Los Angeles County Code, Title 12, Chapter 12.08), or applicable standards of other agencies?				
The project site is located in the unincorporated commu area that is within the Marina del Rey Specific Plan are Zoning Code. Noise monitoring over a 24-hour period we to measure ambient noise levels for analysis of both consensitive noise receptors (e.g., Burton Chase Park). This to	ea pursuant vill be cond truction an	to the Couructed at threed operational	nty of Los a different lo impacts on	Angeles ocations nearby
b) Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?				
The proposed project is not considered a sensitive use Chase Park at the end of Mindanao Way. Because pile of proposed structures, sensitive uses may be exposed groundborne noise levels. Impacts associated with groundfurther analyzed in the EIR.	lriving may l to exces	occur with t sive ground	the construction	ction of and/or
c) A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project, including noise from parking areas?				

The proposed project would increase the intensity of the land uses on the project site when compared to existing conditions. The project would construct new commercial structures to replace the existing seven buildings on the site and would result in an increase from 14,724 square feet to approximately 83,778 square feet. The proposed project would not include any new substantial sources of stationary noise, such as an amplified outdoor sound system. Ambient noise level upon completion of the redevelopment of the commercial, retail and restaurant use, and surface parking would not be substantially increased during project operation. The project would result in a less than significant impact with respect to this topic area and no additional analysis is thus required.

d) A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project, including noise from amplified sound systems?				
Construction activities would include demolition, graphene potentially pile driving. During demolition and grading grader, a loader, a scraper would be used. Building converge paving activities would use a paver and roller. Off-high materials to the site. The loudest expected noise level to experience during the redevelopment phases could be gradient Continuous Sound Level (Leq), which is the noise impacts from construction will be analyzed in the loader to th	onstruction way trucks that at the negreater than standard for	equipment s would use a would also b earest sensiti 80 A-weight	such as back crane and be used to the ive receptor ted decibels	khoes, a forklift. ransport rs would (dB(A))
e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?				
The project site is not located within the Los Angeles In land use plan and would not expose people to excessi impact related to airport noise.		_		_
f) For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?				
The project site is not located adjacent or near a private	a airstrin and	d would not	evnose rece	entore to

The project site is not located adjacent or near a private airstrip and would not expose receptors to excessive noise levels. The project would have no impact related to noise from a private airstrip.

14. POPULATION AND HOUSING

	Potentially Significant Impact	Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impact
Would the project:				
a) Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?				
Infrastructure, such as sewage disposal, roads, water of electrical lines, currently exist and serve the project site would not be required with implementation of the proper the existing infrastructure systems serving the site (e.g., required. Given the relatively minor size of the propos 69,054 sq. ft. of new commercial, retail and restaurant sp to induce substantial direct or indirect population growth. There would be less than significant impacts and further a	e. Installation osed project roadways, ed develope pace), the property within the	on of new inf t, though som sewer lines, v ment (net gain oposed project te community	rastructure ne improven water lines) n of approx et is not ant of Marina o	systems nents to may be imately icipated del Rey.
b) Displace substantial numbers of existing housing, especially affordable housing, necessitating the construction of replacement housing elsewhere?				
No residential development is currently present within development under the proposed project. As no housing this topic is required.	- '			
c) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?				
No residential development is currently present within development under the proposed project. As no existing analysis of this topic is required.	- '			
d) Cumulatively exceed official regional or local population projections?				

The proposed project is the redevelopment of an existing commercial and boat storage complex. No residential land use component is proposed. Therefore, implementation of the proposed project would not exceed official regional or local population projections and there would be no impacts. Additional analysis on this topic is not required.

15. PUBLIC SERVICES

	Potentially Significant Impact	Less Than Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Would the project create capacity or service level problems, or result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services:				
Fire protection? The project site is located in the urbanized area of M (BMPs) would be standard during demolition and construct that the threat for fire and the threat of crime (pilferage does not occur on the project site. The proposed project therefore is not expected to substantially affect the abit meet established standards for service levels. The nearest Admiralty Way, to the project site is 0.4 mile away. This EIR.	uction of the of the const would not elity of exist County Fi	e commercial ruction equip result in populting fire proter station (#1	buildings to ment) is rec- ulation grow section reson 10), located	o ensure duced or wth, and urces to at 4433
Sheriff protection? As discussed under threshold 15a, above, the propose growth, and therefore is not expected to substantially at resources to meet established standards for service levelocated at 13851 Fiji Way, to the project site is 1.0 mile a will be provided in the Project EIR.	ffect the abi	lity of existin earest Count	g sheriff pro y Sheriff's	otection Station,
Schools? As discussed under threshold 15a, above, the propos growth, and therefore would not substantially affect established standards for service levels. No further analysts	t the abilit	y of existing	g schools t	
Parks? As discussed under threshold 15a, above, the propos growth, and therefore is not expected to substantially facilities to meet established standards for service levels.	y affect the	ability of e	xisting recr	eational
Libraries? As discussed under threshold 15a, above, the propos growth, and therefore would not substantially affect the established standards for service levels. No further analys	ability of e	existing librar	y resources	-

Other public facilities?				
There are no other public services in the project ar project.	rea that would	be impacted	by the	proposed

16. RECREATION

a) Would the project increase the use of existing neighborhood and regional parks or other	Potentially Significant Impact	Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impact
recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?				
The existing commercial structures do not currently incommercial Braude Bike Path, a Class I facility, currently mean on the project site southwest of Admiralty Way. As disbike path along the Admiralty Way-fronting bulkhead, the existing condition by providing a straight alignment project also includes development of an expansive public bulkhead, whereas the existing developed parcel lacks proposed project will include recreational amenities asso parking. As discussed under threshold 15a , above, to population increases and is thus not expected to increase No further analysis of this issue is required.	anders throus scussed above which will for the bike ic pedestrial such a rec ciated with he propose	igh existing so we, the project be a significal e path along to n promenade reational among the bike path	arface parking the waterfrom the waterfrom the enity. Further, including to the could not re-	ng areas cate this ment to ont. The parcel's ner, the bicycle esult in
b) Does the project include neighborhood and regional parks or other recreational facilities or require the construction or expansion of such facilities which might have an adverse physical effect on the environment?				

The proposed project does not include the development of any neighborhood or regional park facilities. As discussed above under threshold 16a above, the project includes improvements to the existing bike path. These improvements are limited to the relocation of the existing bike path and would not result in an adverse effect on the environment. Therefore, impacts would be less than significant and further analysis on this topic area is not required.

c) Would the project interfere with regional open		
space connectivity?		

The Marvin Braude Bike Path, a Class I facility, crosses the project site southwest of Admiralty Way. However, as discussed under threshold 16a, the improvements would generally be limited to the area between Admiralty Way and the bike path. The bike path would be maintained on-site; however, the path's alignment on the site would be substantially improved as the bike path would be realigned in a straight line through the site and would no longer meander through the parking lot, thereby improving safety. Further, the proposed project includes bicycle parking and pedestrian amenities that would encourage and enhance public use of the subject property. Therefore the proposed project would not interfere with regional open space connectivity, but, rather, would improve such connectivity; impacts would be less than significant an additional analysis of this impact area is not warranted.

17. TRANSPORTATION/TRAFFIC

Loss Thom

Would the project:	Potentially Significant Impact	Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Conflict with an applicable plan, ordinance, or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit?				
The proposed project site is currently served by Transportation Authority (Metro) and Culver Citybe throughout the community of Marina del Rey and in Redevelopment of the existing commercial structures a not interfere with alternative transportation service as primplementation of the proposed project would not confisupporting alternative transportation, there would be no study will be prepared to assess the project's impacts of circulation systems, identify potential significant impact improvements intended to mitigate the project's significant to the extent feasible. As such, additional analysis on this	to parts of and surface provided by lict with add to impact. He on the local ts to these sunt transpor	ovides alternathe Los Ang parking and sometro and Cu opted policies, Iowever, a co and sub-reging systems, and a tation circulation	tive transported transported to the storage areas alver Citybut, plans, or promprehensive onal transported traffication impacts	Region. s would as. Since rograms e traffic ortation e system s, if any,
b) Conflict with an applicable congestion management program (CMP), including, but not limited to, level of service standards and travel demand measures, or other standards established by				
the CMP for designated roads or highways?				

The CMP requires that detailed analyses be conducted for any arterial monitoring intersections where the proposed project is anticipated to add 50 or more total trips, or for freeway mainline segments where the proposed project is anticipated to add 150 or more trips (per direction) during either the weekday AM or PM peak hours. The current CMP (2010) identifies eight arterial monitoring intersections within approximately 3 miles of the project site. Six of the eight CMP intersections are located within the City of Los Angeles, while one intersection is located within the City of Santa Monica and the remaining intersection is located within the City of Culver City. The CMP arterial monitoring locations are listed below.

• Lincoln Boulevard and Venice Boulevard (Los Angeles)

• Lincoln Boulevard and the Marina Expressway (SR-90) (I	Los Angeles)			
• Lincoln Boulevard and Manchester Avenue (Los Angeles	s)			
• Lincoln Boulevard and Sepulveda Boulevard (Los Angele	es)			
Lincoln Boulevard and Pico Boulevard (Santa Monica)				
Venice Boulevard and Centinela Avenue (Los Angeles)				
Venice Boulevard and Overland Avenue (Culver City)				
Manchester Avenue and Sepulveda Boulevard (Los Angel	eles)			
Additionally, the CMP identifies the I-405 (San Diego between La Tijera Boulevard and the I-10 (Santa M complete list of study intersections for detailed analyses to the CMP arterial monitoring locations noted above, the Los Angeles County Department of Public Works, project's anticipated traffic travel patterns into, out of, project traffic will disperse throughout the area road vicinity, and that project traffic volume additions to a expected to be substantially less than the 50-trip threshold the subject freeway mainline segments will also be additional analysis on this topic will be provided in the	Ionica) Freewas of project imposed will be determ and through the dway network any of the CM old and that project in the less than the	ay) as a monoacts, including through the study vio a coutside the property of the property of the study vio a coutside the propect-related	nitored facting, but not he consultation. A review cinity indicate immediating intersect.	cility. A t limited on with w of the ates that te study ions are itions to
c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?				
The proposed project would not change any air traffic p	patterns and th	ere would be	e no impact	
d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?				
A comprehensive traffic study will be prepared to asseroad intersections in the vicinity of the project site, it roadways and road intersections, and assign roadways mitigate the project's significant impacts to analyzed reextent feasible. Additional analysis on this topic will be	identify potent and intersect oadways and r	tial signification improve oad intersect	nt impacts ements inte tions, if any	to these
e) Result in inadequate emergency access?	\boxtimes			
The proposed project is not anticipated to create a sign site or off-site; however, additional analysis on this topi	_	_	-	ther on-

f) Conflict with adopted policies, plans, or programs		
regarding public transit, bicycle, or pedestrian		
facilities, or otherwise decrease the performance or		
safety of such facilities?		

The proposed project will not interfere with existing Bikeway Plan, Pedestrian Plan, Transit Oriented District development standards in the County General Plan Mobility Element. As noted above, the Marvin Braude Bike Path, a Class I facility, currently meanders through existing surface parking areas on the project site southwest of Admiralty Way. The project will relocate this bike path along the Admiralty Way-fronting bulkhead, which will be a significant improvement to the existing condition by providing a straight alignment for the bike path along the waterfront. The proposed project also includes bicycle parking. Therefore, project impacts will be less than significant.

18. UTILITIES AND SERVICE SYSTEMS

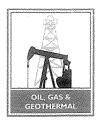
	Potentially Significant Impact	Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impact
Would the project:	•	1	1	1
a) Exceed wastewater treatment requirements of either the Los Angeles or Lahontan Regional Water Quality Control Boards?				
The increased development intensity within the project so increase the amount of wastewater discharged from the lines and treatment facilities. Additional study of the potreatment requirements will be provided in the Project Expression of the project E	e site using etential for	existing wast	tewater con	veyance
b) Create water or wastewater system capacity problems, or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?				
The increased development intensity within the project so increase the amount of wastewater discharged from the lines and treatment facilities. Additional study of the potreatment capacity will be provided in the Project EIR.	e site using	existing wast	tewater con	veyance
c) Create drainage system capacity problems, or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?				

The project is currently covered with impermeable surfaces such as commercial structures and paved parking lots. Project compliance with County requirements for LID design features (see discussion under **threshold 10d**, above) is expected to result in an increase of permeable surfaces within the project site, reducing the amount of stormwater exiting the site. This topic will be further analyzed in the Project EIR.

d) Have sufficient reliable water supplies available to serve the project demands from existing entitlements and resources, considering existing and projected water demands from other land uses?				
The project site is located in a developed area of Marin existing water conveyance system. The increased common would result in an increase in water demand at project warranted and will be provided in the Project EIR.	ercial densi	ty proposed	for the pro	oject site
e) Create energy utility (electricity, natural gas, propane) system capacity problems, or result in the construction of new energy facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?				
The project site currently receives electricity from the Snatural gas from the Southern California Gas Compar project site, which conveys an adequate supply of electric the project site. Project development will result in an therefore the proposed project would demand more electric demanded under existing conditions. Further analysis on EIR.	ny. Infrastrative and national increase of icity and n	ructure curre tural gas to to of building s atural gas tha	ently exists the existing square foot at is current	on the uses on tage and tage and
f) Be served by a landfill with sufficient permitted capacity to accommodate the project's solid waste disposal needs?				
During project demolition, construction, and redevelopm construction debris would occur; however, this increase wable to be accommodated by the local solid waste disposal Marina del Rey. Furthermore, any debris that would be gaubject to the required diversion rate. Operation of the primpact to solid waste disposal facilities, and further analyst the Project EIR.	rould be tenderal service enerated by proposed p	mporary in n provided in y the propose roject could i	ature and we the commed project we result in a p	vould be unity of vould be potential
g) Comply with federal, state, and local statutes and regulations related to solid waste?				
The proposed project would comply with all federal, state While the proposed project would result in an increase in would comply with solid waste diversion programs for confurther analysis of this issue is required.	solid was	te disposal, th	ne proposed	l project

19. MANDATORY FINDINGS OF SIGNIFICANCE

Less Than


a) Does the project have the potential to degrade the	Potentially Significant Impact	Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impaci
quality of the environment, substantially reduce the				
habitat of a fish or wildlife species, cause a fish or				
wildlife population to drop below self-sustaining				
levels, threaten to eliminate a plant or animal community, substantially reduce the number or				
restrict the range of a rare or endangered plant or				
animal or eliminate important examples of the				
major periods of California history or prehistory?				
Based on the findings of this initial study, the proprimportant examples of the major periods of California publishments are substantially reduce the habitat of a fish or wildlife species below self-sustaining levels, nor threaten a plant or anim proposed project to impact nesting birds such as the Great Double-crested Cormorant, and Great Egret, to the extremests on the site. These topic areas will be further evaluated	orehistory. The services, cause a final communitate Blue Heronent these spent these spents are spent to the spents of the	The proposed sh or wildlife ty. Some pot on, Black-crow becies might be	project wo population ential exists vned Night	ould not to drop for the Heron
b) Does the project have the potential to achieve short-term environmental goals to the disadvantage				
of long-term environmental goals?				

The proposed project would not disadvantage any long-term environmental goals of Los Angeles County or those identified in the Marina del Rey 2010 Conservation and Management Plan in an effort to achieve short-term environmental goals, as both goals are consistent with each other. Moreover, by incorporating state-of-the-industry water quality protection measures and Green Building standards (as will be required for the project under the County's applicable Low-Impact Development and Green Building ordinances), the project's short-term environmental protection and sustainability components will help to fulfill the County's longer-term environmental protection and sustainability goals.

c) Does the project have impacts that are	\boxtimes			
individually limited, but cumulatively considerable?				
("Cumulatively considerable" means that the				
incremental effects of a project are considerable				
when viewed in connection with the effects of past				
projects, the effects of other current projects, and				
the effects of probable future projects)?				
As described throughout this Initial Study, the proposed intensity on the project site. Related projects as specific environmental review to determine the level of signific individual development. Therefore, cumulative impact contribution to cumulative impacts would be cumulative will be analyzed in the EIR.	fied above vance for im	vould be inv pacts pertain e significant	rolved in in ing to each and the	ndividual of their project's
d) Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?				

As described throughout this Initial Study, the proposed project includes the redevelopment of the existing commercial and marine-related facilities and the associated surface parking lot on the project site. The proposed project is not anticipated to include construction or operational activities that would cause a substantial adverse effect on human beings. However, the Project EIR will provide additional analysis on various environmental impact areas identified for further study in this Initial Study, to confirm whether any such impacts will cause substantial adverse effects on human beings, either directly or indirectly.

DEPARTMENT OF CONSERVATION

DIVISION OF OIL, GAS AND GEOTHERMAL RESOURCES

5816 Corporate Avenue • Suite 200 • CYPRESS, CALIFORNIA, 90630-4731 **PHONE** 714 / 816-6847 • **FAX** 714 / 816-6853 • **WEBSITE** conservation.ca.gov

September 3, 2013

Ms. Anita Gutierrez, AICP County of Los Angeles Department of Regional Planning 320 Temple Street Los Angeles, CA 90012

Dear Ms. Gutierrez:

NOTICE OF PREPARATION AND NOTICE OF SCOPING MEETING FOR PARCEL 44 (PROJECT NUMBER R2013-01647), MARINA DEL REY, LOS ANGELES COUNTY, CA – SCH# 2013081040

The Department of Conservation's Division of Oil, Gas, and Geothermal Resources (Division), Cypress office, has reviewed the above referenced project. Our comments are as follows.

Your proposed project is located within the administrative boundaries of the Playa del Rey oil field and Los Angeles County. The closest well to your project is well "Ohio D.R.L. & W." 2 (037-13801), mapped approximately 800 feet southwest of the project boundary. This well is located on Division map 120 and in Division records.

The Division is mandated by Section 3106 of the Public Resources Code (PRC) to supervise the drilling, operation, maintenance, and plugging and abandonment of wells for the purpose of preventing: (1) damage to life, health, property, and natural resources; (2) damage to underground and surface waters suitable for irrigation or domestic use; (3) loss of oil, gas, or reservoir energy; and (4) damage to oil and gas deposits by infiltrating water and other causes. Furthermore, the PRC vests in the State Oil and Gas Supervisor (Supervisor) the authority to regulate the manner of drilling, operation, maintenance, and abandonment of oil and gas wells so as to conserve, protect, and prevent waste of these resources, while at the same time encouraging operators to apply viable methods for the purpose of increasing the ultimate recovery of oil and gas.

The scope and content of information that is germane to the Division's responsibility are contained in Section 3000 et seq. of the Public Resources Code (PRC), and administrative regulations under Title 14, Division 2, Chapter 4 of the California Code of Regulations.

Anita Gutierrez, AICP September 3,2013 Page 2 of 2

If any structure is to be located over or in the proximity of a previously plugged and abandoned well, the well may need to be plugged to current Division specifications. Section 3208.1 of the Public Resources Code (PRC) authorizes the State Oil and Gas Supervisor (Supervisor) to order the reabandonment of any previously plugged and abandoned well when construction of any structure over or in the proximity of the well could result in a hazard.

An operator must have a bond on file with the Division before certain well operations are allowed to begin. The purpose of the bond is to secure the state against all losses, charges, and expenses incurred by it to obtain such compliance by the principal named in the bond. The operator must also designate an agent, residing in the state, to receive and accept service of all orders, notices, and processes of the Supervisor or any court of law.

Written approval from the Supervisor is required prior to changing the physical condition of any well. The operator's notice of intent (notice) to perform any well operation is reviewed on engineering and geological basis. For new wells and the altering of existing wells, approval of the proposal depends primarily on the following: protecting all subsurface hydrocarbons and fresh waters; protection of the environment; using adequate blowout prevention equipment; and utilizing approved drilling and cementing techniques.

The Division must be notified to witness or inspect all operations specified in the approval of any notice. This includes tests and inspections of blowout-prevention equipment, reservoir and freshwater protection measures, and well-plugging operations.

The Division recommends that adequate safety measures be taken by the project manager to prevent people from gaining unauthorized access to oilfield equipment. Safety shut-down devices on wells and other oilfield equipment must be considered when appropriate.

If any plugged and abandoned or unrecorded wells are damaged or uncovered during excavation or grading, remedial plugging operations may be required. If such damage or discovery occurs, the Division's Cypress district office must be contacted to obtain information on the requirements for and approval to perform remedial operations.

Sincerely,

Kathleen M. Andrews

Associate Oil & Gas Engineer - Facilities

Kathleen M. Andrews

Vetro

September 13, 2013

Anita Gutierrez, AICP County of Los Angeles Department of Regional Planning 320 West Temple Street Los Angeles, CA 90012

RE: Parcel 44- Notice of Preparation – Environmental Impact Report

Dear Ms. Gutierrez:

The Los Angeles County Metropolitan Transportation Authority (LACMTA) is in receipt of the Notice of Preparation (NOP) of the Environmental Impact Report (EIR) for the proposed Parcel 44 development project at the intersection of Admiralty Way and Bali Way in Marina del Rey (Project Number R2013-01647, Environmental Review No. 201300142). This letter conveys comments concerning issues that are germane to LACMTA's statutory responsibilities in relation to the proposed project as well as issues that may impact LACMTA's operations and facilities.

Metro bus lines operate on Admiralty Way, adjacent to the proposed project. One Metro bus stop on the corner of Admiralty Way and Bali Way is directly adjacent to the proposed project. The following comments relate to bus operations and the bus stop:

- Although the project is not expected to result in any long-term impacts on transit, the developer should be aware of the bus facilities and services that are present. The existing Metro bus stop must be maintained as part of the final project.
- 2. During construction, the stops must be maintained or relocated consistent with the needs of Metro Bus Operations. Metro Bus Operations Control Special Events Coordinator should be contacted at 213-922-4632 regarding construction activities that may Impact Metro bus lines. Other municipal bus service operators, notably Culver City Bus and LADOT Commuter Express, may also be impacted and should be included in construction outreach efforts.
- LACMTA encourages the installation of bus shelters, benches and other
 amenities that improve the transit rider experience. The County should
 consider requesting the installation of such amenities as part of the
 redevelopment of the site.
- 4. Final design of the bus stop and surrounding sidewalk area must be Americans with Disabilities Act (ADA) compliant and allow passengers with disabilities a clear path of travel to the bus stop from the proposed development.

The Marvin Braude Bike Path that runs through the project site provides bicycle access to the proposed project and connects with the South Bay Bike Trail and the Ballona Creek

Trail, both major bicycle facilities in the region. In their interest of supporting all modes of transportation and minimizing congestion across the County, LACMTA commends the realignment of the bicycle path along the waterfront in the proposed project. LACMTA would also like to provide the following comments related to bicycle facilities:

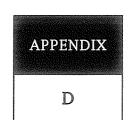
- 1. The design of the proposed bike path should meet the standards in the Caltrans Highway Design Manual (HDM) and California Manual on Uniform Traffic Control Devices (MUTCD).
- 2. During construction, the applicant should provide adequate detours for bicycles and pedestrians including proper signage and safe alternative routing.
- 3. LACMTA recommends that the project include secure long term and short term bicycle parking to meet the needs of the project users and integrate with the adjacent bike path.

Beyond impacts to Metro facilities and operations, LACMTA must also notify the applicant of state requirements. A Transportation Impact Analysis (TIA), with roadway and transit components, is required under the State of California Congestion Management Program (CMP) statute. The CMP TIA Guidelines are published in the "2010 Congestion Management Program for Los Angeles County", Appendix D (attached). The geographic area examined in the TIA must include the following, at a minimum:

- 1. All CMP arterial monitoring intersections, including monitored freeway on/off-ramp intersections, where the proposed project will add 50 or more trips during either the a.m. or p.m. weekday peak hour (of adjacent street traffic).
- 2. If CMP arterial segments are being analyzed rather than intersections, the study area must include all segments where the proposed project will add 50 or more peak hour trips (total of both directions). Within the study area, the TIA must analyze at least one segment between monitored CMP intersections.
- 3. Mainline freeway-monitoring locations where the project will add 150 or more trips, in either direction, during either the a.m. or p.m. weekday peak hour.
- 4. Caltrans must also be consulted through the NOP process to identify other specific locations to be analyzed on the state highway system.

The CMP TIA requirement also contains two separate impact studies covering roadways and transit, as outlined in Sections D.8.1 – D.9.4. If the TIA identifies no facilities for study based on the criteria above, no further traffic analysis is required. However, projects must still consider transit impacts. For all CMP TIA requirements please see the attached guidelines.

If you have any questions regarding this response, please contact Marie Sullivan at 213-922-5667 or by email at sullivanma@metro.net.


Sincerely,

Nick Saponara

Mich Sagar.

Development Review Manager, Countywide Planning

Attachment: CMP Appendix D: Guidelines for CMP Transportation Impact Analysis

GUIDELINES FOR CMP TRANSPORTATION IMPACT ANALYSIS

Important Notice to User: This section provides detailed travel statistics for the Los Angeles area which will be updated on an ongoing basis. Updates will be distributed to all local jurisdictions when available. In order to ensure that impact analyses reflect the best available information, lead agencies may also contact MTA at the time of study initiation. Please contact MTA staff to request the most recent release of "Baseline Travel Data for CMP TIAS."

D.1 OBJECTIVE OF GUIDELINES

The following guidelines are intended to assist local agencies in evaluating impacts of land use decisions on the Congestion Management Program (CMP) system, through preparation of a regional transportation impact analysis (TIA). The following are the basic objectives of these guidelines:

- □ Promote consistency in the studies conducted by different jurisdictions, while maintaining flexibility for the variety of project types which could be affected by these guidelines.
- ☐ Establish procedures which can be implemented within existing project review processes and without ongoing review by MTA.
- Provide guidelines which can be implemented immediately, with the full intention of subsequent review and possible revision.

These guidelines are based on specific requirements of the Congestion Management Program, and travel data sources available specifically for Los Angeles County. References are listed in Section D.10 which provide additional information on possible methodologies and available resources for conducting TIAs.

D.2 GENERAL PROVISIONS

Exhibit D-7 provides the model resolution that local jurisdictions adopted containing CMP TIA procedures in 1993. TIA requirements should be fulfilled within the existing environmental review process, extending local traffic impact studies to include impacts to the regional system. In order to monitor activities affected by these requirements, Notices of Preparation (NOPs) must be submitted to MTA as a responsible agency. Formal MTA approval of individual TIAs is not required.

The following sections describe CMP TIA requirements in detail. In general, the competing objectives of consistency & flexibility have been addressed by specifying standard, or minimum, requirements and requiring documentation when a TIA varies from these standards.

D.3 PROJECTS SUBJECT TO ANALYSIS

In general a CMP TIA is required for all projects required to prepare an Environmental Impact Report (EIR) based on local determination. A TIA is not required if the lead agency for the EIR finds that traffic is not a significant issue, and does not require local or regional traffic impact analysis in the EIR. Please refer to Chapter 5 for more detailed information.

CMP TIA guidelines, particularly intersection analyses, are largely geared toward analysis of projects where land use types and design details are known. Where likely land uses are not defined (such as where project descriptions are limited to zoning designation and parcel size with no information on access location), the level of detail in the TIA may be adjusted accordingly. This may apply, for example, to some redevelopment areas and citywide general plans, or community level specific plans. In such cases, where project definition is insufficient for meaningful intersection level of service analysis, CMP arterial segment analysis may substitute for intersection analysis.

D.4 STUDY AREA

The geographic area examined in the TIA must include the following, at a minimum:

- □ All CMP arterial monitoring intersections, including monitored freeway on- or off-ramp intersections, where the proposed project will add 50 or more trips during either the AM or PM weekday peak hours (of adjacent street traffic).
- ☐ If CMP arterial segments are being analyzed rather than intersections (see Section D.3), the study area must include all segments where the proposed project will add 50 or more peak hour trips (total of both directions). Within the study area, the TIA must analyze at least one segment between monitored CMP intersections.
- ☐ Mainline freeway monitoring locations where the project will add 150 or more trips, in either direction, during either the AM or PM weekday peak hours.
- ☐ Caltrans must also be consulted through the Notice of Preparation (NOP) process to identify other specific locations to be analyzed on the state highway system.

If the TIA identifies no facilities for study based on these criteria, no further traffic analysis is required. However, projects must still consider transit impacts (Section D.8.4).

D.5 BACKGROUND TRAFFIC CONDITIONS

The following sections describe the procedures for documenting and estimating background, or non-project related traffic conditions. Note that for the purpose of a TIA, these background estimates must include traffic from all sources without regard to the exemptions specified in CMP statute (e.g., traffic generated by the provision of low and very low income housing, or trips originating outside Los Angeles County. Refer to Chapter 5, Section 5.2.3 for a complete list of exempted projects).

D.5.1 Existing Traffic Conditions. Existing traffic volumes and levels of service (LOS) on the CMP highway system within the study area must be documented. Traffic counts must

be less than one year old at the time the study is initiated, and collected in accordance with CMP highway monitoring requirements (see Appendix A). Section D.8.1 describes TIA LOS calculation requirements in greater detail. Freeway traffic volume and LOS data provided by Caltrans is also provided in Appendix A.

D.5.2 Selection of Horizon Year and Background Traffic Growth. Horizon year(s) selection is left to the lead agency, based on individual characteristics of the project being analyzed. In general, the horizon year should reflect a realistic estimate of the project completion date. For large developments phased over several years, review of intermediate milestones prior to buildout should also be considered.

At a minimum, horizon year background traffic growth estimates must use the generalized growth factors shown in Exhibit D-1. These growth factors are based on regional modeling efforts, and estimate the general effect of cumulative development and other socioeconomic changes on traffic throughout the region. Beyond this minimum, selection among the various methodologies available to estimate horizon year background traffic in greater detail is left to the lead agency. Suggested approaches include consultation with the jurisdiction in which the intersection under study is located, in order to obtain more detailed traffic estimates based on ongoing development in the vicinity.

D.6 PROPOSED PROJECT TRAFFIC GENERATION

Traffic generation estimates must conform to the procedures of the current edition of <u>Trip Generation</u>, by the Institute of Transportation Engineers (ITE). If an alternative methodology is used, the basis for this methodology must be fully documented.

Increases in site traffic generation may be reduced for existing land uses to be removed, if the existing use was operating during the year the traffic counts were collected. Current traffic generation should be substantiated by actual driveway counts; however, if infeasible, traffic may be estimated based on a methodology consistent with that used for the proposed use.

Regional transportation impact analysis also requires consideration of trip lengths. Total site traffic generation must therefore be divided into work and non-work-related trip purposes in order to reflect observed trip length differences. Exhibit D-2 provides factors which indicate trip purpose breakdowns for various land use types.

For lead agencies who also participate in CMP highway monitoring, it is recommended that any traffic counts on CMP facilities needed to prepare the TIA should be done in the manner outlined in Chapter 2 and Appendix A. If the TIA traffic counts are taken within one year of the deadline for submittal of CMP highway monitoring data, the local jurisdiction would save the cost of having to conduct the traffic counts twice.

D.7 TRIP DISTRIBUTION

For trip distribution by direct/manual assignment, generalized trip distribution factors are provided in Exhibit D-3, based on regional modeling efforts. These factors indicate Regional Statistical Area (RSA)-level tripmaking for work and non-work trip purposes.

2010 Congestion Management Program for Los Angeles County

(These RSAs are illustrated in Exhibit D-4.) For locations where it is difficult to determine the project site RSA, census tract/RSA correspondence tables are available from MTA.

Exhibit D-5 describes a general approach to applying the preceding factors. Project trip distribution must be consistent with these trip distribution and purpose factors; the basis for variation must be documented.

Local agency travel demand models disaggregated from the SCAG regional model are presumed to conform to this requirement, as long as the trip distribution functions are consistent with the regional distribution patterns. For retail commercial developments, alternative trip distribution factors may be appropriate based on the market area for the specific planned use. Such market area analysis must clearly identify the basis for the trip distribution pattern expected.

D.8 IMPACT ANALYSIS

CMP Transportation Impact Analyses contain two separate impact studies covering roadways and transit. Section Nos. D.8.1-D.8.3 cover required roadway analysis while Section No. D.8.4 covers the required transit impact analysis. Section Nos. D.9.1-D.9.4 define the requirement for discussion and evaluation of alternative mitigation measures.

D.8.1 Intersection Level of Service Analysis. The LA County CMP recognizes that individual jurisdictions have wide ranging experience with LOS analysis, reflecting the variety of community characteristics, traffic controls and street standards throughout the county. As a result, the CMP acknowledges the possibility that no single set of assumptions should be mandated for all TIAs within the county.

However, in order to promote consistency in the TIAs prepared by different jurisdictions, CMP TIAs must conduct intersection LOS calculations using either of the following methods:

	The	Inters	ection	Capacity	Util	ization	(ICU)	met	thod	as	specified	for	CMP	highway
	mon	iitoring	g (see A	appendix .	A); o	r								
<u></u>	171	~	3 3 4		3 .	(C) 5 4 1	, 0:	7 .	~ ~ ~	. 1	1 1			

☐ The Critical Movement Analysis (CMA) / Circular 212 method.

Variation from the standard assumptions under either of these methods for circumstances at particular intersections must be fully documented.

TIAs using the 1985 or 1994 Highway Capacity Manual (HCM) operational analysis must provide converted volume-to-capacity based LOS values, as specified for CMP highway monitoring in Appendix A.

D.8.2 Arterial Segment Analysis. For TIAs involving arterial segment analysis, volume-to-capacity ratios must be calculated for each segment and LOS values assigned using the V/C-LOS equivalency specified for arterial intersections. A capacity of 800 vehicles per hour per through traffic lane must be used, unless localized conditions necessitate alternative values to approximate current intersection congestion levels.

Evidence that affected transit operators received the Notice of Preparation

D.8.3 Freeway Segment (Mainline) Analysis. For the purpose of CMP TIAs, a simplified analysis of freeway impacts is required. This analysis consists of a demand-to-capacity calculation for the affected segments, and is indicated in Exhibit D-6.

D.8.4 Transit Impact Review. CMP transit analysis requirements are met by completing and incorporating into an EIR the following transit impact analysis:

A summary of existing transit services in the project area. Include local fixed-route
services within a ¼ mile radius of the project; express bus routes within a 2 mile radius
of the project, and; rail service within a 2 mile radius of the project.

- ☐ Information on trip generation and mode assignment for both AM and PM peak hour periods as well as for daily periods. Trips assigned to transit will also need to be calculated for the same peak hour and daily periods. Peak hours are defined as 7:30-8:30 AM and 4:30-5:30 PM. Both "peak hour" and "daily" refer to average weekdays, unless special seasonal variations are expected. If expected, seasonal variations should be described.
- ☐ Documentation of the assumption and analyses that were used to determine the number and percent of trips assigned to transit. Trips assigned to transit may be calculated along the following guidelines:
 - Multiply the total trips generated by 1.4 to convert vehicle trips to person trips;
 - > For each time period, multiply the result by one of the following factors:
 - 3.5% of Total Person Trips Generated for most cases, except:
 - 10% primarily Residential within 1/4 mile of a CMP transit center
 - 15% primarily Commercial within 1/4 mile of a CMP transit center
 - 7% primarily Residential within 1/4 mile of a CMP multi-modal transportation center
 - 9% primarily Commercial within 1/4 mile of a CMP multi-modal transportation center
 - 5% primarily Residential within 1/4 mile of a CMP transit corridor
 - 7% primarily Commercial within 1/4 mile of a CMP transit corridor
 - 0% if no fixed route transit services operate within one mile of the project

To determine whether a project is primarily residential or commercial in nature, please refer to the CMP land use categories listed and defined in Appendix E, *Guidelines for New Development Activity Tracking and Self Certification*. For projects that are only partially within the above one-quarter mile radius, the base rate (3.5% of total trips generated) should be applied to all of the project buildings that touch the radius perimeter.

☐ Information on facilities and/or programs that will be incorporated in the development plan that will encourage public transit use. Include not only the jurisdiction's TDM Ordinance measures, but other project specific measures.

	Analysis of expected project impacts on current and future transit services and proposed project mitigation measures, and;
	Selection of final mitigation measures remains at the discretion of the local jurisdiction/lead agency. Once a mitigation program is selected, the jurisdiction self-monitors implementation through the existing mitigation monitoring requirements of CEQA.
D.	9 IDENTIFICATION AND EVALUATION OF MITIGATION
sig fac at on	9.1 Criteria for Determining a Significant Impact. For purposes of the CMP, a gnificant impact occurs when the proposed project increases traffic demand on a CMP cility by 2% of capacity (V/C \geq 0.02), causing LOS F (V/C $>$ 1.00); if the facility is already LOS F, a significant impact occurs when the proposed project increases traffic demand a CMP facility by 2% of capacity (V/C \geq 0.02). The lead agency may apply a more ingent criteria if desired.
sig	9.2 Identification of Mitigation. Once the project has been determined to cause a mificant impact, the lead agency must investigate measures which will mitigate the pact of the project. Mitigation measures proposed must clearly indicate the following:
	Cost estimates, indicating the fair share costs to mitigate the impact of the proposed project. If the improvement from a proposed mitigation measure will exceed the impact of the project, the TIA must indicate the proportion of total mitigation costs which is attributable to the project. This fulfills the statutory requirement to exclude the costs of mitigating inter-regional trips.
	Implementation responsibilities. Where the agency responsible for implementing mitigation is not the lead agency, the TIA must document consultation with the implementing agency regarding project impacts, mitigation feasibility and responsibility.
TI. mi	nal selection of mitigation measures remains at the discretion of the lead agency. The A must, however, provide a summary of impacts and mitigation measures. Once a tigation program is selected, the jurisdiction self-monitors implementation through the tigation monitoring requirements contained in CEQA.
pro	9.3 Project Contribution to Planned Regional Improvements. If the TIA concludes that oject impacts will be mitigated by anticipated regional transportation improvements, ch as rail transit or high occupancy vehicle facilities, the TIA must document:
	Any project contribution to the improvement, and
	The means by which trips generated at the site will access the regional facility.
pro	9.4 Transportation Demand Management (TDM). If the TIA concludes or assumes that bject impacts will be reduced through the implementation of TDM measures, the TIA ast document specific actions to be implemented by the project which substantiate these

conclusions.

D.10 REFERENCES

- 1. Traffic Access and Impact Studies for Site Development: A Recommended Practice, Institute of Transportation Engineers, 1991.
- 2. Trip Generation, 5th Edition, Institute of Transportation Engineers, 1991.
- 3. Travel Forecast Summary: 1987 Base Model Los Angeles Regional Transportation Study (LARTS), California State Department of Transportation (Caltrans), February 1990.
- 4. *Traffic Study Guidelines*, City of Los Angeles Department of Transportation (LADOT), July 1991.
- 5. Traffic/Access Guidelines, County of Los Angeles Department of Public Works.
- 6. Building Better Communities, Sourcebook, Coordinating Land Use and Transit Planning, American Public Transit Association.
- 7. Design Guidelines for Bus Facilities, Orange County Transit District, 2nd Edition, November 1987.
- 8. Coordination of Transit and Project Development, Orange County Transit District, 1988.
- 9. Encouraging Public Transportation Through Effective Land Use Actions, Municipality of Metropolitan Seattle, May 1987.

CITY OF LOS ANGELES

BOARD OF PUBLIC WORKS MEMBERS

KEVIN JAMES
PRESIDENT

MONICA RODRIGUEZ VICE PRESIDENT

MATT SZABO PRESIDENT PRO TEMPORE

MICHAEL R. DAVIS COMMISSIONER

BARBARA ROMERO COMMISSIONER CALIFORNIA

ERIC GARCETTI MAYOR

November 14, 2013

BUREAU OF SANITATION

ENRIQUE C. ZALDIVAR DIRECTOR

TRACI J. MINAMIDE CHIEF OPERATING OFFICER

VAROUJ S. ABKIAN ADEL H. HAGEKHALIL ALEXANDER E. HELOU ASSISTANT DIRECTORS

NEIL M. GUGLIELMO CHIEF FINANCIAL OFFICER

WASTEWATER ENGINEERING SERVICES DIV. 2714 MEDIA CENTER DRIVE LOS ANGELES, CA 90065 FAX: (323) 342-6210 (323) 342-6211

File: SC.CE.

Anita Gutierrez, AICP Department of Regional Planning COUNTY OF LOS ANGELES 320 Temple Street Los Angeles, CA 90012

Dear Ms. Gutierrez:

PARCEL 44 - PROJECT NUMBER R2013-01647 - NOTICE OF PREPARATION EIR

This is in response to your letter requesting a review of your proposed Marina development of offices, commercial, and boat storage. The Bureau of Sanitation has conducted a preliminary evaluation of the potential impacts to the wastewater and stormwater systems for the proposed project.

WASTEWATER REQUIREMENT

The Bureau of Sanitation, Wastewater Engineering Services Division (WESD) is charged with the task of evaluating the local sewer conditions and to determine if available wastewater capacity exists for future developments. The evaluation will determine cumulative sewer impacts and guide the planning process for any future sewer improvements projects needed to provide future capacity as the City grows and develops.

Projected Wastewater Discharges for the Proposed Project:

Type Description	Average Daily Flow per Type	Proposed No. of	Average Daily Flow
	Description (GPD/UNIT)	Units	(GPD)
Proposed			
Grocery Market	50 GPD/1000 SQ.FT	13,625 SQ.FT	681
Retail	25 GPD/1000 SQ.FT	38,530 SQ.FT	963
Offices	120 GPD/1000 SQ.FT	16,588 SQ.FT	1,991
Laundry	50 GPD/1000 SQ.FT	542 SQ.FT	27
Boaters' Lounge	50 GPD/1000 SQ.FT	840 SQ.FT	42
Restaurant	300 GPD/1000 SQ.FT	10,645 SQ.FT	3,194
Yacht Club	120 GPD/1000 SQ.FT	1,150 SQ.FT	138
Boat Repair Shop	25 GPD/1000 SQ.FT	700 SQ.FT	18
	Total		7,053

SEWER AVAILABILITY

The sewer infrastructure in the vicinity of the proposed project includes two existing sewer systems. The first sewer system includes an existing 10-inch line on S Ease N/O Admiralty Way. Sewage from the existing 10-inch line splits into a 21-inch line on Oxford Ave and 30-inch line on Washington Blvd before joining and discharging into a 42-inch line on Washington Blvd. The second sewer system includes an existing 8-inch line on Mindanao Way and an existing 8-inch line on Marina Fwy R/W. Sewage from both existing lines join and feed into a 21-inch line on Marina Fwy before discharging into a 42-inch line on Jefferson Blvd. Figure 1 shows the details of the sewer system within the vicinity of the project.

The current approximate flow level (d/D) and the design capacities at d/D of 50% in the sewer system are as follows:

Pipe Diameter (in)	Pipe Location	Current Gauging d/D (%)	50% Design Capacity
10	S Ease N/O Admiralty Way	*	436,084 GPD
21	Oxford Ave	50	1.65 MGD
30	Washington Blvd	33	4.92 MGD
42	Washington Blvd	57	7.39 MGD
8	Mindanao Way	*	240,516 GPD
8	Marina Fwy R/W	李	240,516 GPD
21	Marina Fwy	36	1.50 MGD
42	Jefferson Blvd	27	9.55 MGD

^{*} No gauging available

Based on the estimated flows, it appears the sewer system might be able to accommodate the total flow for your proposed project. Further detailed gauging and evaluation will be needed as part of the permit process to identify a specific sewer connection point. If the public sewer has insufficient capacity then the developer will be required to build sewer lines to a point in the sewer system with sufficient capacity. A final approval for sewer capacity and connection permit will be made at that time. Ultimately, this sewage flow will be conveyed to the Hyperion Treatment Plant, which has sufficient capacity for the project.

If you have any questions, please call Kwasi Berko of my staff at (323) 342-1562.

STORMWATER REQUIREMENTS

The Bureau of Sanitation, Watershed Protection Division (WPD) is charged with the task of ensuring the implementation of the Municipal Stormwater Permit requirements within the City of Los Angeles. We anticipate the following requirements would apply for this project.

POST-CONSTRUCTION MITIGATION REQUIREMENTS

The project requires implementation of stormwater mitigation measures. These requirements are based on the Standard Urban Stormwater Mitigation Plan (SUSMP) and the recently adopted Low Impact Development (LID) requirements. The projects that are subject to SUSMP/LID are required to incorporate measures to mitigate the impact of stormwater runoff. The requirements are outlined

Anita Gutierrez, Department of Regional Planning PARCEL 44 - PROJECT NUMBER R2013-01647 – NOTICE OF PREPARATION EIR November 14, 2013 Page 3 of 4

in the guidance manual titled" Development Best Management Practices Handbook – Part B: Planning Activities". Current regulations prioritize infiltration, capture/use, and then biofiltration as the preferred stormwater control measures. The relevant documents can be found at: www.lastormwater.org. It is advised that input regarding SUSMP requirements be received in the early phases of the project from WPD's plan-checking staff.

GREEN STREETS

The City is developing a Green Street Initiative that will require projects to implement Green Street elements in the parkway areas between the roadway and sidewalk of the public right-of-away to capture and retain stormwater and urban runoff to mitigate the impact of stormwater runoff and other environmental concerns. The goals of the Green Street elements are to improve the water quality of stormwater runoff, recharge local ground water basins, improve air quality, reduce the heat island effect of street pavement, enhance pedestrian use of sidewalks, and encourage alternate means of transportation. The Green Street elements may include infiltration systems, biofiltration swales, and permeable pavements where stormwater can be easily directed from the streets into the parkways and can be implemented in conjunction with the SUSMP/LID requirements.

CONSTRUCTION REQUIREMENTS

The project is required to implement stormwater control measures during its construction phase. All projects are subject to a set of minimum control measures to lessen the impact of stormwater pollution. In addition for projects that involve construction during the rainy season that is between October 1 and April 15, a Wet Weather Erosion Control Plan is required to be prepared. Also projects that disturb more than one-acre of land are subject to the California General Construction Stormwater Permit. As part of this requirement a Notice of Intent (NOI) needs to be filed with the State of California and a Storm Water Pollution Prevention Plan (SWPPP) needs to be prepared. The SWPPP must be maintained on-site during the duration of construction.

If there are questions regarding the stormwater requirements, please call Kosta Kaporis at (213) 485-0586, or WPD's plan-checking counter at (213) 482-7066. WPD's plan-checking counter can also be visited at 201 N. Figueroa, 3rd Fl, Station 18.

SOLID RESOURCE REQUIREMENTS

The City has a standard requirement that applies to all proposed residential developments of four or more units or where the addition of floor areas is 25 percent or more, and all other development projects where the addition of floor area is 30 percent or more. Such developments must set aside a recycling area or room for onsite recycling activities. For more details of this requirement, please contact Daniel Hackney of the Special Project Division at (213)485-3684.

Sincerely,

1114 46

Ali Poosti, Division Manager

Wastewater Engineering Services Division

Bureau of Sanitation

Anita Gutierrez, Department of Regional Planning
PARCEL 44 - PROJECT NUMBER R2013-01647 – NOTICE OF PREPARATION EIR
November 14, 2013
Page 4 of 4

KB\AP:tn

Attachment: Figure 1 – Sewer Map

c: Kosta Kaporis, BOS Daniel Hackney, BOS Zemamu Gebrewold, BOS

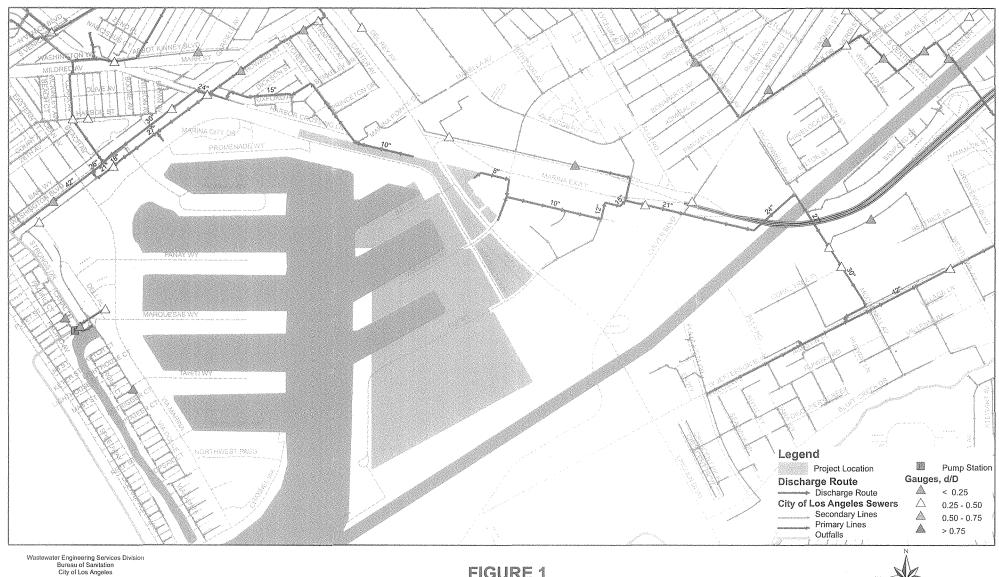


FIGURE 1 Parcel 44 - Project Number R2013-01647 Sewer Map


COUNTY OF LOS ANGELES

FIRE DEPARTMENT

1320 NORTH EASTERN AVENUE LOS ANGELES, CALIFORNIA 90063-3294

DARYL L. OSBY FIRE CHIEF FORESTER & FIRE WARDEN

September 16, 2013

Anita Gutierrez, Planner Special Projects Section Department of Regional Planning 320 West Temple Street Los Angeles, CA 90012

Dear Ms. Gutierrez:

NOTICE OF PREPARATION, "PARCEL 44 DEVELOPMENT" PROJECT NO. R2013-01647, ENVIRONMENTAL REVIEW NO. 201300142, CONSISTS OF THE DEMOLITION OF ALL EXISTING LANDSIDE STRUCTURES ON PARCEL 44 AND REDEVELOPMENT OF THE LANDSIDE PARCEL, NORTH BY BALI WAY, EAST BY ADMIRALTY WAY, SOUTH BY MINDANAO WAY, MARINA DEL REY (FFER #201300133)

The Notice of Preparation has been reviewed by the Planning Division, Land Development Unit, Forestry Division, and Health Hazardous Materials Division of the County of Los Angeles Fire Department. The following are their comments:

PLANNING DIVISION:

1. We will reserve our comments for the draft EIR analysis.

LAND DEVELOPMENT UNIT:

- 1. The development of this project must comply with all applicable code and ordinance requirements for construction, access, water mains, fire flows and fire hydrants.
- 2. Every building constructed shall be accessible to Fire Department apparatus by way of access driveway, with an all-weather access surface of not less than 26 feet in width, clear to the sky. The access driveway shall be extended to within 150 feet of all portions of the exterior walls when measured by an unobstructed route around the exterior of the building.

SERVING THE UNINCORPORATED AREAS OF LOS ANGELES COUNTY AND THE CITIES OF:

AGOURA HILLS ARTESIA AZUSA BALDWIN PARK BELL BELL GARDENS BELLFLOWER BRADBURY CALABASAS CARSON CERRITOS CLAREMONT COMMERCE COVINA CUDAHY

DIAMOND BAR DUARTE EL MONTE GARDENA GLENDORA HAWAIIAN GARDENS HAWTHORNE

HIDDEN HILLS HUNTINGTON PARK INDUSTRY INGLEWOOD IRWINDALE LA CANADA FLINTRIDGE LA HABRA LA MIRADA
LA PUENTE
LAKEWOOD
LANCASTER
LAWNDALE
LOMITA
LYNWOOD

MALIBU
MAYWOOD
NORWALK
PALMDALE
PALOS VERDES ESTATES
PARAMOUNT
PICO RIVERA

POMONA RANCHO PALOS VERDES ROLLING HILLS ROLLING HILLS ESTATES ROSEMEAD SAN DIMAS SANTA CLARITA SIGNAL HILL SOUTH EL MONTE SOUTH GATE TEMPLE CITY WALNUT WEST HOLLYWOOD WESTLAKE VILLAGE WHITTIER

- 3. Where the proposed building(s) exceeds a height of 35 feet, the on-site access driveway shall provide a minimum unobstructed width of 28 feet, clear-to-sky. The centerline of the access driveway shall be located parallel to and within 30 feet of an exterior wall on one side of the proposed structure.
- 4. The proposed improvements to the promenade within the boundary of this project shall be designed to comply with Section 22.46.1060 Part F as defined in the Marina Del Rey Specific Plan within Title 22, County of Los Angeles Zoning Code.
- 5. Any turns within the fire apparatus access driveway shall not be less than 32 feet measured from the centerline of the access driveway. A Fire Department approved turnaround area shall be provided for all driveways exceeding 150 feet in-length.
- 6. The development may require fire flows up to 5,000 gallons per minute at 20 pounds per square inch residual pressure for up to a four-hour duration. Final fire flows will be based on the size of the buildings and the types of construction used. A reduction in the required fire flow will be allowed if the structure(s) is equipped with an approved automatic fire sprinkler system, the resulting fire flow cannot be less than 2,000 gallons per minute.
- 7. Fire hydrant spacing shall be 300 feet and shall meet the following requirements:
 - a) No portion of lot frontage shall be more than 200 feet via vehicular access from a public fire hydrant.
 - b) No portion of a building shall exceed 400 feet via vehicular access from a properly spaced fire hydrant.
 - c) Additional hydrants will be required if the hydrant spacing exceeds specified distances.
- 8. Specific fire and life safety requirements for each proposed building will be addressed during the architectural plan review by the Fire Department prior to building permit issuance. There may be additional requirements during this time.
- 9. The County of Los Angeles Fire Department, Land Development Unit, appreciates the opportunity to comment on this project. Should any questions arise, please contact Juan Padilla, at (323) 890-4243 or Juan.Padilla@fire.lacounty.gov.

FORESTRY DIVISION - OTHER ENVIRONMENTAL CONCERNS:

1. The statutory responsibilities of the County of Los Angeles Fire Department, Forestry Division include erosion control, watershed management, rare and endangered species, vegetation, fuel modification for Very High Fire Hazard Severity Zones or Fire Zone 4, archeological and cultural resources, and the County Oak Tree Ordinance. Potential impacts in these areas should be addressed.

Anita Gutierrez, Planner September 16, 2013 Page 3

HEALTH HAZARDOUS MATERIALS DIVISION:

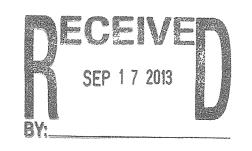
1. The Health Hazardous Materials Division has no objection to the proposed project.

If you have any additional questions, please contact this office at (323) 890-4330.

Very truly yours,

FRANK VIDALES, CHIEF, FORESTRY DIVISION

PREVENTION SERVICES BUREAU


Frank Nelle

FV:ij

South Coast Air Quality Management District

21865 Copley Drive, Diamond Bar, CA 91765-4178 (909) 396-2000 • www.aqmd.gov

September 12, 2013

Anita Gutierrez, AICP County of Los Angeles Department of Regional Planning 320 Temple Street Los Angeles, CA 90012

Notice of Preparation of a CEQA Document for the Parcel 44 – Project Number R2013-01647, Environmental Review No. 201300142

The South Coast Air Quality Management District (SCAQMD) staff appreciates the opportunity to comment on the above-mentioned document. The SCAQMD staff's comments are recommendations regarding the analysis of potential air quality impacts from the proposed project that should be included in the draft CEQA document. Please send the SCAQMD a copy of the Draft EIR upon its completion. Note that copies of the Draft EIR that are submitted to the State Clearinghouse are not forwarded to the SCAQMD. Please forward a copy of the Draft EIR directly to SCAQMD at the address in our letterhead. In addition, please send with the draft EIR all appendices or technical documents related to the air quality and greenhouse gas analyses and electronic versions of all air quality modeling and health risk assessment files. These include original emission calculation spreadsheets and modeling files (not Adobe PDF files). Without all files and supporting air quality documentation, the SCAQMD will be unable to complete its review of the air quality analysis in a timely manner. Any delays in providing all supporting air quality documentation will require additional time for review beyond the end of the comment period.

Air Quality Analysis

The SCAQMD adopted its California Environmental Quality Act (CEQA) Air Quality Handbook in 1993 to assist other public agencies with the preparation of air quality analyses. The SCAQMD recommends that the Lead Agency use this Handbook as guidance when preparing its air quality analysis. Copies of the Handbook are available from the SCAQMD's Subscription Services Department by calling (909) 396-3720. More recent guidance developed since this Handbook was published is also available on SCAQMD's website here: www.aqmd.gov/ceqa/hdbk.html. SCAQMD staff also recommends that the lead agency use the CalEEMod land use emissions software. This software has recently been updated to incorporate up-to-date state and locally approved emission factors and methodologies for estimating pollutant emissions from typical land use development. CalEEMod is the only software model maintained by the California Air Pollution Control Officers Association (CAPCOA) and replaces the now outdated URBEMIS. This model is available free of charge at: www.caleemod.com.

The Lead Agency should identify any potential adverse air quality impacts that could occur from all phases of the project and all air pollutant sources related to the project. Air quality impacts from both construction (including demolition, if any) and operations should be calculated. Construction-related air quality impacts typically include, but are not limited to, emissions from the use of heavy-duty equipment from grading, earth-loading/unloading, paving, architectural coatings, off-road mobile sources (e.g., heavy-duty construction equipment) and on-road mobile sources (e.g., construction worker vehicle trips, material transport trips). Operation-related air quality impacts may include, but are not limited to, emissions from stationary sources (e.g., boilers), area sources (e.g., solvents and coatings), and vehicular trips (e.g., on- and off-road tailpipe emissions and entrained dust). Air quality impacts from indirect sources, that is, sources that generate or attract vehicular trips should be included in the analysis.

The SCAQMD has also developed both regional and localized significance thresholds. The SCAQMD staff requests that the lead agency quantify criteria pollutant emissions and compare the results to the recommended regional significance thresholds found here: http://www.aqmd.gov/ceqa/handbook/signthres.pdf. In addition to analyzing regional air quality impacts, the SCAQMD staff recommends calculating localized air quality impacts and comparing the results to localized significance thresholds (LSTs). LST's can be used in addition to the recommended regional significance thresholds as a second indication of air quality impacts when preparing a CEQA document. Therefore,

when preparing the air quality analysis for the proposed project, it is recommended that the lead agency perform a localized analysis by either using the LSTs developed by the SCAQMD or performing dispersion modeling as necessary. Guidance for performing a localized air quality analysis can be found at: http://www.agmd.gov/ceqa/handbook/LST/LST.html.

In the event that the proposed project generates or attracts vehicular trips, especially heavy-duty diesel-fueled vehicles, it is recommended that the lead agency perform a mobile source health risk assessment. Guidance for performing a mobile source health risk assessment ("Health Risk Assessment Guidance for Analyzing Cancer Risk from Mobile Source Diesel Idling Emissions for CEQA Air Quality Analysis") can be found at:

http://www.agmd.gov/cega/handbook/mobile_toxic/mobile_toxic.html An analysis of all toxic air contaminant

http://www.aqmd.gov/ceqa/handbook/mobile_toxic/mobile_toxic.html. An analysis of all toxic air contaminant impacts due to the use of equipment potentially generating such air pollutants should also be included.

In addition, guidance on siting incompatible land uses (such as placing homes near freeways) can be found in the California Air Resources Board's *Air Quality and Land Use Handbook: A Community Perspective*, which can be found at the following internet address: http://www.arb.ca.gov/ch/handbook.pdf. CARB's Land Use Handbook is a general reference guide for evaluating and reducing air pollution impacts associated with new projects that go through the land use decision-making process.

Mitigation Measures

In the event that the project generates significant adverse air quality impacts, CEQA requires that all feasible mitigation measures that go beyond what is required by law be utilized during project construction and operation to minimize or eliminate these impacts. Pursuant to state CEQA Guidelines §15126.4 (a)(1)(D), any impacts resulting from mitigation measures must also be discussed. Several resources are available to assist the Lead Agency with identifying possible mitigation measures for the project, including:

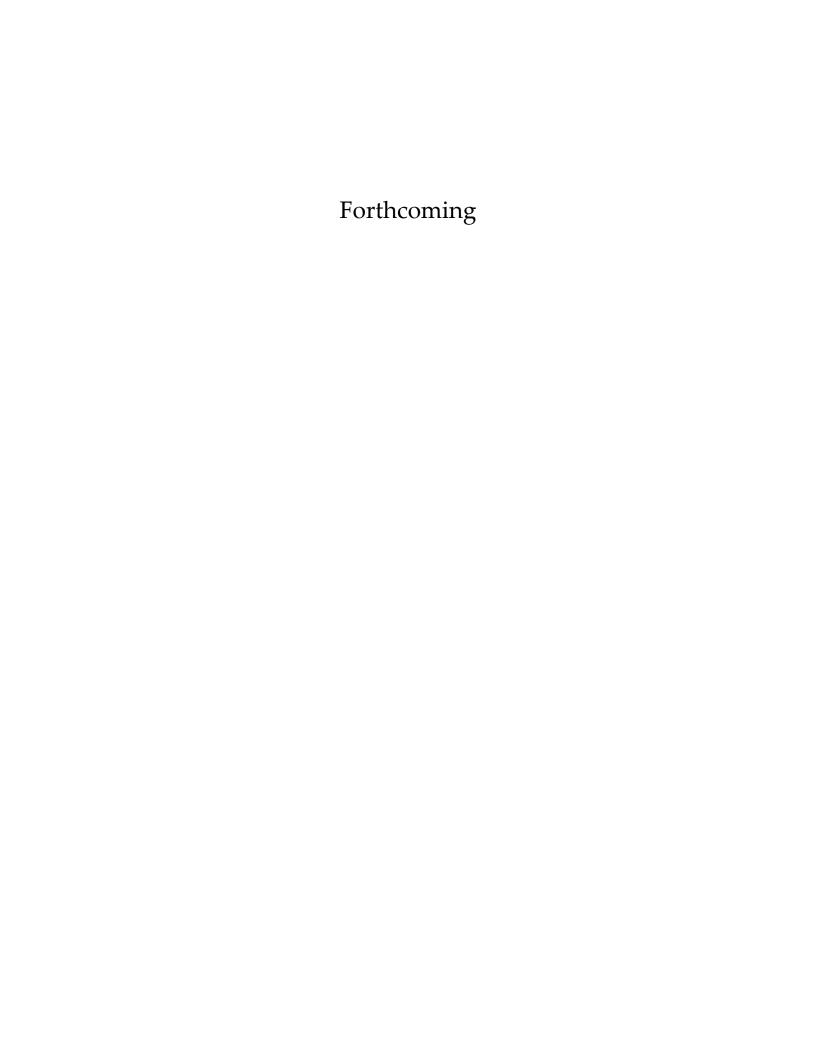
- Chapter 11 of the SCAQMD CEQA Air Quality Handbook
- SCAQMD's CEQA web pages at: www.aqmd.gov/ceqa/handbook/mitigation/MM intro.html
- CAPCOA's *Quantifying Greenhouse Gas Mitigation Measures* available here: http://www.capcoa.org/wp-content/uploads/2010/11/CAPCOA-Quantification-Report-9-14-Final.pdf.
- SCAQMD's Rule 403 Fugitive Dust, and the Implementation Handbook for controlling construction-related emissions
- Other measures to reduce air quality impacts from land use projects can be found in the SCAQMD's Guidance Document for Addressing Air Quality Issues in General Plans and Local Planning. This document can be found at the following internet address: http://www.aqmd.gov/prdas/aqguide/aqguide/atguide.html.

Data Sources

SCAQMD rules and relevant air quality reports and data are available by calling the SCAQMD's Public Information Center at (909) 396-2039. Much of the information available through the Public Information Center is also available via the SCAQMD's webpage (http://www.aqmd.gov).

The SCAQMD staff is available to work with the Lead Agency to ensure that project emissions are accurately evaluated and mitigated where feasible. If you have any questions regarding this letter, please contact me at imacmillan@aqmd.gov or call me at (909) 396-3244.

Sincerely,


La V. Ma Mill

Ian MacMillan

Program Supervisor, CEQA Inter-Governmental Review Planning, Rule Development & Area Sources

LAC130820-02 Control Number

CalEEMod Version: CalEEMod.2013.2.2 Page 1 of 25 Date: 11/22/2013 2:50 PM

Parcel 44 Update

South Coast AQMD Air District, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Regional Shopping Center	38.80	1000sqft	0.89	38,800.00	0
Supermarket	13.60	1000sqft	0.31	13,600.00	0
Quality Restaurant	9.90	1000sqft	0.23	9,900.00	0
General Office Building	16.60	1000sqft	0.38	16,600.00	0
Automobile Care Center	0.70	1000sqft	0.02	700.00	0
Racquet Club	2.00	1000sqft	0.05	2,000.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	31
Climate Zone	11			Operational Year	2017
Utility Company	Southern California Ediso	n			

 CO2 Intensity
 630.89
 CH4 Intensity
 0.029
 N20 Intensity
 0.006

 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

CalEEMod Version: CalEEMod.2013.2.2 Page 2 of 25 Date: 11/22/2013 2:50 PM

Project Characteristics -

Land Use -

Construction Phase - Demo: 1/23/15-2/20/15

Grading: 2/21/15-4/19/15 Const: 4/20/15-8/23/16 Paving: 4/20/15-5/14/15 Coating: 7/5/16-8/23/16

Demolition -

Vehicle Trips - Trip rates for the auto care (sub for boat repair), quality rest and raquet club (sub for yacht club/lounge) modified per traffic report.

Construction Off-road Equipment Mitigation - Assume watering 3x per day per SCAQMD.

Mobile Land Use Mitigation -

Date: 11/22/2013 2:50 PM

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	10.00	36.00
tblConstructionPhase	NumDays	200.00	352.00
tblConstructionPhase	NumDays	20.00	21.00
tblConstructionPhase	NumDays	4.00	40.00
tblConstructionPhase	NumDays	10.00	19.00
tblConstructionPhase	PhaseEndDate	7/3/2015	8/23/2016
tblConstructionPhase	PhaseEndDate	4/17/2015	4/19/2015
tblConstructionPhase	PhaseEndDate	9/19/2016	5/14/2015
tblConstructionPhase	PhaseStartDate	5/15/2015	7/5/2016
tblConstructionPhase	PhaseStartDate	8/24/2016	4/20/2015
tblGrading	AcresOfGrading	15.00	1.50
tblProjectCharacteristics	OperationalYear	2014	2017
tblVehicleTrips	ST_TR	62.00	12.50
tblVehicleTrips	ST_TR	20.87	22.88
tblVehicleTrips	ST_TR	94.36	2.86
tblVehicleTrips	SU_TR	62.00	12.50
tblVehicleTrips	SU_TR	26.73	22.88
tblVehicleTrips	SU_TR	72.16	2.86
tblVehicleTrips	WD_TR	62.00	12.50
tblVehicleTrips	WD_TR	32.93	22.88
tblVehicleTrips	WD_TR	89.95	2.86

2.0 Emissions Summary

CalEEMod Version: CalEEMod.2013.2.2 Page 4 of 25 Date: 11/22/2013 2:50 PM

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/d	lay		
2015	5.3117	37.6629	28.4522	0.0438	4.6458	2.4032	5.8433	2.5107	2.2799	3.6125	0.0000	4,217.448 8	4,217.448 8	0.9082	0.0000	4,236.521 8
2016	56.4319	24.2080	19.9660	0.0323	0.4389	1.5837	2.0227	0.1180	1.5339	1.6519	0.0000	2,992.455 6	2,992.455 6	0.5046	0.0000	3,003.053 0
Total	61.7436	61.8709	48.4182	0.0761	5.0847	3.9869	7.8660	2.6287	3.8138	5.2644	0.0000	7,209.904 3	7,209.904 3	1.4129	0.0000	7,239.574 8

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e			
Year	Year Ib/day														lb/day				
2015	5.3117	37.6629	28.4522	0.0438	1.8664	2.4032	3.0640	0.9936	2.2799	2.4216	0.0000	4,217.448 8	4,217.448 8	0.9082	0.0000	4,236.521 8			
2016	56.4319	24.2080	19.9660	0.0323	0.4389	1.5837	2.0227	0.1180	1.5339	1.6519	0.0000	2,992.455 6	2,992.455 6	0.5046	0.0000	3,003.053 0			
Total	61.7436	61.8709	48.4182	0.0761	2.3053	3.9869	5.0866	1.1116	3.8138	4.0735	0.0000	7,209.904 3	7,209.904 3	1.4129	0.0000	7,239.574 8			

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	54.66	0.00	35.33	57.71	0.00	22.62	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e			
Category	lb/day											lb/day							
Area	2.1346	8.0000e- 005	8.4900e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005		0.0179	0.0179	5.0000e- 005		0.0189			
Energy	0.0860	0.7822	0.6571	4.6900e- 003		0.0595	0.0595		0.0595	0.0595		938.6650	938.6650	0.0180	0.0172	944.3775			
Mobile	13.5854	27.8848	119.5635	0.2635	17.2093	0.3806	17.5899	4.5982	0.3503	4.9486		22,417.90 48	22,417.90 48	0.8870		22,436.53 23			
Total	15.8060	28.6671	120.2291	0.2682	17.2093	0.4401	17.6494	4.5982	0.4098	5.0080		23,356.58 76	23,356.58 76	0.9051	0.0172	23,380.92 88			

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Area	2.1346	8.0000e- 005	8.4900e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005		0.0179	0.0179	5.0000e- 005		0.0189
Energy	0.0860	0.7822	0.6571	4.6900e- 003		0.0595	0.0595		0.0595	0.0595		938.6650	938.6650	0.0180	0.0172	944.3775
Mobile	13.5854	27.8848	119.5635	0.2635	17.2093	0.3806	17.5899	4.5982	0.3503	4.9486		22,417.90 48	22,417.90 48	0.8870		22,436.53 23
Total	15.8060	28.6671	120.2291	0.2682	17.2093	0.4401	17.6494	4.5982	0.4098	5.0080		23,356.58 76	23,356.58 76	0.9051	0.0172	23,380.92 88

CalEEMod Version: CalEEMod.2013.2.2 Page 6 of 25 Date: 11/22/2013 2:50 PM

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	1/23/2015	2/20/2015	5	21	
2	Grading	Grading	2/21/2015	4/19/2015	5	40	
3	Building Construction	Building Construction	4/20/2015	8/23/2016	5	352	
4	Paving	Paving	4/20/2015	5/14/2015	5	19	
5	Architectural Coating	Architectural Coating	7/5/2016	8/23/2016	5	36	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 1.5

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 122,400; Non-Residential Outdoor: 40,800 (Architectural Coating – sqft)

OffRoad Equipment

Date: 11/22/2013 2:50 PM

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Architectural Coating	Air Compressors	1	6.00	78	0.48
Paving	Cement and Mortar Mixers	! 1	6.00	9	0.56
Demolition	Concrete/Industrial Saws	! 1	8.00	81	0.73
Building Construction	Generator Sets	! 1	8.00	84	0.74
Building Construction	Cranes	! 1	6.00	226	0.29
Building Construction	Forklifts	1	6.00	89	0.20
Paving	Pavers	1	6.00	125	0.42
Paving	Rollers	1	7.00	80	0.38
Demolition	Rubber Tired Dozers	1 !	8.00	255	0.40
Grading	Rubber Tired Dozers	1	6.00	255	0.40
Building Construction	Tractors/Loaders/Backhoes	1	6.00	97	0.37
Demolition	Tractors/Loaders/Backhoes	3	8.00	97	0.37
Grading	Tractors/Loaders/Backhoes	1	7.00	97	0.37
Paving	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Grading	Graders	1	6.00	174	0.41
Paving	Paving Equipment	1	8.00	130	0.36
Building Construction	Welders	3	8.00	46	0.45

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	5	13.00	0.00	67.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Grading	3	8.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	7	27.00	13.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving	5	13.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	5.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

CalEEMod Version: CalEEMod.2013.2.2 Page 8 of 25 Date: 11/22/2013 2:50 PM

3.1 Mitigation Measures Construction

Water Exposed Area Clean Paved Roads

3.2 **Demolition - 2015**

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					0.6902	0.0000	0.6902	0.1045	0.0000	0.1045			0.0000			0.0000
Off-Road	3.0666	29.6778	22.0566	0.0245		1.8651	1.8651	 	1.7469	1.7469		2,509.059 9	2,509.059 9	0.6357	 	2,522.410 4
Total	3.0666	29.6778	22.0566	0.0245	0.6902	1.8651	2.5553	0.1045	1.7469	1.8514		2,509.059 9	2,509.059 9	0.6357		2,522.410 4

3.2 Demolition - 2015

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0618	0.9922	0.6686	2.3600e- 003	0.0556	0.0173	0.0729	0.0152	0.0159	0.0311		239.7857	239.7857	1.8800e- 003		239.8251
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0602	0.0753	0.9333	1.8400e- 003	0.1453	1.2800e- 003	0.1466	0.0385	1.1700e- 003	0.0397		160.1468	160.1468	8.6200e- 003		160.3279
Total	0.1220	1.0675	1.6020	4.2000e- 003	0.2009	0.0186	0.2195	0.0538	0.0171	0.0708		399.9325	399.9325	0.0105		400.1530

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Fugitive Dust					0.2692	0.0000	0.2692	0.0408	0.0000	0.0408			0.0000			0.0000
Off-Road	3.0666	29.6778	22.0566	0.0245		1.8651	1.8651		1.7469	1.7469	0.0000	2,509.059 9	2,509.059 9	0.6357	i i	2,522.410 4
Total	3.0666	29.6778	22.0566	0.0245	0.2692	1.8651	2.1343	0.0408	1.7469	1.7877	0.0000	2,509.059 9	2,509.059 9	0.6357		2,522.410 4

CalEEMod Version: CalEEMod.2013.2.2 Page 10 of 25 Date: 11/22/2013 2:50 PM

3.2 **Demolition - 2015**

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0618	0.9922	0.6686	2.3600e- 003	0.0556	0.0173	0.0729	0.0152	0.0159	0.0311		239.7857	239.7857	1.8800e- 003		239.8251
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0602	0.0753	0.9333	1.8400e- 003	0.1453	1.2800e- 003	0.1466	0.0385	1.1700e- 003	0.0397		160.1468	160.1468	8.6200e- 003		160.3279
Total	0.1220	1.0675	1.6020	4.2000e- 003	0.2009	0.0186	0.2195	0.0538	0.0171	0.0708		399.9325	399.9325	0.0105		400.1530

3.3 Grading - 2015

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					4.5563	0.0000	4.5563	2.4870	0.0000	2.4870			0.0000			0.0000
Off-Road	2.0666	21.9443	14.0902	0.0141		1.1968	1.1968		1.1011	1.1011		1,479.800 0	1,479.800 0	0.4418		1,489.077 4
Total	2.0666	21.9443	14.0902	0.0141	4.5563	1.1968	5.7531	2.4870	1.1011	3.5880		1,479.800 0	1,479.800 0	0.4418		1,489.077 4

CalEEMod Version: CalEEMod.2013.2.2 Page 11 of 25 Date: 11/22/2013 2:50 PM

3.3 Grading - 2015

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0370	0.0463	0.5744	1.1300e- 003	0.0894	7.9000e- 004	0.0902	0.0237	7.2000e- 004	0.0244		98.5519	98.5519	5.3100e- 003		98.6633
Total	0.0370	0.0463	0.5744	1.1300e- 003	0.0894	7.9000e- 004	0.0902	0.0237	7.2000e- 004	0.0244		98.5519	98.5519	5.3100e- 003		98.6633

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Fugitive Dust					1.7770	0.0000	1.7770	0.9699	0.0000	0.9699			0.0000			0.0000
Off-Road	2.0666	21.9443	14.0902	0.0141		1.1968	1.1968		1.1011	1.1011	0.0000	1,479.800 0	1,479.800 0	0.4418	i ! !	1,489.077 4
Total	2.0666	21.9443	14.0902	0.0141	1.7770	1.1968	2.9738	0.9699	1.1011	2.0710	0.0000	1,479.800 0	1,479.800 0	0.4418		1,489.077 4

CalEEMod Version: CalEEMod.2013.2.2 Page 12 of 25 Date: 11/22/2013 2:50 PM

3.3 Grading - 2015

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e		
Category	lb/day											lb/day						
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000		
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000		
Worker	0.0370	0.0463	0.5744	1.1300e- 003	0.0894	7.9000e- 004	0.0902	0.0237	7.2000e- 004	0.0244		98.5519	98.5519	5.3100e- 003		98.6633		
Total	0.0370	0.0463	0.5744	1.1300e- 003	0.0894	7.9000e- 004	0.0902	0.0237	7.2000e- 004	0.0244		98.5519	98.5519	5.3100e- 003		98.6633		

3.4 Building Construction - 2015

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Category	lb/day										lb/day						
Off-Road	3.6000	21.5642	15.0041	0.0220		1.4851	1.4851		1.4344	1.4344		2,055.624 7	2,055.624 7	0.4741		2,065.581 2	
Total	3.6000	21.5642	15.0041	0.0220		1.4851	1.4851		1.4344	1.4344		2,055.624 7	2,055.624 7	0.4741		2,065.581 2	

3.4 Building Construction - 2015 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e		
Category	lb/day											lb/day						
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000		
Vendor	0.1225	1.2712	1.4069	2.8300e- 003	0.0812	0.0222	0.1035	0.0231	0.0204	0.0436		286.5944	286.5944	2.2400e- 003		286.6414		
Worker	0.1250	0.1563	1.9384	3.8300e- 003	0.3018	2.6600e- 003	0.3045	0.0800	2.4300e- 003	0.0825		332.6127	332.6127	0.0179		332.9887		
Total	0.2474	1.4275	3.3453	6.6600e- 003	0.3830	0.0249	0.4079	0.1032	0.0229	0.1260		619.2071	619.2071	0.0202		619.6302		

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e		
Category	lb/day										lb/day							
Off-Road	3.6000	21.5642	15.0041	0.0220		1.4851	1.4851		1.4344	1.4344	0.0000	2,055.624 7	2,055.624 7	0.4741		2,065.581 2		
Total	3.6000	21.5642	15.0041	0.0220		1.4851	1.4851		1.4344	1.4344	0.0000	2,055.624 7	2,055.624 7	0.4741		2,065.581		

CalEEMod Version: CalEEMod.2013.2.2 Page 14 of 25 Date: 11/22/2013 2:50 PM

3.4 Building Construction - 2015

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1225	1.2712	1.4069	2.8300e- 003	0.0812	0.0222	0.1035	0.0231	0.0204	0.0436		286.5944	286.5944	2.2400e- 003		286.6414
Worker	0.1250	0.1563	1.9384	3.8300e- 003	0.3018	2.6600e- 003	0.3045	0.0800	2.4300e- 003	0.0825		332.6127	332.6127	0.0179		332.9887
Total	0.2474	1.4275	3.3453	6.6600e- 003	0.3830	0.0249	0.4079	0.1032	0.0229	0.1260		619.2071	619.2071	0.0202		619.6302

3.4 Building Construction - 2016

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Off-Road	3.2915	20.5459	14.7074	0.0220		1.3656	1.3656		1.3176	1.3176		2,046.943 2	2,046.943 2	0.4499		2,056.391 3
Total	3.2915	20.5459	14.7074	0.0220		1.3656	1.3656		1.3176	1.3176		2,046.943	2,046.943 2	0.4499		2,056.391 3

3.4 Building Construction - 2016

<u>Unmitigated</u>	Construction	Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1082	1.1228	1.2947	2.8300e- 003	0.0813	0.0185	0.0997	0.0231	0.0170	0.0401		283.4376	283.4376	2.0200e- 003	 	283.4801
Worker	0.1128	0.1410	1.7551	3.8200e- 003	0.3018	2.5200e- 003	0.3043	0.0800	2.3200e- 003	0.0824		321.1538	321.1538	0.0165	 	321.4998
Total	0.2210	1.2638	3.0497	6.6500e- 003	0.3831	0.0210	0.4041	0.1032	0.0193	0.1225		604.5914	604.5914	0.0185		604.9799

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Off-Road	3.2915	20.5459	14.7074	0.0220		1.3656	1.3656	 	1.3176	1.3176	0.0000	2,046.943 2	2,046.943 2	0.4499		2,056.391 3
Total	3.2915	20.5459	14.7074	0.0220		1.3656	1.3656		1.3176	1.3176	0.0000	2,046.943 2	2,046.943 2	0.4499		2,056.391 3

CalEEMod Version: CalEEMod.2013.2.2 Page 16 of 25 Date: 11/22/2013 2:50 PM

3.4 Building Construction - 2016

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1082	1.1228	1.2947	2.8300e- 003	0.0813	0.0185	0.0997	0.0231	0.0170	0.0401		283.4376	283.4376	2.0200e- 003		283.4801
Worker	0.1128	0.1410	1.7551	3.8200e- 003	0.3018	2.5200e- 003	0.3043	0.0800	2.3200e- 003	0.0824		321.1538	321.1538	0.0165		321.4998
Total	0.2210	1.2638	3.0497	6.6500e- 003	0.3831	0.0210	0.4041	0.1032	0.0193	0.1225		604.5914	604.5914	0.0185		604.9799

3.5 Paving - 2015

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Off-Road	1.4041	14.5959	9.1695	0.0133		0.8919	0.8919		0.8215	0.8215		1,382.470 3	1,382.470 3	0.4054		1,390.982 6
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	1.4041	14.5959	9.1695	0.0133		0.8919	0.8919		0.8215	0.8215		1,382.470 3	1,382.470 3	0.4054		1,390.982 6

CalEEMod Version: CalEEMod.2013.2.2 Page 17 of 25 Date: 11/22/2013 2:50 PM

3.5 Paving - 2015

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0602	0.0753	0.9333	1.8400e- 003	0.1453	1.2800e- 003	0.1466	0.0385	1.1700e- 003	0.0397		160.1468	160.1468	8.6200e- 003		160.3279
Total	0.0602	0.0753	0.9333	1.8400e- 003	0.1453	1.2800e- 003	0.1466	0.0385	1.1700e- 003	0.0397		160.1468	160.1468	8.6200e- 003		160.3279

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Off-Road	1.4041	14.5959	9.1695	0.0133		0.8919	0.8919		0.8215	0.8215	0.0000	1,382.470 3	1,382.470 3	0.4054		1,390.982 6
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000		 	0.0000
Total	1.4041	14.5959	9.1695	0.0133		0.8919	0.8919		0.8215	0.8215	0.0000	1,382.470 3	1,382.470 3	0.4054		1,390.982 6

CalEEMod Version: CalEEMod.2013.2.2 Page 18 of 25 Date: 11/22/2013 2:50 PM

3.5 Paving - 2015

<u>Mitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0602	0.0753	0.9333	1.8400e- 003	0.1453	1.2800e- 003	0.1466	0.0385	1.1700e- 003	0.0397		160.1468	160.1468	8.6200e- 003		160.3279
Total	0.0602	0.0753	0.9333	1.8400e- 003	0.1453	1.2800e- 003	0.1466	0.0385	1.1700e- 003	0.0397		160.1468	160.1468	8.6200e- 003		160.3279

3.6 Architectural Coating - 2016 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Archit. Coating	52.5300					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.3685	2.3722	1.8839	2.9700e- 003		0.1966	0.1966		0.1966	0.1966		281.4481	281.4481	0.0332		282.1449
Total	52.8985	2.3722	1.8839	2.9700e- 003		0.1966	0.1966		0.1966	0.1966		281.4481	281.4481	0.0332		282.1449

CalEEMod Version: CalEEMod.2013.2.2 Page 19 of 25 Date: 11/22/2013 2:50 PM

3.6 Architectural Coating - 2016 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0209	0.0261	0.3250	7.1000e- 004	0.0559	4.7000e- 004	0.0564	0.0148	4.3000e- 004	0.0153		59.4729	59.4729	3.0500e- 003		59.5370
Total	0.0209	0.0261	0.3250	7.1000e- 004	0.0559	4.7000e- 004	0.0564	0.0148	4.3000e- 004	0.0153		59.4729	59.4729	3.0500e- 003		59.5370

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Archit. Coating	52.5300					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.3685	2.3722	1.8839	2.9700e- 003		0.1966	0.1966		0.1966	0.1966	0.0000	281.4481	281.4481	0.0332	i i i	282.1449
Total	52.8985	2.3722	1.8839	2.9700e- 003		0.1966	0.1966		0.1966	0.1966	0.0000	281.4481	281.4481	0.0332		282.1449

CalEEMod Version: CalEEMod.2013.2.2 Page 20 of 25 Date: 11/22/2013 2:50 PM

3.6 Architectural Coating - 2016 Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0209	0.0261	0.3250	7.1000e- 004	0.0559	4.7000e- 004	0.0564	0.0148	4.3000e- 004	0.0153		59.4729	59.4729	3.0500e- 003		59.5370
Total	0.0209	0.0261	0.3250	7.1000e- 004	0.0559	4.7000e- 004	0.0564	0.0148	4.3000e- 004	0.0153		59.4729	59.4729	3.0500e- 003		59.5370

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Mitigated	13.5854	27.8848	119.5635	0.2635	17.2093	0.3806	17.5899	4.5982	0.3503	4.9486		22,417.90 48	22,417.90 48	0.8870		22,436.53 23
Unmitigated	13.5854	27.8848	119.5635	0.2635	17.2093	0.3806	17.5899	4.5982	0.3503	4.9486		22,417.90 48	22,417.90 48	0.8870		22,436.53 23

CalEEMod Version: CalEEMod.2013.2.2 Page 21 of 25 Date: 11/22/2013 2:50 PM

4.2 Trip Summary Information

	Ave	rage Daily Trip Ra	ite	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Automobile Care Center	8.75	8.75	8.75	11,721	11,721
General Office Building	182.77	39.34	16.27	446,145	446,145
Racquet Club	45.76	45.76	45.76	93,316	93,316
Quality Restaurant	28.31	28.31	28.31	40,309	40,309
Regional Shopping Center	1,666.07	1,938.84	979.31	3,475,538	3,475,538
Supermarket	1,390.46	2,415.22	2263.58	2,192,419	2,192,419
Total	3,322.13	4,476.23	3,341.99	6,259,448	6,259,448

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Automobile Care Center	16.60	8.40	6.90	33.00	48.00	19.00	21	51	28
General Office Building	16.60	8.40	6.90	33.00	48.00	19.00	77	19	4
Racquet Club	16.60	8.40	6.90	11.50	69.50	19.00	52	39	9
Quality Restaurant	16.60	8.40	6.90	12.00	69.00	19.00	38	18	44
Regional Shopping Center	16.60	8.40	6.90	16.30	64.70	19.00	54	35	11
Supermarket	16.60	8.40	6.90	6.50	74.50	19.00	34	30	36

LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
0.512163	0.060173	0.180257	0.139094	0.042244	0.006664	0.016017	0.031880	0.001940	0.002497	0.004356	0.000592	0.002122

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
	0.0860	0.7822	0.6571	4.6900e- 003		0.0595	0.0595		0.0595	0.0595		938.6650	938.6650	0.0180	0.0172	944.3775
Unmitigated	0.0860	0.7822	0.6571	4.6900e- 003		0.0595	0.0595		0.0595	0.0595		938.6650	938.6650	0.0180	0.0172	944.3775

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/c	lay		
Quality Restaurant	6320	0.0682	0.6196	0.5205	3.7200e- 003		0.0471	0.0471		0.0471	0.0471		743.5291	743.5291	0.0143	0.0136	748.0541
Racquet Club	103.068	1.1100e- 003	0.0101	8.4900e- 003	6.0000e- 005		7.7000e- 004	7.7000e- 004		7.7000e- 004	7.7000e- 004		12.1257	12.1257	2.3000e- 004	2.2000e- 004	12.1995
Regional Shopping Center	180.712	1.9500e- 003	0.0177	0.0149	1.1000e- 004		1.3500e- 003	1.3500e- 003		1.3500e- 003	1.3500e- 003		21.2603	21.2603	4.1000e- 004	3.9000e- 004	21.3897
Supermarket	841.71	9.0800e- 003	0.0825	0.0693	5.0000e- 004		6.2700e- 003	6.2700e- 003		6.2700e- 003	6.2700e- 003		99.0247	99.0247	1.9000e- 003	1.8200e- 003	99.6273
Automobile Care Center	36.074	3.9000e- 004	3.5400e- 003	2.9700e- 003	2.0000e- 005		2.7000e- 004	2.7000e- 004		2.7000e- 004	2.7000e- 004		4.2440	4.2440	8.0000e- 005	8.0000e- 005	4.2698
General Office Building	497.09	5.3600e- 003	0.0487	0.0409	2.9000e- 004		3.7000e- 003	3.7000e- 003		3.7000e- 003	3.7000e- 003		58.4812	58.4812	1.1200e- 003	1.0700e- 003	58.8371
Total		0.0861	0.7822	0.6571	4.7000e- 003		0.0595	0.0595		0.0595	0.0595		938.6650	938.6650	0.0180	0.0172	944.3775

CalEEMod Version: CalEEMod.2013.2.2 Page 23 of 25 Date: 11/22/2013 2:50 PM

5.2 Energy by Land Use - NaturalGas Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/d	lay		
Quality Restaurant	6.32	0.0682	0.6196	0.5205	3.7200e- 003		0.0471	0.0471	! !	0.0471	0.0471		743.5291	743.5291	0.0143	0.0136	748.0541
Racquet Club	0.103068	1.1100e- 003	0.0101	8.4900e- 003	6.0000e- 005		7.7000e- 004	7.7000e- 004	,	7.7000e- 004	7.7000e- 004		12.1257	12.1257	2.3000e- 004	2.2000e- 004	12.1995
Regional Shopping Center		1.9500e- 003	0.0177	0.0149	1.1000e- 004		1.3500e- 003	1.3500e- 003	,	1.3500e- 003	1.3500e- 003		21.2603	21.2603	4.1000e- 004	3.9000e- 004	21.3897
Supermarket	0.84171	9.0800e- 003	0.0825	0.0693	5.0000e- 004		6.2700e- 003	6.2700e- 003		6.2700e- 003	6.2700e- 003		99.0247	99.0247	1.9000e- 003	1.8200e- 003	99.6273
Automobile Care Center	0.036074	3.9000e- 004	3.5400e- 003	2.9700e- 003	2.0000e- 005		2.7000e- 004	2.7000e- 004		2.7000e- 004	2.7000e- 004		4.2440	4.2440	8.0000e- 005	8.0000e- 005	4.2698
General Office Building	0.49709	5.3600e- 003	0.0487	0.0409	2.9000e- 004		3.7000e- 003	3.7000e- 003		3.7000e- 003	3.7000e- 003		58.4812	58.4812	1.1200e- 003	1.0700e- 003	58.8371
Total		0.0861	0.7822	0.6571	4.7000e- 003		0.0595	0.0595		0.0595	0.0595		938.6650	938.6650	0.0180	0.0172	944.3775

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Mitigated	2.1346	8.0000e- 005	8.4900e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005		0.0179	0.0179	5.0000e- 005		0.0189
Unmitigated	2.1346	8.0000e- 005	8.4900e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005		0.0179	0.0179	5.0000e- 005		0.0189

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	day		
Architectural Coating	0.5181					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	1.6157					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	8.2000e- 004	8.0000e- 005	8.4900e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005		0.0179	0.0179	5.0000e- 005		0.0189
Total	2.1346	8.0000e- 005	8.4900e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005		0.0179	0.0179	5.0000e- 005		0.0189

CalEEMod Version: CalEEMod.2013.2.2 Page 25 of 25 Date: 11/22/2013 2:50 PM

6.2 Area by SubCategory

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	day		
Architectural Coating	0.5181					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	1.6157					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	8.2000e- 004	8.0000e- 005	8.4900e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005		0.0179	0.0179	5.0000e- 005		0.0189
Total	2.1346	8.0000e- 005	8.4900e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005		0.0179	0.0179	5.0000e- 005		0.0189

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Trailibor Traili	Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
--	----------------	--------	-----------	-----------	-------------	-------------	-----------

10.0 Vegetation

CalEEMod Version: CalEEMod.2013.2.2 Page 1 of 33 Date: 11/25/2013 3:48 PM

Parcel 44 Update

South Coast AQMD Air District, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	16.60	1000sqft	0.38	16,600.00	0
Quality Restaurant	9.90	1000sqft	0.23	9,900.00	0
Racquet Club	2.00	1000sqft	0.05	2,000.00	0
Automobile Care Center	0.70	1000sqft	0.02	700.00	0
Regional Shopping Center	38.80	1000sqft	0.89	38,800.00	0
Supermarket	13.60	1000sqft	0.31	13,600.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	31
Climate Zone	11			Operational Year	2017
Utility Company	Southern California Ediso	n			

 CO2 Intensity
 630.89
 CH4 Intensity
 0.029
 N20 Intensity
 0.006

 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

CalEEMod Version: CalEEMod.2013.2.2 Page 2 of 33 Date: 11/25/2013 3:48 PM

Project Characteristics -

Land Use -

Construction Phase - Demo: 1/23/15-2/20/15

Grading: 2/21/15-4/19/15 Const: 4/20/15-8/23/16 Paving: 4/20/15-5/14/15 Coating: 7/5/16-8/23/16

Demolition -

Vehicle Trips - Trip rates for the auto care (sub for boat repair), quality rest and raquet club (sub for yacht club/lounge) modified per traffic report.

Construction Off-road Equipment Mitigation - Assume watering 3x per day per SCAQMD.

Mobile Land Use Mitigation -

Area Mitigation -

Energy Mitigation -

Water Mitigation -

Waste Mitigation -

Date: 11/25/2013 3:48 PM

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	10.00	36.00
tblConstructionPhase	NumDays	200.00	352.00
tblConstructionPhase	NumDays	20.00	21.00
tblConstructionPhase	NumDays	4.00	40.00
tblConstructionPhase	NumDays	10.00	19.00
tblConstructionPhase	PhaseEndDate	7/3/2015	8/23/2016
tblConstructionPhase	PhaseEndDate	4/17/2015	4/19/2015
tblConstructionPhase	PhaseEndDate	9/19/2016	5/14/2015
tblConstructionPhase	PhaseStartDate	5/15/2015	7/5/2016
tblConstructionPhase	PhaseStartDate	8/24/2016	4/20/2015
tblGrading	AcresOfGrading	15.00	1.50
tblProjectCharacteristics	OperationalYear	2014	2017
tblVehicleTrips	ST_TR	62.00	12.50
tblVehicleTrips	ST_TR	94.36	2.86
tblVehicleTrips	ST_TR	20.87	22.88
tblVehicleTrips	SU_TR	62.00	12.50
tblVehicleTrips	SU_TR	72.16	2.86
tblVehicleTrips	SU_TR	26.73	22.88
tblVehicleTrips	WD_TR	62.00	12.50
tblVehicleTrips	WD_TR	89.95	2.86
tblVehicleTrips	WD_TR	32.93	22.88

2.0 Emissions Summary

2.1 Overall Construction

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							MT	/yr		
2015	0.4437	3.0254	2.3358	3.3600e- 003	0.1382	0.1911	0.3293	0.0616	0.1825	0.2440	0.0000	291.2631	291.2631	0.0591	0.0000	292.5040
2016	1.2478	1.8811	1.5411	2.4500e- 003	0.0326	0.1200	0.1526	8.7900e- 003	0.1159	0.1246	0.0000	206.3403	206.3403	0.0363	0.0000	207.1023
Total	1.6916	4.9065	3.8769	5.8100e- 003	0.1708	0.3112	0.4819	0.0703	0.2983	0.3686	0.0000	497.6034	497.6034	0.0954	0.0000	499.6063

Mitigated Construction

Percent

Reduction

0.00

0.00

0.00

0.00

35.14

0.00

12.45

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					tor	ns/yr							M	Г/уг		
2015	0.4437	3.0254	2.3358	3.3600e- 003	0.0782	0.1911	0.2693	0.0305	0.1825	0.2130	0.0000	291.2628	291.2628	0.0591	0.0000	292.5037
2016	1.2478	1.8811	1.5411	2.4500e- 003	0.0326	0.1200	0.1526	8.7900e- 003	0.1159	0.1246	0.0000	206.3401	206.3401	0.0363	0.0000	207.1021
Total	1.6916	4.9065	3.8769	5.8100e- 003	0.1108	0.3112	0.4219	0.0393	0.2983	0.3376	0.0000	497.6029	497.6029	0.0954	0.0000	499.6059
	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e

44.09

0.00

8.41

0.00

0.00

0.00

0.00

0.00

0.00

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Area	0.3895	1.0000e- 005	1.0600e- 003	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	2.0300e- 003	2.0300e- 003	1.0000e- 005	0.0000	2.1400e- 003
Energy	0.0157	0.1428	0.1199	8.6000e- 004		0.0109	0.0109		0.0109	0.0109	0.0000	687.5195	687.5195	0.0274	7.9100e- 003	690.5478
Mobile	1.8421	4.1548	17.1912	0.0355	2.3722	0.0534	2.4256	0.6348	0.0492	0.6840	0.0000	2,746.422 3	2,746.422 3	0.1126	0.0000	2,748.786 3
Waste			i			0.0000	0.0000		0.0000	0.0000	31.6625	0.0000	31.6625	1.8712	0.0000	70.9578
Water						0.0000	0.0000		0.0000	0.0000	3.3914	52.3157	55.7071	0.3507	8.7200e- 003	65.7766
Total	2.2474	4.2976	17.3122	0.0364	2.3722	0.0643	2.4365	0.6348	0.0600	0.6948	35.0540	3,486.259 6	3,521.313 6	2.3620	0.0166	3,576.070 6

CalEEMod Version: CalEEMod.2013.2.2 Page 6 of 33 Date: 11/25/2013 3:48 PM

2.2 Overall Operational

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Area	0.3895	1.0000e- 005	1.0600e- 003	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	2.0300e- 003	2.0300e- 003	1.0000e- 005	0.0000	2.1400e- 003
Energy	0.0157	0.1428	0.1199	8.6000e- 004		0.0109	0.0109		0.0109	0.0109	0.0000	682.9427	682.9427	0.0272	7.8700e- 003	685.9530
Mobile	1.8421	4.1548	17.1912	0.0355	2.3722	0.0534	2.4256	0.6348	0.0492	0.6840	0.0000	2,746.422 3	2,746.422 3	0.1126	0.0000	2,748.786 3
Waste		 	1 1 1			0.0000	0.0000		0.0000	0.0000	25.3300	0.0000	25.3300	1.4970	0.0000	56.7662
Water			1 1 1			0.0000	0.0000		0.0000	0.0000	2.7132	44.3492	47.0623	0.2807	6.9900e- 003	55.1233
Total	2.2474	4.2976	17.3122	0.0364	2.3722	0.0643	2.4365	0.6348	0.0600	0.6948	28.0432	3,473.716 3	3,501.759 4	1.9174	0.0149	3,546.631 0

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	20.00	0.36	0.56	18.82	10.64	0.82

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	1/23/2015	2/20/2015	5	21	
2	Grading	Grading	2/21/2015	4/19/2015	5	40	
3	Building Construction	Building Construction	4/20/2015	8/23/2016	5	352	
4	Paving	Paving	4/20/2015	5/14/2015	5	19	
5	Architectural Coating	Architectural Coating	7/5/2016	8/23/2016	5	36	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 1.5

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 122,400; Non-Residential Outdoor: 40,800 (Architectural Coating – sqft)

OffRoad Equipment

Date: 11/25/2013 3:48 PM

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	1	8.00	81	0.73
Demolition	Rubber Tired Dozers	1	8.00	255	0.40
Demolition	Tractors/Loaders/Backhoes	3	8.00	97	0.37
Grading	Graders	1	6.00	174	0.41
Grading	Rubber Tired Dozers	1	6.00	255	0.40
Grading	Tractors/Loaders/Backhoes	1	7.00	97	0.37
Building Construction	Cranes	1	6.00	226	0.29
Building Construction	Forklifts	1	6.00	89	0.20
Building Construction	Generator Sets	1	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	1	6.00	97	0.37
Building Construction	Welders	3	8.00	46	0.45
Paving	Cement and Mortar Mixers	1	6.00	9	0.56
Paving	Pavers	1	6.00	125	0.42
Paving	Paving Equipment	1	8.00	130	0.36
Paving	Rollers	1	7.00	80	0.38
Paving	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Architectural Coating	Air Compressors	1	6.00	78	0.48

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	5	13.00	0.00	67.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Grading	3	8.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	7	27.00	13.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving	5	13.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	5.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

CalEEMod Version: CalEEMod.2013.2.2 Page 9 of 33 Date: 11/25/2013 3:48 PM

3.1 Mitigation Measures Construction

Water Exposed Area Clean Paved Roads

3.2 Demolition - 2015

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					7.2500e- 003	0.0000	7.2500e- 003	1.1000e- 003	0.0000	1.1000e- 003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0322	0.3116	0.2316	2.6000e- 004		0.0196	0.0196		0.0183	0.0183	0.0000	23.8999	23.8999	6.0600e- 003	0.0000	24.0271
Total	0.0322	0.3116	0.2316	2.6000e- 004	7.2500e- 003	0.0196	0.0268	1.1000e- 003	0.0183	0.0194	0.0000	23.8999	23.8999	6.0600e- 003	0.0000	24.0271

CalEEMod Version: CalEEMod.2013.2.2 Page 10 of 33 Date: 11/25/2013 3:48 PM

3.2 Demolition - 2015 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	6.8000e- 004	0.0110	7.8400e- 003	2.0000e- 005	5.7000e- 004	1.8000e- 004	7.6000e- 004	1.6000e- 004	1.7000e- 004	3.2000e- 004	0.0000	2.2818	2.2818	2.0000e- 005	0.0000	2.2822
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	6.1000e- 004	8.9000e- 004	9.2700e- 003	2.0000e- 005	1.5000e- 003	1.0000e- 005	1.5100e- 003	4.0000e- 004	1.0000e- 005	4.1000e- 004	0.0000	1.4533	1.4533	8.0000e- 005	0.0000	1.4550
Total	1.2900e- 003	0.0119	0.0171	4.0000e- 005	2.0700e- 003	1.9000e- 004	2.2700e- 003	5.6000e- 004	1.8000e- 004	7.3000e- 004	0.0000	3.7351	3.7351	1.0000e- 004	0.0000	3.7372

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					2.8300e- 003	0.0000	2.8300e- 003	4.3000e- 004	0.0000	4.3000e- 004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0322	0.3116	0.2316	2.6000e- 004		0.0196	0.0196		0.0183	0.0183	0.0000	23.8999	23.8999	6.0600e- 003	0.0000	24.0270
Total	0.0322	0.3116	0.2316	2.6000e- 004	2.8300e- 003	0.0196	0.0224	4.3000e- 004	0.0183	0.0188	0.0000	23.8999	23.8999	6.0600e- 003	0.0000	24.0270

CalEEMod Version: CalEEMod.2013.2.2 Page 11 of 33 Date: 11/25/2013 3:48 PM

3.2 **Demolition - 2015**

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/уг		
Hauling	6.8000e- 004	0.0110	7.8400e- 003	2.0000e- 005	5.7000e- 004	1.8000e- 004	7.6000e- 004	1.6000e- 004	1.7000e- 004	3.2000e- 004	0.0000	2.2818	2.2818	2.0000e- 005	0.0000	2.2822
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	6.1000e- 004	8.9000e- 004	9.2700e- 003	2.0000e- 005	1.5000e- 003	1.0000e- 005	1.5100e- 003	4.0000e- 004	1.0000e- 005	4.1000e- 004	0.0000	1.4533	1.4533	8.0000e- 005	0.0000	1.4550
Total	1.2900e- 003	0.0119	0.0171	4.0000e- 005	2.0700e- 003	1.9000e- 004	2.2700e- 003	5.6000e- 004	1.8000e- 004	7.3000e- 004	0.0000	3.7351	3.7351	1.0000e- 004	0.0000	3.7372

3.3 Grading - 2015

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Fugitive Dust					0.0911	0.0000	0.0911	0.0497	0.0000	0.0497	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0413	0.4389	0.2818	2.8000e- 004		0.0239	0.0239		0.0220	0.0220	0.0000	26.8490	26.8490	8.0200e- 003	0.0000	27.0174
Total	0.0413	0.4389	0.2818	2.8000e- 004	0.0911	0.0239	0.1151	0.0497	0.0220	0.0718	0.0000	26.8490	26.8490	8.0200e- 003	0.0000	27.0174

CalEEMod Version: CalEEMod.2013.2.2 Page 12 of 33 Date: 11/25/2013 3:48 PM

3.3 Grading - 2015

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	7.1000e- 004	1.0500e- 003	0.0109	2.0000e- 005	1.7600e- 003	2.0000e- 005	1.7700e- 003	4.7000e- 004	1.0000e- 005	4.8000e- 004	0.0000	1.7035	1.7035	1.0000e- 004	0.0000	1.7055
Total	7.1000e- 004	1.0500e- 003	0.0109	2.0000e- 005	1.7600e- 003	2.0000e- 005	1.7700e- 003	4.7000e- 004	1.0000e- 005	4.8000e- 004	0.0000	1.7035	1.7035	1.0000e- 004	0.0000	1.7055

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Fugitive Dust					0.0355	0.0000	0.0355	0.0194	0.0000	0.0194	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0413	0.4389	0.2818	2.8000e- 004		0.0239	0.0239		0.0220	0.0220	0.0000	26.8490	26.8490	8.0200e- 003	0.0000	27.0173
Total	0.0413	0.4389	0.2818	2.8000e- 004	0.0355	0.0239	0.0595	0.0194	0.0220	0.0414	0.0000	26.8490	26.8490	8.0200e- 003	0.0000	27.0173

CalEEMod Version: CalEEMod.2013.2.2 Page 13 of 33 Date: 11/25/2013 3:48 PM

3.3 Grading - 2015

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/уг		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	7.1000e- 004	1.0500e- 003	0.0109	2.0000e- 005	1.7600e- 003	2.0000e- 005	1.7700e- 003	4.7000e- 004	1.0000e- 005	4.8000e- 004	0.0000	1.7035	1.7035	1.0000e- 004	0.0000	1.7055
Total	7.1000e- 004	1.0500e- 003	0.0109	2.0000e- 005	1.7600e- 003	2.0000e- 005	1.7700e- 003	4.7000e- 004	1.0000e- 005	4.8000e- 004	0.0000	1.7035	1.7035	1.0000e- 004	0.0000	1.7055

3.4 Building Construction - 2015

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	0.3312	1.9839	1.3804	2.0200e- 003		0.1366	0.1366	 	0.1320	0.1320	0.0000	171.5645	171.5645	0.0396	0.0000	172.3955
Total	0.3312	1.9839	1.3804	2.0200e- 003		0.1366	0.1366		0.1320	0.1320	0.0000	171.5645	171.5645	0.0396	0.0000	172.3955

CalEEMod Version: CalEEMod.2013.2.2 Page 14 of 33 Date: 11/25/2013 3:48 PM

3.4 Building Construction - 2015

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	⁻ /yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0120	0.1223	0.1497	2.6000e- 004	7.3600e- 003	2.0600e- 003	9.4100e- 003	2.1000e- 003	1.8900e- 003	3.9900e- 003	0.0000	23.8356	23.8356	1.9000e- 004	0.0000	23.8396
Worker	0.0111	0.0163	0.1688	3.4000e- 004	0.0273	2.4000e- 004	0.0275	7.2400e- 003	2.2000e- 004	7.4600e- 003	0.0000	26.4463	26.4463	1.4900e- 003	0.0000	26.4776
Total	0.0231	0.1386	0.3185	6.0000e- 004	0.0346	2.3000e- 003	0.0369	9.3400e- 003	2.1100e- 003	0.0115	0.0000	50.2818	50.2818	1.6800e- 003	0.0000	50.3172

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	0.3312	1.9839	1.3804	2.0200e- 003		0.1366	0.1366		0.1320	0.1320	0.0000	171.5643	171.5643	0.0396	0.0000	172.3953
Total	0.3312	1.9839	1.3804	2.0200e- 003		0.1366	0.1366		0.1320	0.1320	0.0000	171.5643	171.5643	0.0396	0.0000	172.3953

CalEEMod Version: CalEEMod.2013.2.2 Page 15 of 33 Date: 11/25/2013 3:48 PM

3.4 Building Construction - 2015

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr				МТ	/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0120	0.1223	0.1497	2.6000e- 004	7.3600e- 003	2.0600e- 003	9.4100e- 003	2.1000e- 003	1.8900e- 003	3.9900e- 003	0.0000	23.8356	23.8356	1.9000e- 004	0.0000	23.8396
Worker	0.0111	0.0163	0.1688	3.4000e- 004	0.0273	2.4000e- 004	0.0275	7.2400e- 003	2.2000e- 004	7.4600e- 003	0.0000	26.4463	26.4463	1.4900e- 003	0.0000	26.4776
Total	0.0231	0.1386	0.3185	6.0000e- 004	0.0346	2.3000e- 003	0.0369	9.3400e- 003	2.1100e- 003	0.0115	0.0000	50.2818	50.2818	1.6800e- 003	0.0000	50.3172

3.4 Building Construction - 2016

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	0.2765	1.7259	1.2354	1.8400e- 003		0.1147	0.1147		0.1107	0.1107	0.0000	155.9843	155.9843	0.0343	0.0000	156.7043
Total	0.2765	1.7259	1.2354	1.8400e- 003		0.1147	0.1147		0.1107	0.1107	0.0000	155.9843	155.9843	0.0343	0.0000	156.7043

CalEEMod Version: CalEEMod.2013.2.2 Page 16 of 33 Date: 11/25/2013 3:48 PM

3.4 Building Construction - 2016 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/уг		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
;	9.6900e- 003	0.0986	0.1271	2.4000e- 004	6.7200e- 003	1.5600e- 003	8.2800e- 003	1.9200e- 003	1.4300e- 003	3.3500e- 003	0.0000	21.5229	21.5229	1.6000e- 004	0.0000	21.5261
Worker	9.1200e- 003	0.0134	0.1392	3.1000e- 004	0.0249	2.1000e- 004	0.0251	6.6100e- 003	1.9000e- 004	6.8000e- 003	0.0000	23.3122	23.3122	1.2600e- 003	0.0000	23.3386
Total	0.0188	0.1120	0.2663	5.5000e- 004	0.0316	1.7700e- 003	0.0334	8.5300e- 003	1.6200e- 003	0.0102	0.0000	44.8351	44.8351	1.4200e- 003	0.0000	44.8647

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	0.2765	1.7259	1.2354	1.8400e- 003		0.1147	0.1147		0.1107	0.1107	0.0000	155.9841	155.9841	0.0343	0.0000	156.7041
Total	0.2765	1.7259	1.2354	1.8400e- 003		0.1147	0.1147		0.1107	0.1107	0.0000	155.9841	155.9841	0.0343	0.0000	156.7041

CalEEMod Version: CalEEMod.2013.2.2 Page 17 of 33 Date: 11/25/2013 3:48 PM

3.4 Building Construction - 2016

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	9.6900e- 003	0.0986	0.1271	2.4000e- 004	6.7200e- 003	1.5600e- 003	8.2800e- 003	1.9200e- 003	1.4300e- 003	3.3500e- 003	0.0000	21.5229	21.5229	1.6000e- 004	0.0000	21.5261
Worker	9.1200e- 003	0.0134	0.1392	3.1000e- 004	0.0249	2.1000e- 004	0.0251	6.6100e- 003	1.9000e- 004	6.8000e- 003	0.0000	23.3122	23.3122	1.2600e- 003	0.0000	23.3386
Total	0.0188	0.1120	0.2663	5.5000e- 004	0.0316	1.7700e- 003	0.0334	8.5300e- 003	1.6200e- 003	0.0102	0.0000	44.8351	44.8351	1.4200e- 003	0.0000	44.8647

3.5 Paving - 2015

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	⁻ /yr		
Off-Road	0.0133	0.1387	0.0871	1.3000e- 004		8.4700e- 003	8.4700e- 003		7.8000e- 003	7.8000e- 003	0.0000	11.9145	11.9145	3.4900e- 003	0.0000	11.9878
Paving	0.0000	 				0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0133	0.1387	0.0871	1.3000e- 004		8.4700e- 003	8.4700e- 003		7.8000e- 003	7.8000e- 003	0.0000	11.9145	11.9145	3.4900e- 003	0.0000	11.9878

CalEEMod Version: CalEEMod.2013.2.2 Page 18 of 33 Date: 11/25/2013 3:48 PM

3.5 Paving - 2015

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	5.5000e- 004	8.1000e- 004	8.3900e- 003	2.0000e- 005	1.3500e- 003	1.0000e- 005	1.3700e- 003	3.6000e- 004	1.0000e- 005	3.7000e- 004	0.0000	1.3149	1.3149	7.0000e- 005	0.0000	1.3164
Total	5.5000e- 004	8.1000e- 004	8.3900e- 003	2.0000e- 005	1.3500e- 003	1.0000e- 005	1.3700e- 003	3.6000e- 004	1.0000e- 005	3.7000e- 004	0.0000	1.3149	1.3149	7.0000e- 005	0.0000	1.3164

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	0.0133	0.1387	0.0871	1.3000e- 004		8.4700e- 003	8.4700e- 003		7.8000e- 003	7.8000e- 003	0.0000	11.9145	11.9145	3.4900e- 003	0.0000	11.9878
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0133	0.1387	0.0871	1.3000e- 004		8.4700e- 003	8.4700e- 003		7.8000e- 003	7.8000e- 003	0.0000	11.9145	11.9145	3.4900e- 003	0.0000	11.9878

CalEEMod Version: CalEEMod.2013.2.2 Page 19 of 33 Date: 11/25/2013 3:48 PM

3.5 Paving - 2015

<u>Mitigated Construction Off-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	5.5000e- 004	8.1000e- 004	8.3900e- 003	2.0000e- 005	1.3500e- 003	1.0000e- 005	1.3700e- 003	3.6000e- 004	1.0000e- 005	3.7000e- 004	0.0000	1.3149	1.3149	7.0000e- 005	0.0000	1.3164
Total	5.5000e- 004	8.1000e- 004	8.3900e- 003	2.0000e- 005	1.3500e- 003	1.0000e- 005	1.3700e- 003	3.6000e- 004	1.0000e- 005	3.7000e- 004	0.0000	1.3149	1.3149	7.0000e- 005	0.0000	1.3164

3.6 Architectural Coating - 2016 Unmitigated Construction On-Site

ROG NOx CO SO2 Fugitive Exhaust PM10 Fugitive Exhaust PM2.5 Bio- CO2 NBio- CO2 Total CO2 CH4 N20 CO2e PM10 PM2.5 PM2.5 Total Total MT/yr Category tons/yr 0.9455 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Archit. Coating 0.0000 0.0000 0.0000 4.6072 0.0339 5.0000e-3.5400e-4.5959 4.5959 0.0000 Off-Road 6.6300e-0.0427 3.5400e-3.5400e-3.5400e-5.4000e-003 005 003 003 003 003 004 0.9522 0.0427 0.0339 5.0000e-3.5400e-3.5400e-3.5400e-0.0000 4.5959 4.5959 5.4000e-4.6072 Total 3.5400e-0.0000 005 003 003 003 003 004

CalEEMod Version: CalEEMod.2013.2.2 Page 20 of 33 Date: 11/25/2013 3:48 PM

3.6 Architectural Coating - 2016 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/уг		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	3.6000e- 004	5.3000e- 004	5.5200e- 003	1.0000e- 005	9.9000e- 004	1.0000e- 005	1.0000e- 003	2.6000e- 004	1.0000e- 005	2.7000e- 004	0.0000	0.9251	0.9251	5.0000e- 005	0.0000	0.9261
Total	3.6000e- 004	5.3000e- 004	5.5200e- 003	1.0000e- 005	9.9000e- 004	1.0000e- 005	1.0000e- 003	2.6000e- 004	1.0000e- 005	2.7000e- 004	0.0000	0.9251	0.9251	5.0000e- 005	0.0000	0.9261

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Archit. Coating	0.9455					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	6.6300e- 003	0.0427	0.0339	5.0000e- 005		3.5400e- 003	3.5400e- 003	 	3.5400e- 003	3.5400e- 003	0.0000	4.5959	4.5959	5.4000e- 004	0.0000	4.6072
Total	0.9522	0.0427	0.0339	5.0000e- 005		3.5400e- 003	3.5400e- 003		3.5400e- 003	3.5400e- 003	0.0000	4.5959	4.5959	5.4000e- 004	0.0000	4.6072

CalEEMod Version: CalEEMod.2013.2.2 Page 21 of 33 Date: 11/25/2013 3:48 PM

3.6 Architectural Coating - 2016 Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/уг		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	3.6000e- 004	5.3000e- 004	5.5200e- 003	1.0000e- 005	9.9000e- 004	1.0000e- 005	1.0000e- 003	2.6000e- 004	1.0000e- 005	2.7000e- 004	0.0000	0.9251	0.9251	5.0000e- 005	0.0000	0.9261
Total	3.6000e- 004	5.3000e- 004	5.5200e- 003	1.0000e- 005	9.9000e- 004	1.0000e- 005	1.0000e- 003	2.6000e- 004	1.0000e- 005	2.7000e- 004	0.0000	0.9251	0.9251	5.0000e- 005	0.0000	0.9261

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Mitigated	1.8421	4.1548	17.1912	0.0355	2.3722	0.0534	2.4256	0.6348	0.0492	0.6840	0.0000	2,746.422 3	2,746.422 3	0.1126	0.0000	2,748.786 3
Unmitigated	1.8421	4.1548	17.1912	0.0355	2.3722	0.0534	2.4256	0.6348	0.0492	0.6840	0.0000	2,746.422 3	2,746.422 3	0.1126	0.0000	2,748.786 3

CalEEMod Version: CalEEMod.2013.2.2 Page 22 of 33 Date: 11/25/2013 3:48 PM

4.2 Trip Summary Information

	Ave	rage Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Automobile Care Center	8.75	8.75	8.75	11,721	11,721
General Office Building	182.77	39.34	16.27	446,145	446,145
Quality Restaurant	28.31	28.31	28.31	40,309	40,309
Racquet Club	45.76	45.76	45.76	93,316	93,316
Regional Shopping Center	1,666.07	1,938.84	979.31	3,475,538	3,475,538
Supermarket	1,390.46	2,415.22	2263.58	2,192,419	2,192,419
Total	3,322.13	4,476.23	3,341.99	6,259,448	6,259,448

4.3 Trip Type Information

		Miles			Trip %		Trip Purpose %					
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by			
Automobile Care Center	16.60	8.40	6.90	33.00	48.00	19.00	21	51	28			
General Office Building	16.60	8.40	6.90	33.00	48.00	19.00	77	19	4			
Quality Restaurant	16.60	8.40	6.90	12.00	69.00	19.00	38	18	44			
Racquet Club	16.60	8.40	6.90	11.50	69.50	19.00	52	39	9			
Regional Shopping Center	16.60	8.40	6.90	16.30	64.70	19.00	54	35	11			
Supermarket	16.60	8.40	6.90	6.50	74.50	19.00	34	30	36			

LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
0.512163	0.060173	0.180257	0.139094	0.042244	0.006664	0.016017	0.031880	0.001940	0.002497	0.004356	0.000592	0.002122

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

Install High Efficiency Lighting
Install Energy Efficient Appliances

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Category	tons/yr										MT/yr						
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	527.5362	527.5362	0.0243	5.0200e- 003	529.6008	
Electricity Unmitigated	1 1					0.0000	0.0000		0.0000	0.0000	0.0000	532.1130	532.1130	0.0245	5.0600e- 003	534.1955	
NaturalGas Mitigated	0.0157	0.1428	0.1199	8.6000e- 004		0.0109	0.0109		0.0109	0.0109	0.0000	155.4065	155.4065	2.9800e- 003	2.8500e- 003	156.3523	
NaturalGas Unmitigated	0.0157	0.1428	0.1199	8.6000e- 004		0.0109	0.0109		0.0109	0.0109	0.0000	155.4065	155.4065	2.9800e- 003	2.8500e- 003	156.3523	

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e			
Land Use	kBTU/yr		tons/yr											MT/yr						
Quality Restaurant	2.3068e +006	0.0124	0.1131	0.0950	6.8000e- 004		8.5900e- 003	8.5900e- 003		8.5900e- 003	8.5900e- 003	0.0000	123.0996	123.0996	2.3600e- 003	2.2600e- 003	123.8487			
Racquet Club	37620	2.0000e- 004	1.8400e- 003	1.5500e- 003	1.0000e- 005		1.4000e- 004	1.4000e- 004		1.4000e- 004	1.4000e- 004	0.0000	2.0076	2.0076	4.0000e- 005	4.0000e- 005	2.0198			
Regional Shopping Center	65960	3.6000e- 004	3.2300e- 003	2.7200e- 003	2.0000e- 005		2.5000e- 004	2.5000e- 004		2.5000e- 004	2.5000e- 004	0.0000	3.5199	3.5199	7.0000e- 005	6.0000e- 005	3.5413			
Supermarket	307224	1.6600e- 003	0.0151	0.0127	9.0000e- 005		1.1400e- 003	1.1400e- 003		1.1400e- 003	1.1400e- 003	0.0000	16.3946	16.3946	3.1000e- 004	3.0000e- 004	16.4944			
Automobile Care Center	13167	7.0000e- 005	6.5000e- 004	5.4000e- 004	0.0000		5.0000e- 005	5.0000e- 005		5.0000e- 005	5.0000e- 005	0.0000	0.7026	0.7026	1.0000e- 005	1.0000e- 005	0.7069			
General Office Building	181438	9.8000e- 004	8.8900e- 003	7.4700e- 003	5.0000e- 005		6.8000e- 004	6.8000e- 004		6.8000e- 004	6.8000e- 004	0.0000	9.6822	9.6822	1.9000e- 004	1.8000e- 004	9.7412			
Total		0.0157	0.1428	0.1199	8.5000e- 004		0.0109	0.0109		0.0109	0.0109	0.0000	155.4065	155.4065	2.9800e- 003	2.8500e- 003	156.3523			

5.2 Energy by Land Use - NaturalGas Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr		tons/yr								MT/yr						
Racquet Club	37620	2.0000e- 004	1.8400e- 003	1.5500e- 003	1.0000e- 005		1.4000e- 004	1.4000e- 004		1.4000e- 004	1.4000e- 004	0.0000	2.0076	2.0076	4.0000e- 005	4.0000e- 005	2.0198
Regional Shopping Center	65960	3.6000e- 004	3.2300e- 003	2.7200e- 003	2.0000e- 005		2.5000e- 004	2.5000e- 004		2.5000e- 004	2.5000e- 004	0.0000	3.5199	3.5199	7.0000e- 005	6.0000e- 005	3.5413
Supermarket	307224	1.6600e- 003	0.0151	0.0127	9.0000e- 005		1.1400e- 003	1.1400e- 003		1.1400e- 003	1.1400e- 003	0.0000	16.3946	16.3946	3.1000e- 004	3.0000e- 004	16.4944
Automobile Care Center	13167	7.0000e- 005	6.5000e- 004	5.4000e- 004	0.0000		5.0000e- 005	5.0000e- 005		5.0000e- 005	5.0000e- 005	0.0000	0.7026	0.7026	1.0000e- 005	1.0000e- 005	0.7069
General Office Building	181438	9.8000e- 004	8.8900e- 003	7.4700e- 003	5.0000e- 005		6.8000e- 004	6.8000e- 004		6.8000e- 004	6.8000e- 004	0.0000	9.6822	9.6822	1.9000e- 004	1.8000e- 004	9.7412
Quality Restaurant	2.3068e +006	0.0124	0.1131	0.0950	6.8000e- 004		8.5900e- 003	8.5900e- 003		8.5900e- 003	8.5900e- 003	0.0000	123.0996	123.0996	2.3600e- 003	2.2600e- 003	123.8487
Total		0.0157	0.1428	0.1199	8.5000e- 004		0.0109	0.0109		0.0109	0.0109	0.0000	155.4065	155.4065	2.9800e- 003	2.8500e- 003	156.3523

CalEEMod Version: CalEEMod.2013.2.2 Page 26 of 33 Date: 11/25/2013 3:48 PM

5.3 Energy by Land Use - Electricity <u>Unmitigated</u>

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		МТ	-/yr	
Automobile Care Center	8435	2.4138	1.1000e- 004	2.0000e- 005	2.4233
General Office Building	241198	69.0229	3.1700e- 003	6.6000e- 004	69.2930
Quality Restaurant	464409	132.8985	6.1100e- 003	1.2600e- 003	133.4186
Racquet Club	24100	6.8966	3.2000e- 004	7.0000e- 005	6.9236
Regional Shopping Center	588596	168.4367	7.7400e- 003	1.6000e- 003	169.0959
Supermarket	532712	152.4445	7.0100e- 003	1.4500e- 003	153.0411
Total		532.1130	0.0245	5.0600e- 003	534.1955

CalEEMod Version: CalEEMod.2013.2.2 Page 27 of 33 Date: 11/25/2013 3:48 PM

5.3 Energy by Land Use - Electricity Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e			
Land Use	kWh/yr	MT/yr						
Automobile Care Center	8435	2.4138	1.1000e- 004	2.0000e- 005	2.4233			
General Office Building	241198	69.0229	3.1700e- 003	6.6000e- 004	69.2930			
Quality Restaurant	448416	128.3217	5.9000e- 003	1.2200e- 003	128.8239			
Racquet Club	24100	6.8966	3.2000e- 004	7.0000e- 005	6.9236			
Regional Shopping Center	588596	168.4367	7.7400e- 003	1.6000e- 003	169.0959			
Supermarket	532712	152.4445	7.0100e- 003	1.4500e- 003	153.0411			
Total		527.5362	0.0243	5.0200e- 003	529.6007			

6.0 Area Detail

6.1 Mitigation Measures Area

Use Low VOC Paint - Residential Interior

Use Low VOC Paint - Residential Exterior

Use Low VOC Paint - Non-Residential Interior

Use Low VOC Paint - Non-Residential Exterior

Use Low VOC Cleaning Supplies

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Mitigated	0.3895	1.0000e- 005	1.0600e- 003	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	2.0300e- 003	2.0300e- 003	1.0000e- 005	0.0000	2.1400e- 003
Unmitigated	0.3895	1.0000e- 005	1.0600e- 003	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	2.0300e- 003	2.0300e- 003	1.0000e- 005	0.0000	2.1400e- 003

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory		tons/yr								MT/yr						
Architectural Coating	0.0946					0.0000	0.0000	! !	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.2949		1 1 1		1 1 1	0.0000	0.0000	1 1 1 1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	1.0000e- 004	1.0000e- 005	1.0600e- 003	0.0000	,	0.0000	0.0000	1 1 1 1	0.0000	0.0000	0.0000	2.0300e- 003	2.0300e- 003	1.0000e- 005	0.0000	2.1400e- 003
Total	0.3895	1.0000e- 005	1.0600e- 003	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	2.0300e- 003	2.0300e- 003	1.0000e- 005	0.0000	2.1400e- 003

CalEEMod Version: CalEEMod.2013.2.2 Page 29 of 33 Date: 11/25/2013 3:48 PM

6.2 Area by SubCategory

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory		tons/yr									MT/yr					
Architectural Coating	0.0946					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.2949			 		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	1.0000e- 004	1.0000e- 005	1.0600e- 003	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	2.0300e- 003	2.0300e- 003	1.0000e- 005	0.0000	2.1400e- 003
Total	0.3895	1.0000e- 005	1.0600e- 003	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	2.0300e- 003	2.0300e- 003	1.0000e- 005	0.0000	2.1400e- 003

7.0 Water Detail

7.1 Mitigation Measures Water

Install Low Flow Bathroom Faucet

Install Low Flow Kitchen Faucet

Install Low Flow Toilet

Install Low Flow Shower

	Total CO2	CH4	N2O	CO2e
Category		МТ	√yr	
Willigated	47.0623	0.2807	6.9900e- 003	55.1233
Crimingatod	55.7071	0.3507	8.7200e- 003	65.7766

7.2 Water by Land Use <u>Unmitigated</u>

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		МТ	√yr	
Automobile Care Center	0.0658568 / n n4n3638		2.1600e- 003	5.0000e- 005	0.4569
General Office Building	2.95038 / 1.8083	17.6788	0.0969	2.4300e- 003	20.4670
Quality Restaurant	3.00498 / 0.191807	12.7603	0.0985	2.4200e- 003	15.5795
	0.118286 / 0.0724981		3.8900e- 003	1.0000e- 004	0.8206
Regional Shopping Center	2.87401 / 1.76149	17.2212	0.0944	2.3700e- 003	19.9372
	1.67645 / 0.0518489		0.0549	1.3500e- 003	8.5156
Total		55.7072	0.3507	8.7200e- 003	65.7766

7.2 Water by Land Use

Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		МТ	-/yr	
Center	0.0526854 / n nansesa	0.3414	1.7300e- 003	4.0000e- 005	0.3912
General Office Building	2.3603 / 1.8083	15.2929	0.0776	1.9500e- 003	17.5267
Quality Restaurant	2.40399 / 0.191807	10.3302	0.0788	1.9400e- 003	12.5848
Racquet Club	0.094629 / 0.0724981		3.1100e- 003	8.0000e- 005	0.7027
Regional Shopping Center	2.29921 / 1.76149		0.0756	1.9000e- 003	17.0730
	1.34116 / 0.0518489		0.0439	1.0800e- 003	6.8449
Total		47.0623	0.2807	6.9900e- 003	55.1233

8.0 Waste Detail

8.1 Mitigation Measures Waste

Institute Recycling and Composting Services

Category/Year

	Total CO2	CH4	N2O	CO2e				
	MT/yr							
willigated	25.3300	1.4970	0.0000	56.7662				
- Criminguiou	31.6625	1.8712	0.0000	70.9578				

8.2 Waste by Land Use <u>Unmitigated</u>

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		МТ	-/yr	
Automobile Care Center	2.67	0.5420	0.0320	0.0000	1.2146
General Office Building	15.44	3.1342	0.1852	0.0000	7.0239
Quality Restaurant	9.03	1.8330	0.1083	0.0000	4.1079
Racquet Club	11.4	2.3141	0.1368	0.0000	5.1860
Regional Shopping Center	40.74	8.2699	0.4887	0.0000	18.5333
Supermarket	76.7	15.5694	0.9201	0.0000	34.8920
Total		31.6625	1.8712	0.0000	70.9578

CalEEMod Version: CalEEMod.2013.2.2 Page 33 of 33 Date: 11/25/2013 3:48 PM

8.2 Waste by Land Use

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e			
Land Use	tons	MT/yr						
Automobile Care Center	2.136	0.4336	0.0256	0.0000	0.9717			
General Office Building	12.352	2.5073	0.1482	0.0000	5.6191			
Quality Restaurant	7.224	1.4664	0.0867	0.0000	3.2863			
Racquet Club	9.12	1.8513	0.1094	0.0000	4.1488			
Regional Shopping Center	32.592	6.6159	0.3910	0.0000	14.8266			
Supermarket	61.36	12.4555	0.7361	0.0000	27.9136			
Total		25.3300	1.4970	0.0000	56.7662			

9.0 Operational Offroad

Fauinment Type	Number	Hours/Dov	DayaWaar	Haras Dawer	Load Footor	Fuel Tune
Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Vegetation

Parcel 44 Existing

Date: 11/25/2013 3:28 PM

South Coast Air Basin, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	4.20	1000sqft	0.10	4,200.00	0
Racquet Club	1.10	1000sqft	0.03	1,100.00	0
Automobile Care Center	1.60	1000sqft	0.04	1,600.00	0
Regional Shopping Center	7.90	1000sqft	0.18	7,900.00	0

1.2 Other Project Characteristics

UrbanizationUrbanWind Speed (m/s)2.2Precipitation Freq (Days)31

Climate Zone 11 Operational Year 2013

Utility Company Southern California Edison

 CO2 Intensity
 630.89
 CH4 Intensity
 0.029
 N20 Intensity
 0.006

 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use -

Vehicle Trips - Trips for auto care and raquet club modified to match modified to trips estimated for proposed project.

Mobile Land Use Mitigation -

Table Name	Column Name	Default Value	New Value
tblProjectCharacteristics	OperationalYear	2014	2013

CalEEMod Version: CalEEMod.2013.2.2 Page 2 of 24 Date: 11/25/2013 3:28 PM

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/d	lay		
2014	69.0494	15.0904	9.6469	0.0137	0.8645	1.0384	1.7960	0.4434	0.9553	1.3347	0.0000	1,334.536 1	1,334.536 1	0.3599	0.0000	1,342.094 3
Total	69.0494	15.0904	9.6469	0.0137	0.8645	1.0384	1.7960	0.4434	0.9553	1.3347	0.0000	1,334.536 1	1,334.536 1	0.3599	0.0000	1,342.094 3

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/d	day		
2014	69.0494	15.0904	9.6469	0.0137	0.8645	1.0384	1.7960	0.4434	0.9553	1.3347	0.0000	1,334.536 1	1,334.536 1	0.3599	0.0000	1,342.094 3
Total	69.0494	15.0904	9.6469	0.0137	0.8645	1.0384	1.7960	0.4434	0.9553	1.3347	0.0000	1,334.536 1	1,334.536 1	0.3599	0.0000	1,342.094 3

CalEEMod Version: CalEEMod.2013.2.2 Page 3 of 24 Date: 11/25/2013 3:28 PM

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Area	0.3872	2.0000e- 005	1.6000e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005		3.2400e- 003	3.2400e- 003	1.0000e- 005		3.4500e- 003
Energy	3.2500e- 003	0.0296	0.0249	1.8000e- 004		2.2500e- 003	2.2500e- 003		2.2500e- 003	2.2500e- 003		35.4949	35.4949	6.8000e- 004	6.5000e- 004	35.7109
Mobile	2.4604	5.4225	23.7069	0.0384	2.5624	0.1047	2.6671	0.6844	0.0961	0.7805		3,629.434 6	3,629.434 6	0.1806		3,633.227 5
Total	2.8508	5.4521	23.7334	0.0386	2.5624	0.1070	2.6694	0.6844	0.0984	0.7828		3,664.932 7	3,664.932 7	0.1813	6.5000e- 004	3,668.941 9

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Area	0.3872	2.0000e- 005	1.6000e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005		3.2400e- 003	3.2400e- 003	1.0000e- 005		3.4500e- 003
Energy	3.2500e- 003	0.0296	0.0249	1.8000e- 004		2.2500e- 003	2.2500e- 003		2.2500e- 003	2.2500e- 003		35.4949	35.4949	6.8000e- 004	6.5000e- 004	35.7109
Mobile	2.4604	5.4225	23.7069	0.0384	2.5624	0.1047	2.6671	0.6844	0.0961	0.7805		3,629.434 6	3,629.434 6	0.1806		3,633.227 5
Total	2.8508	5.4521	23.7334	0.0386	2.5624	0.1070	2.6694	0.6844	0.0984	0.7828		3,664.932 7	3,664.932 7	0.1813	6.5000e- 004	3,668.941 9

CalEEMod Version: CalEEMod.2013.2.2 Page 5 of 24 Date: 11/25/2013 3:28 PM

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	1/1/2014	1/14/2014	5	10	
2	Site Preparation	Site Preparation	1/15/2014	1/15/2014	5	1	
3	Grading	Grading	1/16/2014	1/17/2014	5	2	
4	Building Construction	Building Construction	1/18/2014	6/6/2014	5	100	
5	Paving	Paving	6/7/2014	6/13/2014	5	5	
6	Architectural Coating	Architectural Coating	6/14/2014	6/20/2014	5	5	

Acres of Grading (Site Preparation Phase): 0.5

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 22,200; Non-Residential Outdoor: 7,400 (Architectural Coating – sqft)

OffRoad Equipment

Date: 11/25/2013 3:28 PM

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	1	8.00	81	0.73
Demolition	Rubber Tired Dozers	1	1.00	255	0.40
Demolition	Tractors/Loaders/Backhoes	2	6.00	97	0.37
Site Preparation	Graders	1	8.00	174	0.41
Site Preparation	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Grading	Concrete/Industrial Saws	1	8.00	81	0.73
Grading	Rubber Tired Dozers	1	1.00	255	0.40
Grading	Tractors/Loaders/Backhoes	2	6.00	97	0.37
Building Construction	Cranes	1	4.00	226	0.29
Building Construction	Forklifts	2	6.00	89	0.20
Building Construction	Tractors/Loaders/Backhoes	2	8.00	97	0.37
Paving	Cement and Mortar Mixers	4	6.00	9	0.56
Paving	Pavers	1	7.00	125	0.42
Paving	Rollers	1	7.00	80	0.38
Paving	Tractors/Loaders/Backhoes	1	7.00	97	0.37
Architectural Coating	Air Compressors	1;	6.00	78	0.48

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	4	10.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Site Preparation	2	5.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Grading	4	10.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	5	5.00	2.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving	7	18.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	1.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

CalEEMod Version: CalEEMod.2013.2.2 Page 7 of 24 Date: 11/25/2013 3:28 PM

3.1 Mitigation Measures Construction

3.2 Demolition - 2014

<u>Unmitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
	1.4929	12.4922	8.8528	0.0121		0.9304	0.9304		0.8904	0.8904		1,207.246 9	1,207.246 9	0.2515		1,212.528 1
Total	1.4929	12.4922	8.8528	0.0121		0.9304	0.9304		0.8904	0.8904		1,207.246 9	1,207.246 9	0.2515		1,212.528 1

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0513	0.0643	0.7942	1.4200e- 003	0.1118	1.0500e- 003	0.1128	0.0296	9.6000e- 004	0.0306		127.2893	127.2893	7.2400e- 003		127.4413
Total	0.0513	0.0643	0.7942	1.4200e- 003	0.1118	1.0500e- 003	0.1128	0.0296	9.6000e- 004	0.0306		127.2893	127.2893	7.2400e- 003		127.4413

3.2 Demolition - 2014

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	1.4929	12.4922	8.8528	0.0121		0.9304	0.9304		0.8904	0.8904	0.0000	1,207.246 9	1,207.246 9	0.2515		1,212.528 1
Total	1.4929	12.4922	8.8528	0.0121		0.9304	0.9304		0.8904	0.8904	0.0000	1,207.246 9	1,207.246 9	0.2515		1,212.528 1

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0513	0.0643	0.7942	1.4200e- 003	0.1118	1.0500e- 003	0.1128	0.0296	9.6000e- 004	0.0306		127.2893	127.2893	7.2400e- 003		127.4413
Total	0.0513	0.0643	0.7942	1.4200e- 003	0.1118	1.0500e- 003	0.1128	0.0296	9.6000e- 004	0.0306		127.2893	127.2893	7.2400e- 003		127.4413

3.3 Site Preparation - 2014

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Fugitive Dust	i ii ii				0.5303	0.0000	0.5303	0.0573	0.0000	0.0573			0.0000			0.0000
Off-Road	1.4341	14.4817	7.3936	9.3700e- 003		0.8920	0.8920		0.8206	0.8206		995.1971	995.1971	0.2941		1,001.373 0
Total	1.4341	14.4817	7.3936	9.3700e- 003	0.5303	0.8920	1.4223	0.0573	0.8206	0.8779		995.1971	995.1971	0.2941		1,001.373 0

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0257	0.0322	0.3971	7.1000e- 004	0.0559	5.3000e- 004	0.0564	0.0148	4.8000e- 004	0.0153		63.6446	63.6446	3.6200e- 003		63.7206
Total	0.0257	0.0322	0.3971	7.1000e- 004	0.0559	5.3000e- 004	0.0564	0.0148	4.8000e- 004	0.0153		63.6446	63.6446	3.6200e- 003		63.7206

3.3 Site Preparation - 2014

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Fugitive Dust	11 11 11				0.5303	0.0000	0.5303	0.0573	0.0000	0.0573			0.0000			0.0000
Off-Road	1.4341	14.4817	7.3936	9.3700e- 003		0.8920	0.8920		0.8206	0.8206	0.0000	995.1971	995.1971	0.2941		1,001.373 0
Total	1.4341	14.4817	7.3936	9.3700e- 003	0.5303	0.8920	1.4223	0.0573	0.8206	0.8779	0.0000	995.1971	995.1971	0.2941		1,001.373 0

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0257	0.0322	0.3971	7.1000e- 004	0.0559	5.3000e- 004	0.0564	0.0148	4.8000e- 004	0.0153		63.6446	63.6446	3.6200e- 003		63.7206
Total	0.0257	0.0322	0.3971	7.1000e- 004	0.0559	5.3000e- 004	0.0564	0.0148	4.8000e- 004	0.0153		63.6446	63.6446	3.6200e- 003		63.7206

3.4 Grading - 2014
Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Fugitive Dust	11 11 11				0.7528	0.0000	0.7528	0.4138	0.0000	0.4138			0.0000			0.0000
Off-Road	1.4929	12.4922	8.8528	0.0121		0.9304	0.9304		0.8904	0.8904		1,207.246 9	1,207.246 9	0.2515		1,212.528 1
Total	1.4929	12.4922	8.8528	0.0121	0.7528	0.9304	1.6832	0.4138	0.8904	1.3041		1,207.246 9	1,207.246 9	0.2515		1,212.528 1

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	 	0.0000
Worker	0.0513	0.0643	0.7942	1.4200e- 003	0.1118	1.0500e- 003	0.1128	0.0296	9.6000e- 004	0.0306		127.2893	127.2893	7.2400e- 003	 	127.4413
Total	0.0513	0.0643	0.7942	1.4200e- 003	0.1118	1.0500e- 003	0.1128	0.0296	9.6000e- 004	0.0306		127.2893	127.2893	7.2400e- 003		127.4413

3.4 Grading - 2014

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					0.7528	0.0000	0.7528	0.4138	0.0000	0.4138			0.0000			0.0000
Off-Road	1.4929	12.4922	8.8528	0.0121		0.9304	0.9304		0.8904	0.8904	0.0000	1,207.246 9	1,207.246 9	0.2515		1,212.528 1
Total	1.4929	12.4922	8.8528	0.0121	0.7528	0.9304	1.6832	0.4138	0.8904	1.3041	0.0000	1,207.246 9	1,207.246 9	0.2515		1,212.528 1

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0513	0.0643	0.7942	1.4200e- 003	0.1118	1.0500e- 003	0.1128	0.0296	9.6000e- 004	0.0306		127.2893	127.2893	7.2400e- 003		127.4413
Total	0.0513	0.0643	0.7942	1.4200e- 003	0.1118	1.0500e- 003	0.1128	0.0296	9.6000e- 004	0.0306		127.2893	127.2893	7.2400e- 003		127.4413

3.5 Building Construction - 2014

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
0	1.4930	14.8331	8.3419	0.0113		1.0334	1.0334		0.9507	0.9507		1,204.349 7	1,204.349 7	0.3559		1,211.823 5
Total	1.4930	14.8331	8.3419	0.0113		1.0334	1.0334		0.9507	0.9507		1,204.349 7	1,204.349 7	0.3559		1,211.823 5

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0219	0.2251	0.2401	4.4000e- 004	0.0125	4.4300e- 003	0.0169	3.5600e- 003	4.0700e- 003	7.6300e- 003		44.6173	44.6173	3.9000e- 004		44.6256
Worker	0.0257	0.0322	0.3971	7.1000e- 004	0.0559	5.3000e- 004	0.0564	0.0148	4.8000e- 004	0.0153		63.6446	63.6446	3.6200e- 003		63.7206
Total	0.0476	0.2573	0.6371	1.1500e- 003	0.0684	4.9600e- 003	0.0733	0.0184	4.5500e- 003	0.0229		108.2620	108.2620	4.0100e- 003		108.3463

3.5 Building Construction - 2014

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	1.4930	14.8331	8.3419	0.0113		1.0334	1.0334		0.9507	0.9507	0.0000	1,204.349 7	1,204.349 7	0.3559		1,211.823 5
Total	1.4930	14.8331	8.3419	0.0113		1.0334	1.0334		0.9507	0.9507	0.0000	1,204.349 7	1,204.349 7	0.3559		1,211.823 5

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0219	0.2251	0.2401	4.4000e- 004	0.0125	4.4300e- 003	0.0169	3.5600e- 003	4.0700e- 003	7.6300e- 003		44.6173	44.6173	3.9000e- 004		44.6256
Worker	0.0257	0.0322	0.3971	7.1000e- 004	0.0559	5.3000e- 004	0.0564	0.0148	4.8000e- 004	0.0153		63.6446	63.6446	3.6200e- 003		63.7206
Total	0.0476	0.2573	0.6371	1.1500e- 003	0.0684	4.9600e- 003	0.0733	0.0184	4.5500e- 003	0.0229		108.2620	108.2620	4.0100e- 003		108.3463

CalEEMod Version: CalEEMod.2013.2.2 Page 15 of 24 Date: 11/25/2013 3:28 PM

3.6 Paving - 2014

<u>Unmitigated Construction On-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Off-Road	1.2331	11.8542	7.3554	0.0111		0.7457	0.7457		0.6898	0.6898		1,103.282 6	1,103.282 6	0.2973		1,109.524 8
Paving	0.0000	 				0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	1.2331	11.8542	7.3554	0.0111		0.7457	0.7457		0.6898	0.6898		1,103.282 6	1,103.282 6	0.2973		1,109.524 8

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0924	0.1157	1.4295	2.5500e- 003	0.2012	1.9000e- 003	0.2031	0.0534	1.7300e- 003	0.0551		229.1207	229.1207	0.0130		229.3943
Total	0.0924	0.1157	1.4295	2.5500e- 003	0.2012	1.9000e- 003	0.2031	0.0534	1.7300e- 003	0.0551		229.1207	229.1207	0.0130		229.3943

3.6 Paving - 2014

<u>Mitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Off-Road	1.2331	11.8542	7.3554	0.0111		0.7457	0.7457		0.6898	0.6898	0.0000	1,103.282 6	1,103.282 6	0.2973		1,109.524 8
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	1.2331	11.8542	7.3554	0.0111		0.7457	0.7457		0.6898	0.6898	0.0000	1,103.282 6	1,103.282 6	0.2973		1,109.524 8

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0924	0.1157	1.4295	2.5500e- 003	0.2012	1.9000e- 003	0.2031	0.0534	1.7300e- 003	0.0551		229.1207	229.1207	0.0130		229.3943
Total	0.0924	0.1157	1.4295	2.5500e- 003	0.2012	1.9000e- 003	0.2031	0.0534	1.7300e- 003	0.0551		229.1207	229.1207	0.0130		229.3943

3.7 Architectural Coating - 2014 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Archit. Coating	68.5980					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.4462	2.7773	1.9216	2.9700e- 003	 	0.2452	0.2452	 	0.2452	0.2452		281.4481	281.4481	0.0401	 	282.2905
Total	69.0442	2.7773	1.9216	2.9700e- 003		0.2452	0.2452		0.2452	0.2452		281.4481	281.4481	0.0401		282.2905

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	5.1300e- 003	6.4300e- 003	0.0794	1.4000e- 004	0.0112	1.1000e- 004	0.0113	2.9600e- 003	1.0000e- 004	3.0600e- 003		12.7289	12.7289	7.2000e- 004		12.7441
Total	5.1300e- 003	6.4300e- 003	0.0794	1.4000e- 004	0.0112	1.1000e- 004	0.0113	2.9600e- 003	1.0000e- 004	3.0600e- 003		12.7289	12.7289	7.2000e- 004		12.7441

CalEEMod Version: CalEEMod.2013.2.2 Page 18 of 24 Date: 11/25/2013 3:28 PM

3.7 Architectural Coating - 2014 Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Archit. Coating	68.5980					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.4462	2.7773	1.9216	2.9700e- 003		0.2452	0.2452	 	0.2452	0.2452	0.0000	281.4481	281.4481	0.0401	i i	282.2905
Total	69.0442	2.7773	1.9216	2.9700e- 003		0.2452	0.2452		0.2452	0.2452	0.0000	281.4481	281.4481	0.0401		282.2905

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	5.1300e- 003	6.4300e- 003	0.0794	1.4000e- 004	0.0112	1.1000e- 004	0.0113	2.9600e- 003	1.0000e- 004	3.0600e- 003		12.7289	12.7289	7.2000e- 004		12.7441
Total	5.1300e- 003	6.4300e- 003	0.0794	1.4000e- 004	0.0112	1.1000e- 004	0.0113	2.9600e- 003	1.0000e- 004	3.0600e- 003		12.7289	12.7289	7.2000e- 004		12.7441

4.0 Operational Detail - Mobile

CalEEMod Version: CalEEMod.2013.2.2 Page 19 of 24 Date: 11/25/2013 3:28 PM

4.1 Mitigation Measures Mobile

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Mitigated	2.4604	5.4225	23.7069	0.0384	2.5624	0.1047	2.6671	0.6844	0.0961	0.7805		3,629.434 6	3,629.434 6	0.1806		3,633.227 5
Unmitigated	2.4604	5.4225	23.7069	0.0384	2.5624	0.1047	2.6671	0.6844	0.0961	0.7805		3,629.434 6	3,629.434 6	0.1806		3,633.227 5

4.2 Trip Summary Information

	Ave	rage Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Automobile Care Center	99.20	99.20	99.20	132,884	132,884
General Office Building	46.24	9.95	4.12	112,880	112,880
Racquet Club	36.22	22.96	29.40	68,016	68,016
Regional Shopping Center	339.23	394.76	199.40	707,648	707,648
Total	520.89	526.87	332.12	1,021,428	1,021,428

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Automobile Care Center	16.60	8.40	6.90	33.00	48.00	19.00	21	51	28
General Office Building	16.60	8.40	6.90	33.00	48.00	19.00	77	19	4
Racquet Club	16.60	8.40	6.90	11.50	69.50	19.00	52	39	9
Regional Shopping Center	16.60	8.40	6.90	16.30	64.70	19.00	54	35	11

CalEEMod Version: CalEEMod.2013.2.2 Page 20 of 24 Date: 11/25/2013 3:28 PM

LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
0.517496	0.060616	0.179855	0.141540	0.041435	0.006630	0.014687	0.026300	0.001931	0.002544	0.004287	0.000607	0.002072

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
The same of the same	3.2500e- 003	0.0296	0.0249	1.8000e- 004		2.2500e- 003	2.2500e- 003		2.2500e- 003	2.2500e- 003		35.4949	35.4949	6.8000e- 004	6.5000e- 004	35.7109
Unmitigated	3.2500e- 003	0.0296	0.0249	1.8000e- 004		2.2500e- 003	2.2500e- 003		2.2500e- 003	2.2500e- 003		35.4949	35.4949	6.8000e- 004	6.5000e- 004	35.7109

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/c	lay		
General Office Building	125.77	1.3600e- 003	0.0123	0.0104	7.0000e- 005		9.4000e- 004	9.4000e- 004		9.4000e- 004	9.4000e- 004		14.7965	14.7965	2.8000e- 004	2.7000e- 004	14.8865
Racquet Club	56.6877	6.1000e- 004	5.5600e- 003	4.6700e- 003	3.0000e- 005		4.2000e- 004	4.2000e- 004		4.2000e- 004	4.2000e- 004		6.6691	6.6691	1.3000e- 004	1.2000e- 004	6.7097
Regional Shopping Center	36.7945	4.0000e- 004	3.6100e- 003	3.0300e- 003	2.0000e- 005		2.7000e- 004	2.7000e- 004		2.7000e- 004	2.7000e- 004		4.3288	4.3288	8.0000e- 005	8.0000e- 005	4.3551
Automobile Care Center	82.4548	8.9000e- 004	8.0800e- 003	6.7900e- 003	5.0000e- 005		6.1000e- 004	6.1000e- 004		6.1000e- 004	6.1000e- 004		9.7006	9.7006	1.9000e- 004	1.8000e- 004	9.7596
Total		3.2600e- 003	0.0296	0.0249	1.7000e- 004		2.2400e- 003	2.2400e- 003		2.2400e- 003	2.2400e- 003		35.4949	35.4949	6.8000e- 004	6.5000e- 004	35.7109

CalEEMod Version: CalEEMod.2013.2.2 Page 22 of 24 Date: 11/25/2013 3:28 PM

5.2 Energy by Land Use - NaturalGas Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/c	lay		
General Office Building	0.12577	1.3600e- 003	0.0123	0.0104	7.0000e- 005		9.4000e- 004	9.4000e- 004		9.4000e- 004	9.4000e- 004		14.7965	14.7965	2.8000e- 004	2.7000e- 004	14.8865
Racquet Club	0.0566877	6.1000e- 004	5.5600e- 003	4.6700e- 003	3.0000e- 005		4.2000e- 004	4.2000e- 004		4.2000e- 004	4.2000e- 004		6.6691	6.6691	1.3000e- 004	1.2000e- 004	6.7097
Regional Shopping Center	0.0367945	4.0000e- 004	3.6100e- 003	3.0300e- 003	2.0000e- 005		2.7000e- 004	2.7000e- 004		2.7000e- 004	2.7000e- 004		4.3288	4.3288	8.0000e- 005	8.0000e- 005	4.3551
Automobile Care Center	0.0824548	8.9000e- 004	8.0800e- 003	6.7900e- 003	5.0000e- 005		6.1000e- 004	6.1000e- 004		6.1000e- 004	6.1000e- 004		9.7006	9.7006	1.9000e- 004	1.8000e- 004	9.7596
Total		3.2600e- 003	0.0296	0.0249	1.7000e- 004		2.2400e- 003	2.2400e- 003		2.2400e- 003	2.2400e- 003		35.4949	35.4949	6.8000e- 004	6.5000e- 004	35.7109

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Mitigated	0.3872	2.0000e- 005	1.6000e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005		3.2400e- 003	3.2400e- 003	1.0000e- 005		3.4500e- 003
Unmitigated	0.3872	2.0000e- 005	1.6000e- 003	0.0000	 	1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005		3.2400e- 003	3.2400e- 003	1.0000e- 005		3.4500e- 003

CalEEMod Version: CalEEMod.2013.2.2 Page 23 of 24 Date: 11/25/2013 3:28 PM

6.2 Area by SubCategory <u>Unmitigated</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	day		
Architectural Coating	0.0940					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	0.2930					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	1.7000e- 004	2.0000e- 005	1.6000e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005		3.2400e- 003	3.2400e- 003	1.0000e- 005		3.4500e- 003
Total	0.3872	2.0000e- 005	1.6000e- 003	0.0000	_	1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005		3.2400e- 003	3.2400e- 003	1.0000e- 005		3.4500e- 003

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	lay		
Architectural Coating	0.0940					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	0.2930					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	1.7000e- 004	2.0000e- 005	1.6000e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005		3.2400e- 003	3.2400e- 003	1.0000e- 005		3.4500e- 003
Total	0.3872	2.0000e- 005	1.6000e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005		3.2400e- 003	3.2400e- 003	1.0000e- 005		3.4500e- 003

7.0 Water Detail

CalEEMod Version: CalEEMod.2013.2.2 Page 24 of 24 Date: 11/25/2013 3:28 PM

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Vegetation

Page 1 of 29

Date: 11/25/2013 3:23 PM

Parcel 44 Existing South Coast Air Basin, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	4.20	1000sqft	0.10	4,200.00	0
Racquet Club	1.10	1000sqft	0.03	1,100.00	0
Automobile Care Center	1.60	1000sqft	0.04	1,600.00	0
Regional Shopping Center	7.90	1000sqft	0.18	7,900.00	0

1.2 Other Project Characteristics

Wind Speed (m/s) Precipitation Freq (Days) Urbanization Urban 2.2 31

Climate Zone Operational Year 2013 11

Utility Company Southern California Edison

CO2 Intensity 630.89 **CH4 Intensity** 0.029 **N2O Intensity** 0.006 (lb/MWhr) (lb/MWhr) (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use -

Vehicle Trips - Trips for auto care and raquet club modified to match modified to trips estimated for proposed project.

Mobile Land Use Mitigation -

Table Name	Column Name	Default Value	New Value
tblProjectCharacteristics	OperationalYear	2014	2013

CalEEMod Version: CalEEMod.2013.2.2 Page 2 of 29 Date: 11/25/2013 3:23 PM

2.0 Emissions Summary

2.1 Overall Construction

Unmitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Year	tons/yr									MT/yr							
2014	0.2630	0.8748	0.5380	7.5000e- 004	5.5800e- 003	0.0604	0.0660	1.6700e- 003	0.0559	0.0575	0.0000	70.7688	70.7688	0.0187	0.0000	71.1607	
Total	0.2630	0.8748	0.5380	7.5000e- 004	5.5800e- 003	0.0604	0.0660	1.6700e- 003	0.0559	0.0575	0.0000	70.7688	70.7688	0.0187	0.0000	71.1607	

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Year	tons/yr									MT/yr							
2014	0.2630	0.8748	0.5380	7.5000e- 004	5.5800e- 003	0.0604	0.0660	1.6700e- 003	0.0559	0.0575	0.0000	70.7687	70.7687	0.0187	0.0000	71.1607	
Total	0.2630	0.8748	0.5380	7.5000e- 004	5.5800e- 003	0.0604	0.0660	1.6700e- 003	0.0559	0.0575	0.0000	70.7687	70.7687	0.0187	0.0000	71.1607	

CalEEMod Version: CalEEMod.2013.2.2 Page 3 of 29 Date: 11/25/2013 3:23 PM

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e		
Category	tons/yr										MT/yr							
Area	0.0707	0.0000	2.0000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	3.7000e- 004	3.7000e- 004	0.0000	0.0000	3.9000e- 004		
Energy	5.9000e- 004	5.4000e- 003	4.5300e- 003	3.0000e- 005		4.1000e- 004	4.1000e- 004		4.1000e- 004	4.1000e- 004	0.0000	66.9457	66.9457	2.9200e- 003	6.9000e- 004	67.2205		
Mobile	0.3783	0.8956	3.7094	5.6800e- 003	0.3867	0.0162	0.4028	0.1034	0.0148	0.1183	0.0000	486.8066	486.8066	0.0252	0.0000	487.3362		
Waste						0.0000	0.0000		0.0000	0.0000	4.9895	0.0000	4.9895	0.2949	0.0000	11.1818		
Water						0.0000	0.0000		0.0000	0.0000	0.4909	8.7803	9.2711	0.0508	1.2700e- 003	10.7333		
Total	0.4495	0.9010	3.7141	5.7100e- 003	0.3867	0.0166	0.4032	0.1034	0.0152	0.1187	5.4804	562.5330	568.0134	0.3738	1.9600e- 003	576.4723		

CalEEMod Version: CalEEMod.2013.2.2 Page 4 of 29 Date: 11/25/2013 3:23 PM

2.2 Overall Operational

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	-/yr		
Area	0.0707	0.0000	2.0000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	3.7000e- 004	3.7000e- 004	0.0000	0.0000	3.9000e- 004
Energy	5.9000e- 004	5.4000e- 003	4.5300e- 003	3.0000e- 005		4.1000e- 004	4.1000e- 004		4.1000e- 004	4.1000e- 004	0.0000	66.9457	66.9457	2.9200e- 003	6.9000e- 004	67.2205
Mobile	0.3783	0.8956	3.7094	5.6800e- 003	0.3867	0.0162	0.4028	0.1034	0.0148	0.1183	0.0000	486.8066	486.8066	0.0252	0.0000	487.3362
Waste	61 61 61		1 1 1			0.0000	0.0000		0.0000	0.0000	4.9895	0.0000	4.9895	0.2949	0.0000	11.1818
Water			1 1			0.0000	0.0000		0.0000	0.0000	0.4909	8.7803	9.2711	0.0508	1.2700e- 003	10.7325
Total	0.4495	0.9010	3.7141	5.7100e- 003	0.3867	0.0166	0.4032	0.1034	0.0152	0.1187	5.4804	562.5330	568.0134	0.3738	1.9600e- 003	576.4715

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	1/1/2014	1/14/2014	5	10	
2	Site Preparation	Site Preparation	1/15/2014	1/15/2014	5	1	
3	Grading	Grading	1/16/2014	1/17/2014	5	2	
4	Building Construction	Building Construction	1/18/2014	6/6/2014	5	100	
5	Paving	Paving	6/7/2014	6/13/2014	5	5	
6	Architectural Coating	Architectural Coating	6/14/2014	6/20/2014	5	5	

Acres of Grading (Site Preparation Phase): 0.5

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 22,200; Non-Residential Outdoor: 7,400 (Architectural Coating – sqft)

OffRoad Equipment

Date: 11/25/2013 3:23 PM

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	1	8.00	81	0.73
Demolition	Rubber Tired Dozers	1	1.00	255	0.40
Demolition	Tractors/Loaders/Backhoes	2	6.00	97	0.37
Site Preparation	Graders	1	8.00	174	0.41
Site Preparation	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Grading	Concrete/Industrial Saws	1	8.00	81	0.73
Grading	Rubber Tired Dozers	1	1.00	255	0.40
Grading	Tractors/Loaders/Backhoes	2	6.00	97	0.37
Building Construction	Cranes	1	4.00	226	0.29
Building Construction	Forklifts	2	6.00	89	0.20
Building Construction	Tractors/Loaders/Backhoes	2	8.00	97	0.37
Paving	Cement and Mortar Mixers	4	6.00	9	0.56
Paving	Pavers	1	7.00	125	0.42
Paving	Rollers	1	7.00	80	0.38
Paving	Tractors/Loaders/Backhoes	1	7.00	97	0.37
Architectural Coating	Air Compressors	1;	6.00	78	0.48

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	4	10.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Site Preparation	2	5.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Grading	4	10.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	5	5.00	2.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving	7	18.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	1.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

CalEEMod Version: CalEEMod.2013.2.2 Page 7 of 29 Date: 11/25/2013 3:23 PM

3.1 Mitigation Measures Construction

3.2 Demolition - 2014

<u>Unmitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
1	7.4600e- 003	0.0625	0.0443	6.0000e- 005		4.6500e- 003	4.6500e- 003		4.4500e- 003	4.4500e- 003	0.0000	5.4760	5.4760	1.1400e- 003	0.0000	5.4999
Total	7.4600e- 003	0.0625	0.0443	6.0000e- 005		4.6500e- 003	4.6500e- 003		4.4500e- 003	4.4500e- 003	0.0000	5.4760	5.4760	1.1400e- 003	0.0000	5.4999

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	2.5000e- 004	3.6000e- 004	3.7700e- 003	1.0000e- 005	5.5000e- 004	1.0000e- 005	5.5000e- 004	1.5000e- 004	0.0000	1.5000e- 004	0.0000	0.5501	0.5501	3.0000e- 005	0.0000	0.5508
Total	2.5000e- 004	3.6000e- 004	3.7700e- 003	1.0000e- 005	5.5000e- 004	1.0000e- 005	5.5000e- 004	1.5000e- 004	0.0000	1.5000e- 004	0.0000	0.5501	0.5501	3.0000e- 005	0.0000	0.5508

3.2 **Demolition - 2014**

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
	7.4600e- 003	0.0625	0.0443	6.0000e- 005		4.6500e- 003	4.6500e- 003		4.4500e- 003	4.4500e- 003	0.0000	5.4760	5.4760	1.1400e- 003	0.0000	5.4999
Total	7.4600e- 003	0.0625	0.0443	6.0000e- 005		4.6500e- 003	4.6500e- 003		4.4500e- 003	4.4500e- 003	0.0000	5.4760	5.4760	1.1400e- 003	0.0000	5.4999

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	2.5000e- 004	3.6000e- 004	3.7700e- 003	1.0000e- 005	5.5000e- 004	1.0000e- 005	5.5000e- 004	1.5000e- 004	0.0000	1.5000e- 004	0.0000	0.5501	0.5501	3.0000e- 005	0.0000	0.5508
Total	2.5000e- 004	3.6000e- 004	3.7700e- 003	1.0000e- 005	5.5000e- 004	1.0000e- 005	5.5000e- 004	1.5000e- 004	0.0000	1.5000e- 004	0.0000	0.5501	0.5501	3.0000e- 005	0.0000	0.5508

3.3 Site Preparation - 2014

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					2.7000e- 004	0.0000	2.7000e- 004	3.0000e- 005	0.0000	3.0000e- 005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	7.2000e- 004	7.2400e- 003	3.7000e- 003	0.0000		4.5000e- 004	4.5000e- 004		4.1000e- 004	4.1000e- 004	0.0000	0.4514	0.4514	1.3000e- 004	0.0000	0.4542
Total	7.2000e- 004	7.2400e- 003	3.7000e- 003	0.0000	2.7000e- 004	4.5000e- 004	7.2000e- 004	3.0000e- 005	4.1000e- 004	4.4000e- 004	0.0000	0.4514	0.4514	1.3000e- 004	0.0000	0.4542

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.0000e- 005	2.0000e- 005	1.9000e- 004	0.0000	3.0000e- 005	0.0000	3.0000e- 005	1.0000e- 005	0.0000	1.0000e- 005	0.0000	0.0275	0.0275	0.0000	0.0000	0.0275
Total	1.0000e- 005	2.0000e- 005	1.9000e- 004	0.0000	3.0000e- 005	0.0000	3.0000e- 005	1.0000e- 005	0.0000	1.0000e- 005	0.0000	0.0275	0.0275	0.0000	0.0000	0.0275

3.3 Site Preparation - 2014

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust	ii ii ii				2.7000e- 004	0.0000	2.7000e- 004	3.0000e- 005	0.0000	3.0000e- 005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1	7.2000e- 004	7.2400e- 003	3.7000e- 003	0.0000		4.5000e- 004	4.5000e- 004		4.1000e- 004	4.1000e- 004	0.0000	0.4514	0.4514	1.3000e- 004	0.0000	0.4542
Total	7.2000e- 004	7.2400e- 003	3.7000e- 003	0.0000	2.7000e- 004	4.5000e- 004	7.2000e- 004	3.0000e- 005	4.1000e- 004	4.4000e- 004	0.0000	0.4514	0.4514	1.3000e- 004	0.0000	0.4542

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	⁻ /yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.0000e- 005	2.0000e- 005	1.9000e- 004	0.0000	3.0000e- 005	0.0000	3.0000e- 005	1.0000e- 005	0.0000	1.0000e- 005	0.0000	0.0275	0.0275	0.0000	0.0000	0.0275
Total	1.0000e- 005	2.0000e- 005	1.9000e- 004	0.0000	3.0000e- 005	0.0000	3.0000e- 005	1.0000e- 005	0.0000	1.0000e- 005	0.0000	0.0275	0.0275	0.0000	0.0000	0.0275

3.4 Grading - 2014

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					7.5000e- 004	0.0000	7.5000e- 004	4.1000e- 004	0.0000	4.1000e- 004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	1.4900e- 003	0.0125	8.8500e- 003	1.0000e- 005		9.3000e- 004	9.3000e- 004		8.9000e- 004	8.9000e- 004	0.0000	1.0952	1.0952	2.3000e- 004	0.0000	1.1000
Total	1.4900e- 003	0.0125	8.8500e- 003	1.0000e- 005	7.5000e- 004	9.3000e- 004	1.6800e- 003	4.1000e- 004	8.9000e- 004	1.3000e- 003	0.0000	1.0952	1.0952	2.3000e- 004	0.0000	1.1000

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	⁷ /yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	5.0000e- 005	7.0000e- 005	7.5000e- 004	0.0000	1.1000e- 004	0.0000	1.1000e- 004	3.0000e- 005	0.0000	3.0000e- 005	0.0000	0.1100	0.1100	1.0000e- 005	0.0000	0.1102
Total	5.0000e- 005	7.0000e- 005	7.5000e- 004	0.0000	1.1000e- 004	0.0000	1.1000e- 004	3.0000e- 005	0.0000	3.0000e- 005	0.0000	0.1100	0.1100	1.0000e- 005	0.0000	0.1102

3.4 Grading - 2014

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					7.5000e- 004	0.0000	7.5000e- 004	4.1000e- 004	0.0000	4.1000e- 004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	1.4900e- 003	0.0125	8.8500e- 003	1.0000e- 005		9.3000e- 004	9.3000e- 004		8.9000e- 004	8.9000e- 004	0.0000	1.0952	1.0952	2.3000e- 004	0.0000	1.1000
Total	1.4900e- 003	0.0125	8.8500e- 003	1.0000e- 005	7.5000e- 004	9.3000e- 004	1.6800e- 003	4.1000e- 004	8.9000e- 004	1.3000e- 003	0.0000	1.0952	1.0952	2.3000e- 004	0.0000	1.1000

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	5.0000e- 005	7.0000e- 005	7.5000e- 004	0.0000	1.1000e- 004	0.0000	1.1000e- 004	3.0000e- 005	0.0000	3.0000e- 005	0.0000	0.1100	0.1100	1.0000e- 005	0.0000	0.1102
Total	5.0000e- 005	7.0000e- 005	7.5000e- 004	0.0000	1.1000e- 004	0.0000	1.1000e- 004	3.0000e- 005	0.0000	3.0000e- 005	0.0000	0.1100	0.1100	1.0000e- 005	0.0000	0.1102

3.5 Building Construction - 2014

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
	0.0747	0.7417	0.4171	5.7000e- 004		0.0517	0.0517		0.0475	0.0475	0.0000	54.6284	54.6284	0.0161	0.0000	54.9674
Total	0.0747	0.7417	0.4171	5.7000e- 004		0.0517	0.0517		0.0475	0.0475	0.0000	54.6284	54.6284	0.0161	0.0000	54.9674

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	1.1700e- 003	0.0118	0.0137	2.0000e- 005	6.1000e- 004	2.2000e- 004	8.4000e- 004	1.8000e- 004	2.0000e- 004	3.8000e- 004	0.0000	2.0168	2.0168	2.0000e- 005	0.0000	2.0172
Worker	1.2400e- 003	1.8200e- 003	0.0189	3.0000e- 005	2.7400e- 003	3.0000e- 005	2.7700e- 003	7.3000e- 004	2.0000e- 005	7.5000e- 004	0.0000	2.7503	2.7503	1.6000e- 004	0.0000	2.7538
Total	2.4100e- 003	0.0136	0.0326	5.0000e- 005	3.3500e- 003	2.5000e- 004	3.6100e- 003	9.1000e- 004	2.2000e- 004	1.1300e- 003	0.0000	4.7671	4.7671	1.8000e- 004	0.0000	4.7710

3.5 Building Construction - 2014

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	0.0747	0.7417	0.4171	5.7000e- 004		0.0517	0.0517		0.0475	0.0475	0.0000	54.6283	54.6283	0.0161	0.0000	54.9673
Total	0.0747	0.7417	0.4171	5.7000e- 004		0.0517	0.0517		0.0475	0.0475	0.0000	54.6283	54.6283	0.0161	0.0000	54.9673

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	⁷ /yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	1.1700e- 003	0.0118	0.0137	2.0000e- 005	6.1000e- 004	2.2000e- 004	8.4000e- 004	1.8000e- 004	2.0000e- 004	3.8000e- 004	0.0000	2.0168	2.0168	2.0000e- 005	0.0000	2.0172
Worker	1.2400e- 003	1.8200e- 003	0.0189	3.0000e- 005	2.7400e- 003	3.0000e- 005	2.7700e- 003	7.3000e- 004	2.0000e- 005	7.5000e- 004	0.0000	2.7503	2.7503	1.6000e- 004	0.0000	2.7538
Total	2.4100e- 003	0.0136	0.0326	5.0000e- 005	3.3500e- 003	2.5000e- 004	3.6100e- 003	9.1000e- 004	2.2000e- 004	1.1300e- 003	0.0000	4.7671	4.7671	1.8000e- 004	0.0000	4.7710

CalEEMod Version: CalEEMod.2013.2.2 Page 15 of 29 Date: 11/25/2013 3:23 PM

3.6 Paving - 2014

<u>Unmitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
1	3.0800e- 003	0.0296	0.0184	3.0000e- 005		1.8600e- 003	1.8600e- 003		1.7200e- 003	1.7200e- 003	0.0000	2.5022	2.5022	6.7000e- 004	0.0000	2.5164
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	3.0800e- 003	0.0296	0.0184	3.0000e- 005		1.8600e- 003	1.8600e- 003		1.7200e- 003	1.7200e- 003	0.0000	2.5022	2.5022	6.7000e- 004	0.0000	2.5164

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	2.2000e- 004	3.3000e- 004	3.3900e- 003	1.0000e- 005	4.9000e- 004	0.0000	5.0000e- 004	1.3000e- 004	0.0000	1.4000e- 004	0.0000	0.4951	0.4951	3.0000e- 005	0.0000	0.4957
Total	2.2000e- 004	3.3000e- 004	3.3900e- 003	1.0000e- 005	4.9000e- 004	0.0000	5.0000e- 004	1.3000e- 004	0.0000	1.4000e- 004	0.0000	0.4951	0.4951	3.0000e- 005	0.0000	0.4957

CalEEMod Version: CalEEMod.2013.2.2 Page 16 of 29 Date: 11/25/2013 3:23 PM

3.6 Paving - 2014

<u>Mitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	3.0800e- 003	0.0296	0.0184	3.0000e- 005		1.8600e- 003	1.8600e- 003		1.7200e- 003	1.7200e- 003	0.0000	2.5022	2.5022	6.7000e- 004	0.0000	2.5164
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	3.0800e- 003	0.0296	0.0184	3.0000e- 005	-	1.8600e- 003	1.8600e- 003		1.7200e- 003	1.7200e- 003	0.0000	2.5022	2.5022	6.7000e- 004	0.0000	2.5164

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	2.2000e- 004	3.3000e- 004	3.3900e- 003	1.0000e- 005	4.9000e- 004	0.0000	5.0000e- 004	1.3000e- 004	0.0000	1.4000e- 004	0.0000	0.4951	0.4951	3.0000e- 005	0.0000	0.4957
Total	2.2000e- 004	3.3000e- 004	3.3900e- 003	1.0000e- 005	4.9000e- 004	0.0000	5.0000e- 004	1.3000e- 004	0.0000	1.4000e- 004	0.0000	0.4951	0.4951	3.0000e- 005	0.0000	0.4957

3.7 Architectural Coating - 2014 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Archit. Coating	0.1715					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
on read	1.1200e- 003	6.9400e- 003	4.8000e- 003	1.0000e- 005		6.1000e- 004	6.1000e- 004	 	6.1000e- 004	6.1000e- 004	0.0000	0.6383	0.6383	9.0000e- 005	0.0000	0.6402
Total	0.1726	6.9400e- 003	4.8000e- 003	1.0000e- 005		6.1000e- 004	6.1000e- 004		6.1000e- 004	6.1000e- 004	0.0000	0.6383	0.6383	9.0000e- 005	0.0000	0.6402

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.0000e- 005	2.0000e- 005	1.9000e- 004	0.0000	3.0000e- 005	0.0000	3.0000e- 005	1.0000e- 005	0.0000	1.0000e- 005	0.0000	0.0275	0.0275	0.0000	0.0000	0.0275
Total	1.0000e- 005	2.0000e- 005	1.9000e- 004	0.0000	3.0000e- 005	0.0000	3.0000e- 005	1.0000e- 005	0.0000	1.0000e- 005	0.0000	0.0275	0.0275	0.0000	0.0000	0.0275

CalEEMod Version: CalEEMod.2013.2.2 Page 18 of 29 Date: 11/25/2013 3:23 PM

3.7 Architectural Coating - 2014 Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Archit. Coating	0.1715					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Oil Hoad	1.1200e- 003	6.9400e- 003	4.8000e- 003	1.0000e- 005		6.1000e- 004	6.1000e- 004	1 1 1	6.1000e- 004	6.1000e- 004	0.0000	0.6383	0.6383	9.0000e- 005	0.0000	0.6402
Total	0.1726	6.9400e- 003	4.8000e- 003	1.0000e- 005		6.1000e- 004	6.1000e- 004		6.1000e- 004	6.1000e- 004	0.0000	0.6383	0.6383	9.0000e- 005	0.0000	0.6402

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.0000e- 005	2.0000e- 005	1.9000e- 004	0.0000	3.0000e- 005	0.0000	3.0000e- 005	1.0000e- 005	0.0000	1.0000e- 005	0.0000	0.0275	0.0275	0.0000	0.0000	0.0275
Total	1.0000e- 005	2.0000e- 005	1.9000e- 004	0.0000	3.0000e- 005	0.0000	3.0000e- 005	1.0000e- 005	0.0000	1.0000e- 005	0.0000	0.0275	0.0275	0.0000	0.0000	0.0275

4.0 Operational Detail - Mobile

CalEEMod Version: CalEEMod.2013.2.2 Page 19 of 29 Date: 11/25/2013 3:23 PM

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Mitigated	0.3783	0.8956	3.7094	5.6800e- 003	0.3867	0.0162	0.4028	0.1034	0.0148	0.1183	0.0000	486.8066	486.8066	0.0252	0.0000	487.3362
Unmitigated	0.3783	0.8956	3.7094	5.6800e- 003	0.3867	0.0162	0.4028	0.1034	0.0148	0.1183	0.0000	486.8066	486.8066	0.0252	0.0000	487.3362

4.2 Trip Summary Information

	Ave	rage Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Automobile Care Center	99.20	99.20	99.20	132,884	132,884
General Office Building	46.24	9.95	4.12	112,880	112,880
Racquet Club	36.22	22.96	29.40	68,016	68,016
Regional Shopping Center	339.23	394.76	199.40	707,648	707,648
Total	520.89	526.87	332.12	1,021,428	1,021,428

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Automobile Care Center	16.60	8.40	6.90	33.00	48.00	19.00	21	51	28
General Office Building	16.60	8.40	6.90	33.00	48.00	19.00	77	19	4
Racquet Club	16.60	8.40	6.90	11.50	69.50	19.00	52	39	9
Regional Shopping Center	16.60	8.40	6.90	16.30	64.70	19.00	54	35	11

CalEEMod Version: CalEEMod.2013.2.2 Page 20 of 29 Date: 11/25/2013 3:23 PM

LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
0.517496	0.060616	0.179855	0.141540	0.041435	0.006630	0.014687	0.026300	0.001931	0.002544	0.004287	0.000607	0.002072

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Electricity Mitigated						0.0000	0.0000	1	0.0000	0.0000	0.0000	61.0692	61.0692	2.8100e- 003	5.8000e- 004	61.3082
Electricity Unmitigated	F)					0.0000	0.0000	, : : :	0.0000	0.0000	0.0000	61.0692	61.0692	2.8100e- 003	5.8000e- 004	61.3082
NaturalGas Mitigated	5.9000e- 004	5.4000e- 003	4.5300e- 003	3.0000e- 005		4.1000e- 004	4.1000e- 004	,	4.1000e- 004	4.1000e- 004	0.0000	5.8766	5.8766	1.1000e- 004	1.1000e- 004	5.9124
NaturalGas Unmitigated	5.9000e- 004	5.4000e- 003	4.5300e- 003	3.0000e- 005		4.1000e- 004	4.1000e- 004	y : : :	4.1000e- 004	4.1000e- 004	0.0000	5.8766	5.8766	1.1000e- 004	1.1000e- 004	5.9124

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	/yr		
General Office Building	45906	2.5000e- 004	2.2500e- 003	1.8900e- 003	1.0000e- 005		1.7000e- 004	1.7000e- 004		1.7000e- 004	1.7000e- 004	0.0000	2.4497	2.4497	5.0000e- 005	4.0000e- 005	2.4646
Racquet Club	20691	1.1000e- 004	1.0100e- 003	8.5000e- 004	1.0000e- 005		8.0000e- 005	8.0000e- 005		8.0000e- 005	8.0000e- 005	0.0000	1.1042	1.1042	2.0000e- 005	2.0000e- 005	1.1109
Regional Shopping Center	13430	7.0000e- 005	6.6000e- 004	5.5000e- 004	0.0000		5.0000e- 005	5.0000e- 005		5.0000e- 005	5.0000e- 005	0.0000	0.7167	0.7167	1.0000e- 005	1.0000e- 005	0.7210
Automobile Care Center	30096	1.6000e- 004	1.4800e- 003	1.2400e- 003	1.0000e- 005		1.1000e- 004	1.1000e- 004		1.1000e- 004	1.1000e- 004	0.0000	1.6060	1.6060	3.0000e- 005	3.0000e- 005	1.6158
Total		5.9000e- 004	5.4000e- 003	4.5300e- 003	3.0000e- 005		4.1000e- 004	4.1000e- 004		4.1000e- 004	4.1000e- 004	0.0000	5.8766	5.8766	1.1000e- 004	1.0000e- 004	5.9124

5.2 Energy by Land Use - NaturalGas Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	/yr		
General Office Building	45906	2.5000e- 004	2.2500e- 003	1.8900e- 003	1.0000e- 005		1.7000e- 004	1.7000e- 004		1.7000e- 004	1.7000e- 004	0.0000	2.4497	2.4497	5.0000e- 005	4.0000e- 005	2.4646
Racquet Club	20691	1.1000e- 004	1.0100e- 003	8.5000e- 004	1.0000e- 005	 	8.0000e- 005	8.0000e- 005		8.0000e- 005	8.0000e- 005	0.0000	1.1042	1.1042	2.0000e- 005	2.0000e- 005	1.1109
Regional Shopping Center	13430	7.0000e- 005	6.6000e- 004	5.5000e- 004	0.0000		5.0000e- 005	5.0000e- 005		5.0000e- 005	5.0000e- 005	0.0000	0.7167	0.7167	1.0000e- 005	1.0000e- 005	0.7210
Automobile Care Center	30096	1.6000e- 004	1.4800e- 003	1.2400e- 003	1.0000e- 005		1.1000e- 004	1.1000e- 004		1.1000e- 004	1.1000e- 004	0.0000	1.6060	1.6060	3.0000e- 005	3.0000e- 005	1.6158
Total		5.9000e- 004	5.4000e- 003	4.5300e- 003	3.0000e- 005		4.1000e- 004	4.1000e- 004		4.1000e- 004	4.1000e- 004	0.0000	5.8766	5.8766	1.1000e- 004	1.0000e- 004	5.9124

CalEEMod Version: CalEEMod.2013.2.2 Page 23 of 29 Date: 11/25/2013 3:23 PM

5.3 Energy by Land Use - Electricity <u>Unmitigated</u>

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	⁻/yr	
Automobile Care Center	19280	5.5173	2.5000e- 004	5.0000e- 005	5.5389
General Office Building	61026	17.4636	8.0000e- 004	1.7000e- 004	17.5320
Racquet Club	13255	3.7931	1.7000e- 004	4.0000e- 005	3.8080
Regional Shopping Center	119843	34.2951	1.5800e- 003	3.3000e- 004	34.4293
Total		61.0692	2.8000e- 003	5.9000e- 004	61.3082

5.3 Energy by Land Use - Electricity Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	-/yr	
Automobile Care Center	19280	5.5173	2.5000e- 004	5.0000e- 005	5.5389
General Office Building	61026	17.4636	8.0000e- 004	1.7000e- 004	17.5320
Racquet Club	13255	3.7931	1.7000e- 004	4.0000e- 005	3.8080
Regional Shopping Center	119843	34.2951	1.5800e- 003	3.3000e- 004	34.4293
Total		61.0692	2.8000e- 003	5.9000e- 004	61.3082

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Mitigated	0.0707	0.0000	2.0000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	3.7000e- 004	3.7000e- 004	0.0000	0.0000	3.9000e- 004
Unmitigated	0.0707	0.0000	2.0000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	3.7000e- 004	3.7000e- 004	0.0000	0.0000	3.9000e- 004

CalEEMod Version: CalEEMod.2013.2.2 Page 25 of 29 Date: 11/25/2013 3:23 PM

6.2 Area by SubCategory <u>Unmitigated</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							MT	/yr		
Architectural Coating	0.0172					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.0535		1 1 1 1			0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	2.0000e- 005	0.0000	2.0000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	3.7000e- 004	3.7000e- 004	0.0000	0.0000	3.9000e- 004
Total	0.0707	0.0000	2.0000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	3.7000e- 004	3.7000e- 004	0.0000	0.0000	3.9000e- 004

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							MT	/yr		
Architectural Coating	0.0172					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.0535					0.0000	0.0000	·	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	2.0000e- 005	0.0000	2.0000e- 004	0.0000		0.0000	0.0000	1 1 1 1	0.0000	0.0000	0.0000	3.7000e- 004	3.7000e- 004	0.0000	0.0000	3.9000e- 004
Total	0.0707	0.0000	2.0000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	3.7000e- 004	3.7000e- 004	0.0000	0.0000	3.9000e- 004

7.0 Water Detail

7.1 Mitigation Measures Water

	Total CO2	CH4	N2O	CO2e
Category		МТ	-/yr	
Willigatod	9.2711	0.0508	1.2700e- 003	10.7325
Cimiligated	9.2711	0.0508	1.2700e- 003	10.7333

7.2 Water by Land Use <u>Unmitigated</u>

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		МТ	-/yr	
	0.15053 / 0.0922602	0.9020	4.9400e- 003	1.2000e- 004	1.0442
	0.746482 / 0.457521	4.4730	0.0245	6.1000e- 004	5.1784
	0.0650575 / n n398739		2.1400e- 003	5.0000e- 005	0.4513
Regional Shopping Center	0.585173 / 0.358654		0.0192	4.8000e- 004	4.0594
Total		9.2711	0.0508	1.2600e- 003	10.7333

7.2 Water by Land Use

Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		МТ	/yr	
	0.15053 / 0.0922602	0.9020	4.9400e- 003	1.2000e- 004	1.0442
	0.746482 / 0.457521	4.4730	0.0245	6.1000e- 004	5.1780
,	0.0650575 / n n398739		2.1400e- 003	5.0000e- 005	0.4513
Regional Shopping Center	0.585173 / 0.358654		0.0192	4.8000e- 004	4.0591
Total		9.2711	0.0508	1.2600e- 003	10.7325

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

	Total CO2	CH4	N2O	CO2e
		МТ	/yr	
Mitigated	4.9895	0.2949	0.0000	11.1818
Unmitigated	4.9895	0.2949	0.0000	11.1818

8.2 Waste by Land Use <u>Unmitigated</u>

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		МТ	√yr	
Automobile Care Center	6.11	1.2403	0.0733	0.0000	2.7795
General Office Building	3.91	0.7937	0.0469	0.0000	1.7787
Racquet Club	6.27	1.2728	0.0752	0.0000	2.8523
Regional Shopping Center	8.29	1.6828	0.0995	0.0000	3.7713
Total		4.9895	0.2949	0.0000	11.1818

CalEEMod Version: CalEEMod.2013.2.2 Page 29 of 29 Date: 11/25/2013 3:23 PM

8.2 Waste by Land Use

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		МТ	7/yr	
Automobile Care Center	6.11	1.2403	0.0733	0.0000	2.7795
General Office Building	3.91	0.7937	0.0469	0.0000	1.7787
Racquet Club	6.27	1.2728	0.0752	0.0000	2.8523
Regional Shopping Center	8.29	1.6828	0.0995	0.0000	3.7713
Total		4.9895	0.2949	0.0000	11.1818

9.0 Operational Offroad

١	Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Vegetation

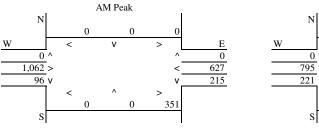
Project Title: Parcel 44

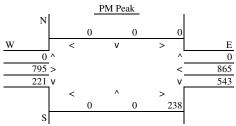
Intersection: Venice Blvd and Lincoln Blvd

Analysis Condition: Future w/Project

Nearest Air Monitoring Station measuring CO: Wilshire Blvd and Sawtelle Blvd, Los Angeles, CA 90025

Background 1-hour CO Concentration (ppm):2.0Background 8-hour CO Concentration (ppm):1.4Persistence Factor:0.7Analysis Year:2015


				Approach/Departure		
			No. of	Speed		
		Roadway Type	Lanes	A.M.	P.M.	
North-South Roadway:	Palawan	AT GRADE	2	5	5	
East-West Roadway:	Washington	AT GRADE	4	5	5	


EMFAC2007 COMPOSITE EMISSION FACTORS FOR CO

Air Basin: South Coast County: Los Angeles Assumes lowest mean wintertime temperature of 47 degrees F and 52% humidity.

	Average Speed (miles per hour)									
Year	5	8	11	14	17	20	23	26	29	32
2010	6.419	5.647	5.034	4.542	4.142	3.818	3.553	3.333	3.15	3
2011	5.798	5.116	4.572	4.134	3.777	3.487	3.249	3.051	2.886	2.749
2012	5.251	4.645	4.161	3.77	3.451	3.19	2.976	2.797	2.647	2.522
2013	4.757	4.22	3.79	3.44	3.154	2.92	2.728	2.566	2.43	2.316
2014	4.323	3.844	3.46	3.146	2.889	2.679	2.505	2.359	2.235	2.13
2015	3.937	3.51	3.165	2.883	2.651	2.461	2.305	2.172	2.059	1.963
2020	2.646	2.387	2.174	1.997	1.85	1.728	1.627	1.539	1.464	1.398
2025	1.949	1.77	1.621	1.496	1.392	1.306	1.233	1.17	1.115	1.067
2030	1.615	1.471	1.35	1.248	1.163	1.093	1.034	0.983	0.937	0.898
2035	1.403	1.276	1.17	1.081	1.007	0.946	0.896	0.852	0.813	0.779
2040	1.283	1.164	1.065	0.982	0.913	0.858	0.813	0.773	0.738	0.706

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road	662	N-S Road	1,002
E-W Road	2,255	E-W Road	2,441
Primary Road =	E-W Road	Primary Road =	E-W Road

ROADWAY CO CONTRIBUTIONS

Reference CO Concentrations			Traffic		Emission			
0 Feet	25 Feet	50 Feet		Volume		Factor		
3.7	2.7	2.2	*	662	*	3.94	÷	100,000
11.9	7.0	5.4	*	2,255	*	3.94	÷	100,000
3.7 11.9	2.7 7.0	2.2 5.4	*	1,002 2,441	*	3.94 3.94	÷	100,000 100,000
	3.7 11.9	3.7 2.7 11.9 7.0	0 Feet 25 Feet 50 Feet 3.7 2.7 2.2 11.9 7.0 5.4 3.7 2.7 2.2	3.7 2.7 2.2 * 11.9 7.0 5.4 * 3.7 2.7 2.2 *	3.7 2.7 2.2 * 662 11.9 7.0 5.4 * 2,255 3.7 2.7 2.2 * 1,002	0 Feet 25 Feet 50 Feet Volume 3.7 2.7 2.2 * 662 * 11.9 7.0 5.4 * 2,255 * 3.7 2.7 2.2 * 1,002 *	0 Feet 25 Feet 50 Feet Volume Factor 3.7 2.7 2.2 * 662 * 3.94 11.9 7.0 5.4 * 2,255 * 3.94 3.7 2.7 2.2 * 1,002 * 3.94	0 Feet 25 Feet 50 Feet Volume Factor 3.7 2.7 2.2 * 662 * 3.94 ÷ 11.9 7.0 5.4 * 2,255 * 3.94 ÷ 3.7 2.7 2.2 * 1,002 * 3.94 ÷

	AM	PM	8-Hour
0 Feet from Roadway Edge	3.2	3.3	2.3
25 Feet from Roadway Edge	2.7	2.8	1.9
50 Feet from Roadway Edge	2.5	2.6	1.8

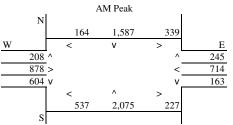
Project Title: Parcel 44

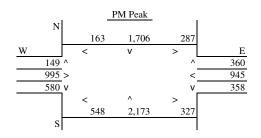
Intersection: Venice Blvd and Lincoln Blvd

Analysis Condition: Future w/Project

Nearest Air Monitoring Station measuring CO: Wilshire Blvd and Sawtelle Blvd, Los Angeles, CA 90025

Background 1-hour CO Concentration (ppm):2.0Background 8-hour CO Concentration (ppm):1.4Persistence Factor:0.7Analysis Year:2015


				Approach/Departure		
			No. of	Speed		
		Roadway Type	Lanes	A.M.	P.M.	
North-South Roadway:	Lincoln	AT GRADE	6	5	5	
East-West Roadway:	Washington	AT GRADE	4	5	5	


EMFAC2007 COMPOSITE EMISSION FACTORS FOR CO

Air Basin: South Coast County: Los Angeles Assumes lowest mean wintertime temperature of 47 degrees F and 52% humidity.

	Average Speed (miles per hour)									
Year	5	8	11	14	17	20	23	26	29	32
2010	6.419	5.647	5.034	4.542	4.142	3.818	3.553	3.333	3.15	3
2011	5.798	5.116	4.572	4.134	3.777	3.487	3.249	3.051	2.886	2.749
2012	5.251	4.645	4.161	3.77	3.451	3.19	2.976	2.797	2.647	2.522
2013	4.757	4.22	3.79	3.44	3.154	2.92	2.728	2.566	2.43	2.316
2014	4.323	3.844	3.46	3.146	2.889	2.679	2.505	2.359	2.235	2.13
2015	3.937	3.51	3.165	2.883	2.651	2.461	2.305	2.172	2.059	1.963
2020	2.646	2.387	2.174	1.997	1.85	1.728	1.627	1.539	1.464	1.398
2025	1.949	1.77	1.621	1.496	1.392	1.306	1.233	1.17	1.115	1.067
2030	1.615	1.471	1.35	1.248	1.163	1.093	1.034	0.983	0.937	0.898
2035	1.403	1.276	1.17	1.081	1.007	0.946	0.896	0.852	0.813	0.779
2040	1.283	1.164	1.065	0.982	0.913	0.858	0.813	0.773	0.738	0.706

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road	5,193	N-S Road	5,692
E-W Road	3,105	E-W Road	3,380
Primary Road =	N-S Road	Primary Road =	N-S Road

ROADWAY CO CONTRIBUTIONS

	Reference CO Concentrations		ntrations	Traffic			Emission		
Roadway	0 Feet	25 Feet	50 Feet	Volume			Factor		
A.M. Peak Hour									
N-S Road	9.5	6.1	4.9	*	5,193	*	3.94	÷	100,000
E-W Road	3.3	2.6	2.2	*	3,105	*	3.94	÷	100,000
P.M. Peak Hour									
N-S Road	9.5	6.1	4.9	*	5,692	*	3.94	÷	100,000
E-W Road	3.3	2.6	2.2	*	3,380	*	3.94	÷	100,000

	AM	PM	8-Hour
0 Feet from Roadway Edge	4.3	4.6	3.2
25 Feet from Roadway Edge	3.6	3.7	2.6
50 Feet from Roadway Edge	3.3	3.4	2.4

Project Title: Parcel 44

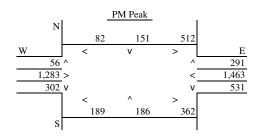
Intersection: Venice Blvd and Lincoln Blvd

Analysis Condition: Future w/Project

Nearest Air Monitoring Station measuring CO: Wilshire Blvd and Sawtelle Blvd, Los Angeles, CA 90025

Background 1-hour CO Concentration (ppm):2.0Background 8-hour CO Concentration (ppm):1.4Persistence Factor:0.7Analysis Year:2015

			Approach/Departure		
		No. of	Speed		
	Roadway Type	Lanes	A.M.	P.M.	
Glencoe	AT GRADE	4	5	5	_
Washington	AT GRADE	4	5	5	
		Glencoe AT GRADE	Roadway Type Lanes Glencoe AT GRADE 4	Roadway Type No. of Lanes Sp. A.M. Glencoe AT GRADE 4 5	Roadway Type No. of Lanes Speed Lanes A.M. P.M. Glencoe AT GRADE 4 5 5


EMFAC2007 COMPOSITE EMISSION FACTORS FOR CO

Air Basin: South Coast County: Los Angeles Assumes lowest mean wintertime temperature of 47 degrees F and 52% humidity.

	Average Speed (miles per hour)									
Year	5	8	11	14	17	20	23	26	29	32
2010	6.419	5.647	5.034	4.542	4.142	3.818	3.553	3.333	3.15	3
2011	5.798	5.116	4.572	4.134	3.777	3.487	3.249	3.051	2.886	2.749
2012	5.251	4.645	4.161	3.77	3.451	3.19	2.976	2.797	2.647	2.522
2013	4.757	4.22	3.79	3.44	3.154	2.92	2.728	2.566	2.43	2.316
2014	4.323	3.844	3.46	3.146	2.889	2.679	2.505	2.359	2.235	2.13
2015	3.937	3.51	3.165	2.883	2.651	2.461	2.305	2.172	2.059	1.963
2020	2.646	2.387	2.174	1.997	1.85	1.728	1.627	1.539	1.464	1.398
2025	1.949	1.77	1.621	1.496	1.392	1.306	1.233	1.17	1.115	1.067
2030	1.615	1.471	1.35	1.248	1.163	1.093	1.034	0.983	0.937	0.898
2035	1.403	1.276	1.17	1.081	1.007	0.946	0.896	0.852	0.813	0.779
2040	1.283	1.164	1.065	0.982	0.913	0.858	0.813	0.773	0.738	0.706

PEAK HOUR TURNING VOLUMES

	A	AM Peak		
N	23	42	103	
w	< 23	V 42	>	Е
22 ^	•	·	^	167
1,219 >			<	805
134 v			V	286
	<	^	>	
	260	64	351	
S				

Representative Traffic Volumes (Vehicles per Hour)

N-S Road	1,137	N-S Road	1,721
E-W Road	2,931	E-W Road	4,442
Primary Road =	E-W Road	Primary Road =	E-W Road

ROADWAY CO CONTRIBUTIONS

	Referen	ce CO Conce	entrations		Traffic		Emission		
Roadway	0 Feet	25 Feet	50 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	3.3	2.6	2.2	*	1,137	*	3.94	÷	100,000
E-W Road	11.9	7.0	5.4	*	2,931	*	3.94	÷	100,000
P.M. Peak Hour									
N-S Road	3.3	2.6	2.2	*	1,721	*	3.94	÷	100,000
E-W Road	11.9	7.0	5.4	*	4,442	*	3.94	÷	100,000

	AM	PM	8-Hour
0 Feet from Roadway Edge	3.5	4.3	3.0
25 Feet from Roadway Edge	2.9	3.4	2.4
50 Feet from Roadway Edge	2.7	3.1	2.2

Project Title: Parcel 44

Intersection: Venice Blvd and Lincoln Blvd

Analysis Condition: Future w/Project

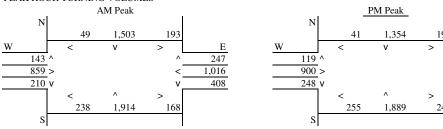
Nearest Air Monitoring Station measuring CO: Wilshire Blvd and Sawtelle Blvd, Los Angeles, CA 90025

Background 1-hour CO Concentration (ppm):2.0Background 8-hour CO Concentration (ppm):1.4Persistence Factor:0.7Analysis Year:2015

				Approach.	/Departure	
			No. of	Speed		
		Roadway Type	Lanes	A.M.	P.M.	
North-South Roadway:	Lincoln Blvd	AT GRADE	6	5	5	
East-West Roadway:	Venice	AT GRADE	6	5	5	
East-West Roadway:	Venice	AT GRADE	6	5	5	

EMFAC2007 COMPOSITE EMISSION FACTORS FOR CO

Air Basin: South Coast County: Los Angeles Assumes lowest mean wintertime temperature of 47 degrees F and 52% humidity.


	Average Speed (miles per hour)									
Year	5	8	11	14	17	20	23	26	29	32
2010	6.419	5.647	5.034	4.542	4.142	3.818	3.553	3.333	3.15	3
2011	5.798	5.116	4.572	4.134	3.777	3.487	3.249	3.051	2.886	2.749
2012	5.251	4.645	4.161	3.77	3.451	3.19	2.976	2.797	2.647	2.522
2013	4.757	4.22	3.79	3.44	3.154	2.92	2.728	2.566	2.43	2.316
2014	4.323	3.844	3.46	3.146	2.889	2.679	2.505	2.359	2.235	2.13
2015	3.937	3.51	3.165	2.883	2.651	2.461	2.305	2.172	2.059	1.963
2020	2.646	2.387	2.174	1.997	1.85	1.728	1.627	1.539	1.464	1.398
2025	1.949	1.77	1.621	1.496	1.392	1.306	1.233	1.17	1.115	1.067
2030	1.615	1.471	1.35	1.248	1.163	1.093	1.034	0.983	0.937	0.898
2035	1.403	1.276	1.17	1.081	1.007	0.946	0.896	0.852	0.813	0.779
2040	1.283	1.164	1.065	0.982	0.913	0.858	0.813	0.773	0.738	0.706

Е

165

964 315

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road	4,441	N-S Road	4,303
E-W Road	2,891	E-W Road	2,779
Primary Road =	N-S Road	Primary Road =	N-S Road

ROADWAY CO CONTRIBUTIONS

	Referen	ce CO Conce	ntrations		Traffic		Emission		
Roadway	0 Feet	25 Feet	50 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	9.5	6.1	4.9	*	4,441	*	3.94	÷	100,000
E-W Road	2.8	2.3	2.0	*	2,891	*	3.94	÷	100,000
P.M. Peak Hour									
N-S Road E-W Road	9.5 2.8	6.1 2.3	4.9 2.0	*	4,303 2,779	*	3.94 3.94	÷	100,000 100,000

	AM	PM	8-Hour
0 Feet from Roadway Edge	4.0	3.9	2.8
25 Feet from Roadway Edge	3.3	3.3	2.3
50 Feet from Roadway Edge	3.1	3.0	2.2

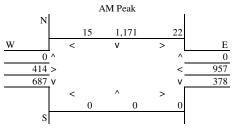
Project Title: Parcel 44

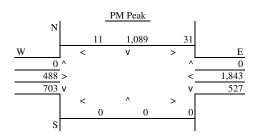
Intersection: Venice Blvd and Lincoln Blvd

Analysis Condition: Future w/Project

Nearest Air Monitoring Station measuring CO: Wilshire Blvd and Sawtelle Blvd, Los Angeles, CA 90025

Background 1-hour CO Concentration (ppm):2.0Background 8-hour CO Concentration (ppm):1.4Persistence Factor:0.7Analysis Year:2015


				Approach.	/Departure	
			No. of	Speed		
		Roadway Type	Lanes	A.M.	P.M.	
North-South Roadway:	Marina Expwy	AT GRADE	2	5	5	
East-West Roadway:	Mindanao	AT GRADE	4	5	5	


EMFAC2007 COMPOSITE EMISSION FACTORS FOR CO

Air Basin: South Coast County: Los Angeles Assumes lowest mean wintertime temperature of 47 degrees F and 52% humidity.

	Average Speed (miles per hour)									
Year	5	8	11	14	17	20	23	26	29	32
2010	6.419	5.647	5.034	4.542	4.142	3.818	3.553	3.333	3.15	3
2011	5.798	5.116	4.572	4.134	3.777	3.487	3.249	3.051	2.886	2.749
2012	5.251	4.645	4.161	3.77	3.451	3.19	2.976	2.797	2.647	2.522
2013	4.757	4.22	3.79	3.44	3.154	2.92	2.728	2.566	2.43	2.316
2014	4.323	3.844	3.46	3.146	2.889	2.679	2.505	2.359	2.235	2.13
2015	3.937	3.51	3.165	2.883	2.651	2.461	2.305	2.172	2.059	1.963
2020	2.646	2.387	2.174	1.997	1.85	1.728	1.627	1.539	1.464	1.398
2025	1.949	1.77	1.621	1.496	1.392	1.306	1.233	1.17	1.115	1.067
2030	1.615	1.471	1.35	1.248	1.163	1.093	1.034	0.983	0.937	0.898
2035	1.403	1.276	1.17	1.081	1.007	0.946	0.896	0.852	0.813	0.779
2040	1.283	1.164	1.065	0.982	0.913	0.858	0.813	0.773	0.738	0.706

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road	2,236	N-S Road	2,319
E-W Road	2,073	E-W Road	3,045
Primary Road =	N-S Road	Primary Road =	E-W Road

ROADWAY CO CONTRIBUTIONS

	Reference CO Concentrations			Traffic		Emission			
Roadway	0 Feet	25 Feet	50 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	14.0	7.6	5.7	*	2,236	*	3.94	÷	100,000
E-W Road	3.3	2.6	2.2	*	2,073	*	3.94	÷	100,000
P.M. Peak Hour									
N-S Road	3.7	2.7	2.2	*	2,319	*	3.94	÷	100,000
E-W Road	11.9	7.0	5.4	*	3,045	*	3.94	÷	100,000

	AM	PM	8-Hour
0 Feet from Roadway Edge	3.5	3.8	2.6
25 Feet from Roadway Edge	2.9	3.1	2.2
50 Feet from Roadway Edge	2.7	2.8	2.0

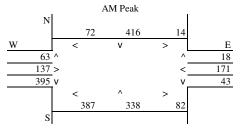
Project Title: Parcel 44

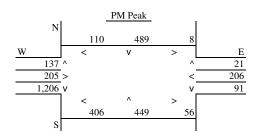
Intersection: Venice Blvd and Lincoln Blvd

Analysis Condition: Future w/Project

Nearest Air Monitoring Station measuring CO: Wilshire Blvd and Sawtelle Blvd, Los Angeles, CA 90025

Background 1-hour CO Concentration (ppm):2.0Background 8-hour CO Concentration (ppm):1.4Persistence Factor:0.7Analysis Year:2015


				Approach/Departure		
			No. of	Speed		
		Roadway Type	Lanes	A.M.	P.M.	
North-South Roadway:	Mindanao	AT GRADE	4	5	5	
East-West Roadway:	Glencoe	AT GRADE	2	5	5	


EMFAC2007 COMPOSITE EMISSION FACTORS FOR CO

Air Basin: South Coast County: Los Angeles Assumes lowest mean wintertime temperature of 47 degrees F and 52% humidity.

				Avera	ige Speed (n	niles per ho	ur)			
Year	5	8	11	14	17	20	23	26	29	32
2010	6.419	5.647	5.034	4.542	4.142	3.818	3.553	3.333	3.15	3
2011	5.798	5.116	4.572	4.134	3.777	3.487	3.249	3.051	2.886	2.749
2012	5.251	4.645	4.161	3.77	3.451	3.19	2.976	2.797	2.647	2.522
2013	4.757	4.22	3.79	3.44	3.154	2.92	2.728	2.566	2.43	2.316
2014	4.323	3.844	3.46	3.146	2.889	2.679	2.505	2.359	2.235	2.13
2015	3.937	3.51	3.165	2.883	2.651	2.461	2.305	2.172	2.059	1.963
2020	2.646	2.387	2.174	1.997	1.85	1.728	1.627	1.539	1.464	1.398
2025	1.949	1.77	1.621	1.496	1.392	1.306	1.233	1.17	1.115	1.067
2030	1.615	1.471	1.35	1.248	1.163	1.093	1.034	0.983	0.937	0.898
2035	1.403	1.276	1.17	1.081	1.007	0.946	0.896	0.852	0.813	0.779
2040	1.283	1.164	1.065	0.982	0.913	0.858	0.813	0.773	0.738	0.706

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road	1,661	N-S Road	2,697
E-W Road	1,225	E-W Road	2,270
Primary Road =	N-S Road	Primary Road =	N-S Road

ROADWAY CO CONTRIBUTIONS

	Reference CO Concentrations			Traffic		Emission			
Roadway	0 Feet	25 Feet	50 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	11.9	7.0	5.4	*	1,661	*	3.94	÷	100,000
E-W Road	3.7	2.7	2.2	*	1,225	*	3.94	÷	100,000
P.M. Peak Hour									
N-S Road E-W Road	11.9 3.7	7.0 2.7	5.4 2.2	*	2,697 2,270	*	3.94 3.94	÷	100,000 100,000

	AM	PM	8-Hour
0 Feet from Roadway Edge	3.0	3.6	2.5
25 Feet from Roadway Edge	2.6	3.0	2.1
50 Feet from Roadway Edge	2.5	2.8	1.9

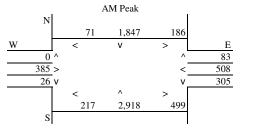
Project Title: Parcel 44

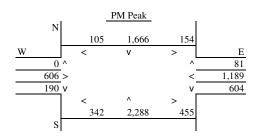
Intersection: Venice Blvd and Lincoln Blvd

Analysis Condition: Future w/Project

Nearest Air Monitoring Station measuring CO: Wilshire Blvd and Sawtelle Blvd, Los Angeles, CA 90025

Background 1-hour CO Concentration (ppm):2.0Background 8-hour CO Concentration (ppm):1.4Persistence Factor:0.7Analysis Year:2015


				Approach/Departure		
			No. of	Speed		
		Roadway Type	Lanes	A.M.	P.M.	
North-South Roadway:	Lincoln	AT GRADE	6	5	5	
East-West Roadway:	Mindanao	AT GRADE	4	5	5	


EMFAC2007 COMPOSITE EMISSION FACTORS FOR CO

Air Basin: South Coast County: Los Angeles Assumes lowest mean wintertime temperature of 47 degrees F and 52% humidity.

			Average Speed (miles per hour)								
Year	5	8	11	14	17	20	23	26	29	32	
2010	6.419	5.647	5.034	4.542	4.142	3.818	3.553	3.333	3.15	3	
2011	5.798	5.116	4.572	4.134	3.777	3.487	3.249	3.051	2.886	2.749	
2012	5.251	4.645	4.161	3.77	3.451	3.19	2.976	2.797	2.647	2.522	
2013	4.757	4.22	3.79	3.44	3.154	2.92	2.728	2.566	2.43	2.316	
2014	4.323	3.844	3.46	3.146	2.889	2.679	2.505	2.359	2.235	2.13	
2015	3.937	3.51	3.165	2.883	2.651	2.461	2.305	2.172	2.059	1.963	
2020	2.646	2.387	2.174	1.997	1.85	1.728	1.627	1.539	1.464	1.398	
2025	1.949	1.77	1.621	1.496	1.392	1.306	1.233	1.17	1.115	1.067	
2030	1.615	1.471	1.35	1.248	1.163	1.093	1.034	0.983	0.937	0.898	
2035	1.403	1.276	1.17	1.081	1.007	0.946	0.896	0.852	0.813	0.779	
2040	1.283	1.164	1.065	0.982	0.913	0.858	0.813	0.773	0.738	0.706	

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road	5,812	N-S Road	5,545
E-W Road	1,966	E-W Road	3,089
Primary Road =	N-S Road	Primary Road =	N-S Road

ROADWAY CO CONTRIBUTIONS

_	Reference CO Concentrations				Traffic	Emission			
Roadway	0 Feet	25 Feet	50 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	9.5	6.1	4.9	*	5,812	*	3.94	÷	100,000
E-W Road	3.3	2.6	2.2	*	1,966	*	3.94	÷	100,000
P.M. Peak Hour									
N-S Road	9.5	6.1	4.9	*	5,545	*	3.94	÷	100,000
E-W Road	3.3	2.6	2.2	*	3,089	*	3.94	÷	100,000

	AM	PM	8-Hour
0 Feet from Roadway Edge	4.4	4.5	3.1
25 Feet from Roadway Edge	3.6	3.6	2.6
50 Feet from Roadway Edge	3.3	3.3	2.3

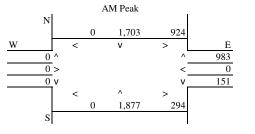
Project Title: Parcel 44

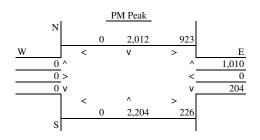
Intersection: Venice Blvd and Lincoln Blvd

Analysis Condition: Future w/Project

Nearest Air Monitoring Station measuring CO: Wilshire Blvd and Sawtelle Blvd, Los Angeles, CA 90025

Background 1-hour CO Concentration (ppm):2.0Background 8-hour CO Concentration (ppm):1.4Persistence Factor:0.7Analysis Year:2015


			Approach/Departure		
		No. of	Speed		
	Roadway Type	Lanes	A.M.	P.M.	
Lincoln	AT GRADE	6	5	5	
Marina Expwy	AT GRADE	4	5	5	
		Lincoln AT GRADE	Roadway TypeLanesLincolnAT GRADE6	Roadway Type No. of Lanes Sp A.M. Lincoln AT GRADE 6 5	


EMFAC2007 COMPOSITE EMISSION FACTORS FOR CO

Air Basin: South Coast County: Los Angeles Assumes lowest mean wintertime temperature of 47 degrees F and 52% humidity.

	Average Speed (miles per hour)									
Year	5	8	11	14	17	20	23	26	29	32
2010	6.419	5.647	5.034	4.542	4.142	3.818	3.553	3.333	3.15	3
2011	5.798	5.116	4.572	4.134	3.777	3.487	3.249	3.051	2.886	2.749
2012	5.251	4.645	4.161	3.77	3.451	3.19	2.976	2.797	2.647	2.522
2013	4.757	4.22	3.79	3.44	3.154	2.92	2.728	2.566	2.43	2.316
2014	4.323	3.844	3.46	3.146	2.889	2.679	2.505	2.359	2.235	2.13
2015	3.937	3.51	3.165	2.883	2.651	2.461	2.305	2.172	2.059	1.963
2020	2.646	2.387	2.174	1.997	1.85	1.728	1.627	1.539	1.464	1.398
2025	1.949	1.77	1.621	1.496	1.392	1.306	1.233	1.17	1.115	1.067
2030	1.615	1.471	1.35	1.248	1.163	1.093	1.034	0.983	0.937	0.898
2035	1.403	1.276	1.17	1.081	1.007	0.946	0.896	0.852	0.813	0.779
2040	1.283	1.164	1.065	0.982	0.913	0.858	0.813	0.773	0.738	0.706

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-	-S Road	5,487	N-S Road	6,149
E-	-W Road	2,352	E-W Road	2,363
Pr	rimary Road = 1	N-S Road	Primary Road = 1	N-S Road

ROADWAY CO CONTRIBUTIONS

	Referen	ce CO Conce	ntrations		Traffic		Emission		
Roadway	0 Feet	25 Feet	50 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	9.5	6.1	4.9	*	5,487	*	3.94	÷	100,000
E-W Road	3.3	2.6	2.2	*	2,352	*	3.94	÷	100,000
P.M. Peak Hour									
N-S Road	9.5	6.1	4.9	*	6,149	*	3.94	÷	100,000
E-W Road	3.3	2.6	2.2	*	2,363	*	3.94	÷	100,000

	AM	PM	8-Hour
0 Feet from Roadway Edge	4.4	4.6	3.2
25 Feet from Roadway Edge	3.6	3.7	2.6
50 Feet from Roadway Edge	3.3	3.4	2.4

Project Title: Parcel 44

Intersection: Venice Blvd and Lincoln Blvd

Analysis Condition: Future w/Project

Nearest Air Monitoring Station measuring CO: Wilshire Blvd and Sawtelle Blvd, Los Angeles, CA 90025

Background 1-hour CO Concentration (ppm):2.0Background 8-hour CO Concentration (ppm):1.4Persistence Factor:0.7Analysis Year:2015

				Approach/Departure	
			No. of	Speed	
		Roadway Type	Lanes	A.M.	P.M.
North-South Roadway:	Lincoln	AT GRADE	6	5	5
East-West Roadway:	Jefferson	AT GRADE	4	5	5

EMFAC2007 COMPOSITE EMISSION FACTORS FOR CO

Air Basin: South Coast County: Los Angeles Assumes lowest mean wintertime temperature of 47 degrees F and 52% humidity.

	Average Speed (miles per hour)									
Year	5	8	11	14	17	20	23	26	29	32
2010	6.419	5.647	5.034	4.542	4.142	3.818	3.553	3.333	3.15	3
2011	5.798	5.116	4.572	4.134	3.777	3.487	3.249	3.051	2.886	2.749
2012	5.251	4.645	4.161	3.77	3.451	3.19	2.976	2.797	2.647	2.522
2013	4.757	4.22	3.79	3.44	3.154	2.92	2.728	2.566	2.43	2.316
2014	4.323	3.844	3.46	3.146	2.889	2.679	2.505	2.359	2.235	2.13
2015	3.937	3.51	3.165	2.883	2.651	2.461	2.305	2.172	2.059	1.963
2020	2.646	2.387	2.174	1.997	1.85	1.728	1.627	1.539	1.464	1.398
2025	1.949	1.77	1.621	1.496	1.392	1.306	1.233	1.17	1.115	1.067
2030	1.615	1.471	1.35	1.248	1.163	1.093	1.034	0.983	0.937	0.898
2035	1.403	1.276	1.17	1.081	1.007	0.946	0.896	0.852	0.813	0.779
2040	1.283	1.164	1.065	0.982	0.913	0.858	0.813	0.773	0.738	0.706

PM Peak

2,371

E 1,195 304 1,150

PEAK HOUR TURNING VOLUMES

		A	AM Peak					
	N						N	
		282	1,648	892				44
W		<	٧	>	E	W		<
	259 ^			^	930		43 ^	
	406 >			<	164		165 >	
	33 v			V	772		58 v	
		<	٨	>				<
		20	2,968	925				2
	S						S	

Representative Traffic Volumes (Vehicles per Hour)

N-S Road	6,979	N-S Road	6,758
E-W Road	4,089	E-W Road	4,148
Primary Road =	N-S Road	Primary Road =	N-S Road

ROADWAY CO CONTRIBUTIONS

	Referen	ce CO Conce	ntrations		Traffic		Emission		
Roadway	0 Feet	25 Feet	50 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	9.5	6.1	4.9	*	6,979	*	3.94	÷	100,000
E-W Road	3.3	2.6	2.2	*	4,089	*	3.94	÷	100,000
P.M. Peak Hour									
N-S Road	9.5	6.1	4.9	*	6,758	*	3.94	÷	100,000
E-W Road	3.3	2.6	2.2	*	4,148	*	3.94	÷	100,000

	AM	PM	8-Hour
0 Feet from Roadway Edge	5.1	5.1	3.6
25 Feet from Roadway Edge	4.1	4.0	2.9
50 Feet from Roadway Edge	3.7	3.7	2.6

BAY AREA AQMD SIMPLIFIED CALINE4 ANALYSIS; UPDATED WITH EMFAC2007

Project Title: Parcel 44

Intersection: Venice Blvd and Lincoln Blvd

Analysis Condition: Future w/Project

Nearest Air Monitoring Station measuring CO: Wilshire Blvd and Sawtelle Blvd, Los Angeles, CA 90025

Background 1-hour CO Concentration (ppm):2.0Background 8-hour CO Concentration (ppm):1.4Persistence Factor:0.7Analysis Year:2015

				Approach/Departure		
			No. of	Speed		
		Roadway Type	Lanes	A.M.	P.M.	
North-South Roadway:	Lincoln	AT GRADE	6	5	5	
East-West Roadway:	Fiji	AT GRADE	2	5	5	

EMFAC2007 COMPOSITE EMISSION FACTORS FOR CO

Air Basin: South Coast County: Los Angeles Assumes lowest mean wintertime temperature of 47 degrees F and 52% humidity.

	Average Speed (miles per hour)										
Year	5	8	11	14	17	20	23	26	29	32	
2010	6.419	5.647	5.034	4.542	4.142	3.818	3.553	3.333	3.15	3	
2011	5.798	5.116	4.572	4.134	3.777	3.487	3.249	3.051	2.886	2.749	
2012	5.251	4.645	4.161	3.77	3.451	3.19	2.976	2.797	2.647	2.522	
2013	4.757	4.22	3.79	3.44	3.154	2.92	2.728	2.566	2.43	2.316	
2014	4.323	3.844	3.46	3.146	2.889	2.679	2.505	2.359	2.235	2.13	
2015	3.937	3.51	3.165	2.883	2.651	2.461	2.305	2.172	2.059	1.963	
2020	2.646	2.387	2.174	1.997	1.85	1.728	1.627	1.539	1.464	1.398	
2025	1.949	1.77	1.621	1.496	1.392	1.306	1.233	1.17	1.115	1.067	
2030	1.615	1.471	1.35	1.248	1.163	1.093	1.034	0.983	0.937	0.898	
2035	1.403	1.276	1.17	1.081	1.007	0.946	0.896	0.852	0.813	0.779	
2040	1.283	1.164	1.065	0.982	0.913	0.858	0.813	0.773	0.738	0.706	

PM Peak

2,833

PEAK HOUR TURNING VOLUMES

			AM Peak					
	N						N	
		85	2,076	39				1
W		<	٧	>	E	W		<
	219 ^			^	0		217 ^	
	21 >			<	2		16 >	
	707 v			V	11		848 v	
		<	^	>				<
		721	3,383	39				7
	S						S	

Representative Traffic Volumes (Vehicles per Hour)

N-S Road	6,937	N-S Road	6,767
E-W Road	1,755	E-W Road	2,026
Primary Road =	N-S Road	Primary Road =	N-S Road

ROADWAY CO CONTRIBUTIONS

_	Reference CO Concentrations				Traffic		Emission		
Roadway	0 Feet	25 Feet	50 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	9.5	6.1	4.9	*	6,937	*	3.94	÷	100,000
E-W Road	3.7	2.7	2.2	*	1,755	*	3.94	÷	100,000
P.M. Peak Hour									
N-S Road	9.5	6.1	4.9	*	6,767	*	3.94	÷	100,000
E-W Road	3.7	2.7	2.2	*	2,026	*	3.94	÷	100,000

TOTAL CO CONCENTRATIONS (ppm)

	AM	PM	8-Hour
0 Feet from Roadway Edge	4.9	4.8	3.4
25 Feet from Roadway Edge	3.9	3.8	2.7
50 Feet from Roadway Edge	3.5	3.5	2.4

BAY AREA AQMD SIMPLIFIED CALINE4 ANALYSIS; UPDATED WITH EMFAC2007

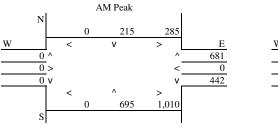
Project Title: Parcel 44

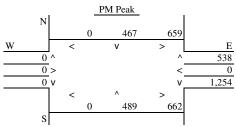
Intersection: Venice Blvd and Lincoln Blvd

Analysis Condition: Future w/Project

Nearest Air Monitoring Station measuring CO: Wilshire Blvd and Sawtelle Blvd, Los Angeles, CA 90025

Background 1-hour CO Concentration (ppm):2.0Background 8-hour CO Concentration (ppm):1.4Persistence Factor:0.7Analysis Year:2015


				Approach/Departure		
			No. of	Speed		
		Roadway Type	Lanes	A.M.	P.M.	
North-South Roadway:	Via Marina	AT GRADE	4	5	5	
East-West Roadway:	Admiralty	AT GRADE	2	5	5	


EMFAC2007 COMPOSITE EMISSION FACTORS FOR CO

Air Basin: South Coast County: Los Angeles Assumes lowest mean wintertime temperature of 47 degrees F and 52% humidity.

	Average Speed (miles per hour)										
Year	5	8	11	14	17	20	23	26	29	32	
2010	6.419	5.647	5.034	4.542	4.142	3.818	3.553	3.333	3.15	3	
2011	5.798	5.116	4.572	4.134	3.777	3.487	3.249	3.051	2.886	2.749	
2012	5.251	4.645	4.161	3.77	3.451	3.19	2.976	2.797	2.647	2.522	
2013	4.757	4.22	3.79	3.44	3.154	2.92	2.728	2.566	2.43	2.316	
2014	4.323	3.844	3.46	3.146	2.889	2.679	2.505	2.359	2.235	2.13	
2015	3.937	3.51	3.165	2.883	2.651	2.461	2.305	2.172	2.059	1.963	
2020	2.646	2.387	2.174	1.997	1.85	1.728	1.627	1.539	1.464	1.398	
2025	1.949	1.77	1.621	1.496	1.392	1.306	1.233	1.17	1.115	1.067	
2030	1.615	1.471	1.35	1.248	1.163	1.093	1.034	0.983	0.937	0.898	
2035	1.403	1.276	1.17	1.081	1.007	0.946	0.896	0.852	0.813	0.779	
2040	1.283	1.164	1.065	0.982	0.913	0.858	0.813	0.773	0.738	0.706	

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road	2,362	N-S Road	2,872
E-W Road	2,418	E-W Road	3,113
Primary Road =	E-W Road	Primary Road =	E-W Road

ROADWAY CO CONTRIBUTIONS

	Reference CO Concentrations			Traffic		Emission			
Roadway	0 Feet	25 Feet	50 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	3.3	2.6	2.2	*	2,362	*	3.94	÷	100,000
E-W Road	14.0	7.6	5.7	*	2,418	*	3.94	÷	100,000
P.M. Peak Hour									
N-S Road	3.3	2.6	2.2	*	2,872	*	3.94	÷	100,000
E-W Road	14.0	7.6	5.7	*	3,113	*	3.94	÷	100,000

TOTAL CO CONCENTRATIONS (ppm)

	AM	PM	8-Hour
0 Feet from Roadway Edge	3.6	4.1	2.9
25 Feet from Roadway Edge	3.0	3.2	2.3
50 Feet from Roadway Edge	2.7	2.9	2.1

GEOTECHNICAL ENGINEERING REPORT
PROPOSED COMMERCIAL AND RETAIL DEVELOPMENT
MARINA DEL REY – PARCEL 44
NORTHWEST CORNER OF MINDANAO WAY AND ADMIRALTY WAY
MARINA DEL REY AREA OF LOS ANGELES, CALIFORNIA

Prepared for:

PACIFIC MARINA VENTURES, LLC C/O PACIFIC OCEAN MANAGEMENT 13737 FIJI WAY C-10 MARINA DEL REY, CA 90292

GROUP

Prepared by:

GROUP DELTA CONSULTANTS, INC.

370 Amapola Avenue, Suite 212 Torrance, California 90501 Tel. (310) 320-5100 Fax (310) 320-2118

> GDC Project No. LA-1049 June 01, 2012

Geotechnical Engineering

Geology

Hydro Geology

Earthquake Engineering

Materials Testing & Inspection

Forensic Services

June 01, 2012

Pacific Marina Venture, LLC

c/o Pacific Ocean Management 13737 Fiji Way C-10 Marina del Rey, CA 90292

Attention: Mr. John Santry

Subject: Geotechnical Engineering Report

Proposed Commercial and Retail Development

Marina Del Rey – Parcel 44

Northwest Corner of Mindanao Way and Admiralty Way

Marina Eel Rey area of Los Angeles, California

Dear Mr. Santry:

Group Delta Consultants (GDC) is pleased to submit this geotechnical report for the proposed commercial and retail development located at Parcel 44, northwest corner of Mindanao Way and Admiralty Way, Marina del Rey area of Los Angeles, California.

We appreciate the opportunity to provide geotechnical services for this project. Should you have any questions regarding this report, or if we can be of further service, please call us at 310 320-5100.

Sincerely, GROUP DELTA CONSULTANTS, INC.

Ying Liu, Ph.D., P.E. Senior Engineer

Distribution: Addressee (pdf)

 $Y:\Pr(1000-1099)\ LA-1049\ Marina\ Del\ Rey-Parcel\ 44\ Report\ LA1049\ Geotechnical\ Engineering\ Report\ Rev\ 01\ June\ 1\ 2012.doc$

TABLE OF CONTENTS

1.0 INTR	ODUCTION1	-
1.2 Ob	oject Description 1 ojectives and Scope of Work 2 TECHNICAL INVESTIGATION 3	-
2.2 Lal	eld Exploration	-
3.2 Gr	bsurface Conditions 4 4	-
4.1 Pot 4.1.1	tential Seismic Hazards6 Ground Surface Rupture6	
4.1.2	Design Ground Motion Parameters 6	-
4.1.3	Liquefaction Potential7	-
4.1.4	Lateral Spreading9	-
4.1.5	Tsunami 9	-
4.2 Fo 4.2.1	undations 10 General 10	
4.2.2	Subgrade Preparation 10	-
4.2.3	Bearing Capacity 11	-
4.2.4	Settlement 11	-
4.2.5	Lateral Resistance 11	-
4.4 Mir 4.5 Ear	ab on Grade 11 nor Retaining Walls 12 rthwork and Grading 12 mporary Excavations and Shoring 14 Temporary Excavation 14	- -
4.6.2	Temporary Shoring 15	-
4.8 Uti 4.9 So 4.10 Exp 4.11 Par	e Drainage	- - -
J.U JLC	11\(\cdot\) 1 1 1 1 \(\cdot\) 1 \(\ldot\) 1 1 \(\cdot\) 1 1 \(\cdot\) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	١

June 01, 2012 Geotechnical Engineering Report Proposed Commercial and Retail Development Page ii Parcel 44, Marina del Rey area of Los Angeles, CA GDC Project No. LA-1049 POST INVESTIGATION SERVICES.....- 17 -6.0 LIMITATIONS.....- 18 -7.0 8.0 REFERENCES 19 -LIST OF TABLES TABLE 1 SUMMARY OF FAULTS CLOSE TO THE PROJECT SITE TABLE 2 DESIGN GROUND MOTION VALUES TABLE 3 SUMMARY OF SOIL LIQUEFACTION TABLE 4 STATIC SETTLEMENT CALCULATION TABLE 5 SECTION THICKNESS OF NEW AC PAVEMENTS LIST OF FIGURES FIGURE 1 **VICINITY MAP** FIGURE 2 EXPLORATION LOCATION PLAN FIGURE 3 GEOLOGIC CROSS-SECTIONs A-A' to F-F' FIGURE 4 REGIONAL GEOLOGY MAP FIGURE 5 HISTORICAL GROUNDWATER MAP FIGURE 6 REGIONAL FAULT MAP FIGURE 7 LIQUEFACTION STUDY ZONE MAP FIGURE 8 RETAINING WALL BACKFILL

APPENDICES

APPENDIX A	FIELD EXPLORATION
APPENDIX B	LABORATORY TESTS
APPENDIX C	LIQUEFACTION ANALYSES
APPENDIX D	LATERAL SPREADING SCREENING ANALYSIS

GEOTECHNICAL ENGINEERING REPORT PROPOSED COMMERCIAL AND RETAIL DEVELOPMENT MARINA DEL REY – PARCEL 44 NORTHWEST CORNER OF MINDANAO WAY AND ADMIRALTY WAY MARINA DEL REY AREA OF LOS ANGELES, CALIFORNIA

1.0 INTRODUCTION

This report presents our geotechnical recommendations for the proposed commercial and retail development project. The site is located on Parcel 44, northwest corner of Mindanao Way and Admiralty Way, Marina del Rey area of Los Angeles, California. Figure 1 shows the site location. This report is prepared in general accordance with GDC's proposal L12-100 dated January 4, 2012.

1.1 Project Description

Parcel 44 is a "C" shaped parcel measuring approximately 900 feet by 680 feet. The site surrounds Basin "G" of the Marina. Currently, the site is occupied by 6 one-story structures, but predominately is covered with asphalt parking. The existing site grades range from El. +10 to +18 feet. The basins are protected by sea walls that are about 10 feet in height and are supported on timber piles. The existing sea walls were recently retrofitted by installing 24-inch diameter caissons about 3 to 10 ft behind the face of the sea wall and then anchoring the sea wall to the caissons by tieback anchors.

The proposed project will consist of demolition of the existing 6, 1-story boating related structures and construction of 7 new structures, including:

- o 2 new restroom structures (Bldg Z-1 / Bldg I and III)
- o A new one story retail grocery store (Bldg J / Bldg II)
- o A new 2-story retail boat supply store (Bldg P / Bldg IV)
- o A new one story building for boat broker offices (Bldg K / Bldg V).
- o A one-story boaters lounge (Bldg X / Bldg VI)
- o A one-story storage rack for boats (Bldg G1 / Bldg VII)

The proposed development is shown on Figure 2. All of the planned buildings are at grade structures. There are no basements planned at this time. Based on information provided by the structural engineer, the preliminary column and wall loads are provided below.

o Bldg G1 and J: Estimated interior column dead load is 23,500 lbs, and column roof live load is 13,500 lbs. Typical column tributary area is assumed 30'x38'6" at Bldg G1, and 50'x20x at Bldg J.

- o Bldg K: Estimated interior column dead load is 12,000 lbs, and column live load is 9,600 lbs. Typical column tributary area is assumed 30'x20'.
- o BLdg X and Z-1: Estimated exterior wall uniform dead load is 620 lbs/ft, and live load is 300 lbs/ft. No interior columns.
- o Bldg P: Estimated interior column dead load is 40,000 lbs, and column live load is 50,000 lbs. Assume 100 PSF live load Reducible retail at the 2nd floor of the building. Column trib. is assumed 20' x 35'-6".

1.2 Objectives and Scope of Work

The objective of this report is to provide site-specific geotechnical recommendations for the design and construction of the proposed structures. We performed the following general scope of work in order to fulfill the objectives of our services:

- Review of published geologic and geotechnical maps and reports pertaining to the site area;
- Conduct six mud rotary borings and 14 Cone Penetration Tests on the subject site to investigate subsurface conditions;
- Perform laboratory tests on selected soil samples to evaluate index properties and strength and compressibility parameters;
- Perform geologic and seismic hazard analysis including fault surface rupture, ground shaking, liquefaction, lateral spreading, and ground motion analyses;
- Perform site-specific geotechnical engineering analyses to develop recommendations for foundation design and construction of the proposed structures; and
- o Preparation of this report.

2.0 GEOTECHNICAL INVESTIGATION

2.1 Field Exploration

To investigate the subsurface conditions at the site, a total of 6 soil borings and 14 cone penetrometer test (CPT) probes were completed at the locations shown in Figure 2. The borings were advanced to a depth ranging from 36.5 to 51.5 feet below the existing grade. The CPTs were advanced to depths ranging from about 30 to 80 feet below the existing grade, where refusal to further penetration was reached. Shear wave velocity was measured in CPT-12-07. The drilling was performed under the continuous technical supervision of our field engineer, who maintained a detailed log of the soils encountered and assisted in obtaining soil samples.

As the CPT probe was advanced, electronic instruments recorded a continuous profile of both the tip and frictional resistances, which were then analyzed using established correlations, to classify the soils and evaluate insitu properties, including density, strength and compressibility. Additional details concerning the field exploration program, including copies of all the boring and CPT logs, are included in Appendix A.

2.2 Laboratory Testing Program

The soil samples obtained from the borings were taken to our laboratory for further visual examination and laboratory testing. Laboratory test results assist in classifying samples, for evaluating their physical properties and engineering characteristics, and in correlating soils across the site. The laboratory testing is supplemented by the results of the Standard Penetration Tests (SPT) sampling conducted in the borings and the results of the CPT probes, which provide additional means to evaluate in situ soil properties, such as density, shear strength and compressibility. Details of the laboratory testing program, including test results, are included in Appendix B.

3.0 SITE AND SUBSURFACE CONDITIONS

3.1 Subsurface Conditions

Based on the Quaternary Geologic Map of the Venice Quadrangle, the site area is underlain by some artificial fill and native young alluvial-fan and floodplain deposits. A regional geologic map is shown in Figure 4.

The surface of the subject site (Approx. El. +10 to +18 ft) contains man-made improvements consisting of 6 single story buildings, asphalt concrete pavement, curbing, sidewalk, buried utilities. Below the surface improvements, the site is underlain by artificial fill, and native deposits predominantly consisting of firm to stiff clays interbedded with thin layers of silty sands, underlain by very dense sand. Generalized geotechnical cross-sections (Section A-A' to F-F') through the site are shown in Figures 3A through Figure 3F. The generalized soil layering is described below.

Layer No. 1: Fill (SM/ML/CL)

This layer ranges from about 2 to 5 feet thick and extends from the existing grade to approximately EL. + 8 to +10 feet. This layer consists of silty sand, clayey sand, silt, and silty clay at various locations.

Layer No. 2: Native: Silty Clay Interbedded with Very Thin Layers of Silty Sand

Layer 2 is comprised of firm to very stiff, clayey silt and silty clay, extending from approximately EL. +8 and +10 feet to approximately EL -15 feet. The undrained shear strength of this clay ranges between 1 to 2.5 ksf. There are individual layers at various locations between El. -2.5 feet and El. +2.5 feet that are soft to firm with interpreted undrained shear strength of 0.5 to 1 ksf.

Layer No. 3: Silty Sand and Sand (SM)

Layer 3 extends from EL. - 15 feet to the maximum depth explored (El. -70 feet). This layer consists of very dense sand and silty sand. The CPT tip resistance for this layer is generally greater than 350 tsf. The SPT blow counts are in general greater than 50.

3.2 Groundwater

The groundwater elevation at the site is tide dependant. Based on our field exploration, current groundwater elevations varied between +2 to -3.0 MSL. Based

Geotechnical Engineering Report Proposed Commercial and Retail Development Parcel 44, Marina del Rey area of Los Angeles, CA GDC Project No. LA-1049 June 01, 2012 Page - 5 -

on the CGS Seismic Hazard Zone Report 036 (CGS, 1998), the historical highest groundwater level at the site area was at a depth of 5 feet. The CGS Historically Highest Ground Water Contour is shown in Figure 5.

For design, we recommend that the design groundwater level at this site be taken as $El. +5.0 \, MSL.$

4.0 DISCUSSION AND RECOMMENDATIONS

4.1 Potential Seismic Hazards

Potential geologic and seismic hazards that may affect any site in southern California include ground surface rupture, seismic shaking, liquefaction, dynamic settlement, tsunamis, and subsidence. These potential hazards are discussed in the following sections.

4.1.1 Ground Surface Rupture

The site is not located in an Alquist-Priolo (AP) Special Study Fault Zone. The closest faults to the site are shown in Table 1. A regional fault map is provided in Figure 6.

Table 1 Summary of Faults Close to the Project Site

Fault Name	Fault Type	Maximum Moment Magnitude	Distance to the Project Site (Mile)
Newport-Inglewood Fault	RLSS	7.5	4.6
Santa Monica Fault	R	6.6	4.4
Hollywood Fault	LLSS	6.6	5.4
Puente Hills Blind Thrust	R	7.3	9.7

Note: Source to site distance is measured as the closest distance from the site to the surface projection of the fault. RLSS – Right Lateral Strike Slip; R – Reverse; LLSS – Left Lateral Strike Slip.

No known active faults are mapped as crossing the site in the geologic literature reviewed. Therefore, the possibility of ground surface fault rupture at the site is considered to be very low.

4.1.2 Design Ground Motion Parameters

Design ground motion parameters were developed in accordance with CBC 2010 for the proposed new buildings. The site coordinates used in our seismic hazard analysis are: -118.4413 (Longitude) and 33.9806 (Latitude).

The subsurface soil at this site consists of 25 to 30 feet of stiff clays underlain by dense sands. Based on the shear wave velocity, V_s , measurements from CPT-12-07

performed at this site, the subject site has a $V_{S(30)}$ of 976 fps, and is classified as Site Class D, corresponding to a "Stiff Soil" profile.

We used the USGS online web program "Seismic Hazard Curves, Response Parameters, and Design Parameters" (Version 5.1.0 – 2/10/2011) to develop CBC 2010 seismic design parameters. The ground motion design parameters are shown in Table 2.

Table 2 Seismic Ground Motion Values				
Latitude: 33.9806 Longitude: -118.4413				
Site Class	D			
Mapped MCE Spectral Response Acceleration at Short Period (S _S)	1.5 g			
Mapped MCE Spectral Response Acceleration at Period of 1 Second (S ₁)	0.6 g			
Site Coefficient, F _a	1			
Site Coefficient, F _V	1.5			
Adjusted MCE Spectral Response Acceleration at Short Period (S _{MS})	1.5 g			
Adjusted MCE Spectral Response Acceleration at Period of 1 Second (S_{M1})	0.9 g			
Design Earthquake Spectral Response Acceleration at Short Period (S _{DS})	1 g			
Design Earthquake Spectral Response Acceleration at Period of 1 Second (S _{D1})	0.6 g			

In accordance with Title 22 of the Los Angeles County Planning and Zoning Ordinance and the Marina Del Rey Specific Plan, Section 22.46.1180, Item 4, new development over three stories in height shall be designed to withstand a seismic event with a ground acceleration of no less than 0.50 g. Since Bldg VII is a 4-story storage rack for boats, this building needs to be designed for a PGA of 0.50 g.

4.1.3 Liquefaction Potential

The subject site is located within a State of California Liquefaction Hazard Study Zone (Figure 7).

Liquefaction involves the sudden loss in strength of a saturated, cohesionless soil (predominantly sand) caused by the build-up of pore water pressure during cyclic loading, such as that produced by an earthquake. This increase in pore water pressure can temporarily transform the soil into a fluid mass, resulting in vertical settlement and can also cause lateral ground deformations. Typically, liquefaction occurs in areas where there are loose sands and the depth to groundwater is less than 50 feet from the surface. Seismic shaking can also cause soil compaction and ground settlement without liquefaction occurring, including settlement of dry sands above the water table.

To assess the potential for liquefaction of soils underlying the site, we used the simplified liquefaction analysis procedure recommended by NCEER (Youd and

Idriss, 1997, 2001). We evaluated the liquefaction potential using actual SPT blow counts from the mud rotary borings. We also performed liquefaction analysis using CPT data. CPT data were used primarily because they provide a continuous measurement of soil resistance and accurate stratigraphy of the site. For estimating the resulting ground settlements, we used the method proposed by Tokimatsu and Seed (1987).

Our liquefaction analysis was performed using the design groundwater level of El. +5 feet, the predominant moment magnitude, $M_{\rm W}$, of 6.8, and a PGA of 0.40g which is 40% of $S_{\rm DS}$ in accordance with ASCE 7-05. Our liquefaction analysis indicated that some of the interbedded thin layers of silty sand and sandy silt are susceptible to liquefaction during the design earthquake event. The total dynamic settlement varies across from 0 to 1.2 inches. Our liquefaction analysis is included in Appendix C, and a summary of the total dynamic settlement estimated under each proposed building is provided in Table 3.

Table 3 Summary of Dynamic Settlement under Each Proposed Building

Proposed Structure	Discription	Exploration	Total Dynamic Settlement (in)
BLDG. 1	New Restroom - Single Story	CPT-12-14	0.62
	New Grocery Store - Single		
BLDG. II	Story	CPT-12-11	0.15
		CPT12-12	0.15
		CPT-12-13	0.98
		R-12-20	0
BLDG. III	New Restroom - Single Story	CPT-12-10	0.14
BLDG. IV	Retail Boat Supply Store	CPT-12-7	0.23
	- 2 story	CPT-12-8	0.22
		CPT-12-9	0.02
		CPT-12-10	0.14
		R-12-18	0
		R-12-19	0
	Boat Broker Office - Single		
BLDG. V	Story	CPT-12-4	0.38
		CPT-12-5	0.69
		CPT-12-6	0.36
		R-12-17	0.19
BLDG. VI	Boaters Lounge - Single Story	CPT-12-03	0.31
		R-12-16	0.16
BLDG VII	Storage Rack for Boats	CPT-12-1	0.38
	- single story	CPT-12-2	1.23
		R-12-15	0.21

4.1.4 Lateral Spreading

Under cyclic loading, lateral spreading can occur on gently sloping ground or on virtually flat ground adjacent to bodies of water. The subject site is underlain by approximately 25 to 30 feet of firm to stiff clays interbedded with thin layers of silty sands, underlain by very dense sand. The interbedded thin layers of silty sands within the clay layer are susceptible to liquefaction. However, these interbedded thin sandy layers appear to be localized and do not form a continuous liquefiable layer. Therefore, liquefaction induced lateral spreading does not appear to be an issue at this site.

However, for conservatism, we still evaluated the potential for lateral spreading at this site following the screening analysis outlined in SP 117A - Guidelines for Evaluating and Mitigating Seismic Hazards in California (2008). Computer program PCSTBL 5 was used in our analysis. Liquefiable layers were modeled as clay with undrained shear strength equivalent to a post liquefaction residual shear strength. The liquefiable layers were also conservatively assumed to be continuous across the site. Base on our evaluation, the post liquefaction residual shear strength of the liquefied silty sands are mostly greater than 1.0 ksf. Based on the Manual for Preparation of Geotechnical Reports prepared by County of Los Angeles Department of Public Works (dated July 2010), for screening analysis, a horizontal seismic coefficient of 0.15 was use. Our analysis indicated that the factor of safety under seismic event is greater than 1.5. This meets the minimum factor of safety for static conditions and is much higher than the 1.1 factor of safety required for seismic condition. Therefore, liquefaction induced lateral spreading and seismic slope stability is not an issue at this site. The pseudostatic stability analysis is included in Appendix D.

4.1.5 Tsunami

All low-lying areas along California's coast are subject to potentially tsunami inundation. Tsunamis are long-period waves generated primarily from distant and local offshore earthquakes, landslides, or volcanic eruptions. The magnitude of the potential hazard is a function of the coastline configuration, sea floor topography, individual wave characteristics, and distance and direction from the source.

Two tsunamis, induced by the 1960 Chile Earthquake, caused damage in the Los Angeles and Long Beach harbors. In 1960, waves up to 5 feet in height occurred in the Cerritos Channel, and currents up to 12 knots were reported.

DELTA

Fortunately, the majority of the Southern California coastal areas do not have a significant potential to be inundated as a result of tsunamis. This is because that the

predominant faults in Southern California are strike-slip faults, which generate predominantly horizontal motions; and most of the earthquake epicenters are on land (Landers and Lockridge, 1989).

A 5-ft run-up for a 100-year tsunami and an 8-ft run-up for a 500-year tsunami are predicted near the Marina Del Rey area (Ziony, Editor, 1985). The ground surface adjacent to the boat deck is about El. +10 feet. If the tsunami coincides with high tides, the site area maybe flooded.

4.2 Foundations

4.2.1 General

Due to the light loading conditions with some removal and recompaction, the proposed one and two story wood framed structures can be supported on shallow footings.

4.2.2 Subgrade Preparation

Up to 5 feet of old fill was encountered in our field explorations. It should be anticipated that the old fill could vary between boring locations and could be locally deeper. Any old fill should be considered to be uncertified and should not be used for support of the planned structure. Any existing fill should be removed and replaced with properly compacted fill. All removals should extend a minimum of 5 feet outside the building pad and all areas where new improvements will be located.

To provide uniform support for the buildings it should be planned that the building pad should be over excavated and recompacted as structural fill to a minimum depth of 5 feet. The actual limits for all removals should be determined by the project geotechnical engineer during grading, depending on the actual conditions encountered. Footings should be supported by a minimum 3 feet of compacted fill.

The bottom of the excavation should be observed by Group Delta Consultants (GDC) to verify that the foundation conditions are acceptable before backfilling. GDC may perform compaction tests or require proof rolling of the subgrade to verify that the foundations will be supported in competent soils. If loose, disturbed or otherwise unsuitable soils or uncertified fill are encountered, or if the water is allowed to fill the excavation, the disturbed soils shall be removed and replaced with compacted granular fill. Bearing capacity, static settlement, and lateral resistance are discussed below.

4.2.3 Bearing Capacity

Footings should have a minimum width of 18 inches and be embedded a minimum of 18 inches below lowest adjacent grade. Footings should be founded on a minimum of 3 feet of compacted fill. For Footings with the specified minimum width and embedment, an allowable bearing pressure of 2,500 psf may be used. Bearing pressures may be increased by 1/3 for temporary seismic and wind loads.

4.2.4 Settlement

Settlement of the shallow footings will depend on the actual structural loads and footing size. Based on the preliminary structural loads and maximum footing size of 6 feet by 6 feet, we expect that the total static settlement to be on the order of 1.2 inches. In addition to static settlement, the proposed structure should be designed for the potential dynamic settlements as provided in Table 3. Differential settlement (static plus seismic) between adjacent similarly loaded columns is estimated to be on the order of 0.5 inches. Settlement calculations are provided in Table 4.

4.2.5 Lateral Resistance

An allowable passive fluid pressure of 300 pcf and an allowable sliding friction coefficient of 0.35 may be used for design, for foundations and slabs placed in structural fill or in undisturbed, stiff native soils. Both passive and sliding resistance may be used in combination without reduction.

4.3 Slab on Grade

The upper 5 feet of the subgrade soils consist predominantly of silty sand and sandy silt that have low expansion potential. However, there are areas within this site that medium expansive clays and clayey sand exists. During grading, this medium expansive clays should be mixed with the onsite sandy soils to mitigate the expansion potential. The mixed soils should have an El of less than 20, before being placed and compacted.

To reduce the potential for moisture transmission through slabs where moisture sensitive covering will be installed, we recommend that a vapor retarder shall be used. In accordance with ACI 302.2R-06, the material must comply with the requirements of ASTM E 1745, "Standard Specification for Water Vapor Retarders Used in Contact with Soil or Granular Fill under Concrete Slabs," and have a permeance of less than 0.01 perms per ASTM E96. The installation of the moisture barrier should comply with ASTM E 1643-09.

Reference is made to ACI 302.2R, Section 7.2, concerning whether to place 2 inches of sand over the barrier. The benefits and risks associated with the specified location of the vapor retarder should be reviewed by the structural engineer and all appropriate parties.

4.4 Minor Retaining Walls

Minor retaining walls less than 4 feet high retaining level backfill for hardscape around the building exterior (if used) may be supported on spread footings. Footings may be designed using an allowable bearing pressure of 1.5 ksf. Footings should be supported on a minimum of 2 feet of compacted fill, compacted to a minimum of 95% relative compaction in accordance with ASTM D 1557-91.

Retaining wall footings on level ground should have a minimum embedment of 18-inches below finish grade. Retaining walls founded on a 2:1 slope should have a minimum embedment of 36-inches below finish grade above the slopeward edge of footing.

We recommend that retaining walls be backfilled with non-expansive granular soils with a PI less than 15 and percent passing No. 200 sieve of less than 15 percent. A 2-ft thick cap consisting of less pervious onsite materials should be used to minimize infiltration of surface water. The finish surface should be graded to drain away from the proposed structures. Heavy compaction equipment operating adjacent to retaining walls can cause excessively high lateral soil pressures to be exerted on the wall. Therefore, soils within 5 feet of the wall should either be compacted with hand operated equipment or designed to withstand compaction pressure from heavy equipment.

Cantilevered walls, which are free to move laterally at least $\frac{1}{2}$ in. for each 10-ft height, may be designed for an equivalent fluid pressure of 38 pcf (with level backfill) or 45 pcf (2:1 sloping backfill). Walls restrained at the top with level backfill should be designed for an equivalent fluid pressure of 55 pcf.

4.5 Earthwork and Grading

All grading should conform to the 2010 CBC / County of Los Angeles requirements and the recommendations provided below.

1. The grading contractor is responsible for notifying the project geotechnical engineer of a pre-grading meeting prior to the start of excavation/grading operations and anytime that the operations are resumed after an interruption.

- 2. The project area should be stripped and cleared of any vegetation. The project civil engineer should locate any existing utilities in the area. Existing utilities should be removed, relocated or protected, as appropriate.
- 3. Any topsoil should to be removed. Topsoil can be reused in landscape and planter areas.
- 4. Uncertified fill, if encountered, should be removed and replaced. Any soils disturbed during demolition activities, or soft unsuitable soils encountered during grading should also be removed. All removals should extend a minimum of 5 feet outside building pads / the edges of footings in all directions, and to the limits determined by GDC.
- 5. The near surface soils underlying the site consist predominantly of sandy soils, temporary excavations in sandier zones will not stand in vertical cuts and should be sloped at 1 (horizontal) to 1 (vertical), or shoring should be used. Where an existing structure, street, or other improvements fall within the 1 to 1 plane projected up from the bottom of the excavation, temporary shoring should also be used.
- 6. If feasible, the excavated bottom should be proof-rolled with heavy equipment. Any areas of loose or pumping soils should be over excavated at the direction of GDC.
- 7. Any fill placed under structures or pavement and any backfill placed adjacent to buried walls is "structural fill." Structural fill should be free of expansive clay, rock greater than 3 inches in maximum size, debris and other deleterious materials. Fill soils should be moisture conditioned to ± 2% of optimum moisture content. All structural fill, except wall backfill, should be compacted to at least 95 percent of the maximum dry density determined by ASTM D 1557-91. Wall backfill and fill placed in non-structural and landscape areas should be compacted to at least 90 percent.
- 8. Compaction shall be done in maximum 8-inch lifts. All earthwork and grading should be performed under the observation of GDC. Compaction testing of the fill soils shall be performed at the discretion of GDC. Testing should be performed for approximately every 2 feet in fill thickness or 1,000 cubic yards of fill placed, whichever occur first. If specified compaction is not achieved, additional compactive effort, moisture conditioning of the fill soils, and/or removal and recompaction of the below-minimum-compaction soils will be required.

- 9. Excavation within 2 feet of groundwater may pump; the use of heavy equipment and vibration may create pumping and should be avoided.
- 10. Buried walls and retaining walls should be backfilled with non-expansive granular soils with a Plastic Index (PI) of less than 15 and with less than 15 percent fines (clay/silt) passing the No. 200 sieve. In addition, a drainage system should also be provided behind the walls as shown in Figure 8.
- 11. Underground utility trenches below structures and/or pavement should be backfilled with properly compacted fill. Fill should be placed in loose lifts appropriate for the type of compaction equipment utilized. Fill should be compacted to a minimum of 90 percent of the maximum density as determined by ASTM D1557-91. Jetting or flooding of backfill materials should not be allowed.
- 12. All materials used for asphalt concrete and aggregate base shall conform to the current version of "Green Book" or the equivalent, and shall be compacted to at least 95 percent relative compaction.
- 13. If, in the opinion of the geotechnical engineer, contractor, or owner, an unsafe condition is created or encountered during grading, all work in the area shall be suspended until measures can be taken to mitigate the unsafe condition. An unsafe condition shall be considered any condition that creates a danger to workers, on-site structures, on-site construction, or any off-site properties or persons.

4.6 Temporary Excavations and Shoring

4.6.1 Temporary Excavation

The near surface soils underlying the site consist predominantly of sandy soils, temporary excavations in sandier zones will not stand in vertical cuts and should be sloped at 1 (horizontal) to 1 (vertical), or shoring should be used. Where an existing structure, street, or other improvements falls within the 2 to 1 plane projected up from the bottom of the excavation, the need for temporary shoring should also be reviewed.

Surcharge loads, such as vehicular traffic, heavy construction equipment, and stockpiled materials, should be kept away from the top of temporary excavations a horizontal distance at least equal to the depth of excavation. Surface drainage should be controlled and prevented from running down the slope face. Ponding water should not be allowed within the excavation. Even with the implementation of the above recommendations, sloughing of slopes and unstable soil zones may still

Geotechnical Engineering Report Proposed Commercial and Retail Development Parcel 44, Marina del Rey area of Los Angeles, CA GDC Project No. LA-1049

occur within temporary excavations, and workmen should be adequately protected. Construction equipment and foot traffic should be kept off excavation slopes to minimize sloughing.

All excavation slopes and shoring systems should meet the minimum requirements of the Occupational Safety and Health (OSHA) Standards. Maintaining safe and stable slopes on excavations is the responsibility of the contractor and will depend on the nature of the soils and groundwater conditions encountered and his method of excavation. Excavations during construction should be carried out in such a manner that failure or ground movement will not occur. The contractor should perform any additional studies deemed necessary to supplement the information contained in this report for the purpose of planning and executing his excavation plan.

4.6.2 Temporary Shoring

Where sandy soils with little fines are present temporary shoring should be planned for vertical excavations. For design of cantilever shoring, an active earth pressure equivalent to a fluid weighing 36 pcf should be used for level ground. The allowable passive pressure may be taken 300 pcf. If soldier piles are used, to account for the rounded shape of the pile, when calculating the passive pressure on individual piles spaced at 3 diameters center to center or wider, the equivalent fluid pressure may be multiplied by a factor of 2. Shoring pressure for braced shoring can be provided if needed.

4.7 Site Drainage

The site shall be graded to maintain positive drainage so all runoff is properly collected and conveyed to proper disposal areas in approved storm drains. The area adjacent to foundation should be sloped to drain runoff away and prevent ponding of water.

4.8 **Utility Installations**

The bedding for any new sewer, storm drain and water service pipelines should be a minimum of 4 inches thick and should consist of clean sand, No. 4 concrete aggregate or gravel, and should have a sand equivalent of not less than 30. If wet soils are exposed in the trench, ½ inch gravel should be used for bedding. The pipe zone material, which extends to a level 12 inches above the pipe should consist of sand and should have a sand equivalent of no less than 30, and a maximum rock size of 1 inch. All imported materials should be approved by the project geotechnical engineer before being brought onsite.

Trench zone backfill extends from a level 12 inches above the pipe to finished subgrade. Trench zone material should have a maximum size of 2 inches and should contain no organics or other deleterious materials. All fill soils should be approved by the project geotechnical engineer. Soils proposed to be imported should be approved before being brought on site. As an alternative, slurry can be used as backfill. Where utilities are installed through existing AC pavement, the trench should be capped with AC to match the existing pavement section.

All bedding and backfill materials should be mechanically compacted to at least 90 percent relative compaction. Jetting or flooding of backfill should not be permitted.

4.9 Soil Corrosivity

A representative soil sample of the near surface soil from R-12-18 was tested to evaluate corrosion characteristics. The results indicate the test sample had a pH of 8.6, water-soluble sulfate content of 0.02 (percent by weight) and soluble chloride content of less than 0.01 (percent by weight). The sulfate results indicate that sulfate exposure is negligible.

The tested sample was also found to have a minimum measured electrical resistivity of 1562 Ohm-cm. The following correlation can generally be used between electrical resistivity and corrosion potential:

Elect. Resistivity (Ohm-cm)
Less than 1,000
1,000-2,000
2,000-10,000
greater than 10,000

Corrosion Potential
Severe
Corrosive
Moderate
Mild

On the basis of the laboratory testing, the samples are classified as corrosive for buried metals. Specific assessment concerning the corrosion potential for buried concrete and metals should be made by a corrosion consultants, including options for protection.

4.10 Expansion Potential

The upper 5 feet of the subgrade soils at this site consist predominantly of silty sand and sandy silt that have low expansion potential. However, there are areas within this site that medium expansive clays and clayey sand exists. During grading, this medium expansive clays should be mixed with the onsite sandy soils to mitigate the expansion potential. The mixed soils should have an El of less than 20, before being placed back and compacted.

4.11 Pavement Design

Near surface soils at this site consist predominantly of silty sand, sandy silts, with silty clay and sandy clay. These soils will be mixed during grading. Based on the subgrade soil condition, a R-value of 20 may be used for pavement design. The California Division of Highways Design Method was used for design of the recommended pavement sections.

The following pavement sections are recommended for Traffic Index (TI) values of 5, 6, and 7:

Table 5 Section Thickness of New AC Pavements

Traffic Index (TI)	Section Thickness (Feet) AC Over AB
5	0.25 AC/0.60 AB
6	0.25 AC/0.85 AB
7	0.35 AC/0.95 AB

A traffic Index value 5 is recommended for car parking and non-truck driveways. Traffic index of 6 or higher may be used for truck areas or for the streets. The upper 24 inches of subgrade supporting pavements should be compacted to at least 95 percent relative compaction (ASTM D1557-1990). In areas subjected to high wheel loads or abrasive wheel force, we recommend a pavement section of 6 inches of PCC over 6 inches of aggregate base (CAB or CMB). The aggregate base layer should be compacted to at least 95 percent of its maximum dry density. The asphalt and base should conform to the specifications of the Standard Specifications for Public Works Construction, current Edition ("The Green Book").

5.0 SECTION 111 STATEMENT

It is our opinion, based upon our work as outlined above and as referenced, that if constructed in accordance with our recommendations and properly maintained (1) the proposed construction will be safe against hazard from landslide, settlement, or slippage, and that (2) the proposed grading and construction will have no adverse effect on the geologic stability of property outside of the subject site.

6.0 POST INVESTIGATION SERVICES

We recommend that final project plans and specifications should be reviewed by GDC to confirm that the full intent of the recommendations presented in this report have been properly applied to the design. During construction, all earthwork should be observed and tested by GDC, including site preparation, excavations, pile

installation, load testing, placement of compacted fill and backfill, and installation of drainage systems.

7.0 LIMITATIONS

This investigation was performed in accordance with generally accepted geotechnical engineering principles and practice. The professional engineering work and judgments presented in this report meet the standard of care of our profession at this time. No other warranty, expressed or implied, is made. This report has been prepared for the Santry Development, LLC, and their design consultants. It may not contain sufficient information for other parties or other purposes, and should not be used for other projects or other purposes without review and approval by GDC.

The recommendations for this project, to a high degree, are dependent upon proper quality control of site grading, fill and backfill placement, and pile foundation installation. The recommendations are made contingent on the opportunity for GDC to observe the earthwork operations. This firm should be notified of any pertinent changes in the project, or if conditions are encountered in the field, which differ from those described herein. If parties other than GDC are engaged to provide such services, they must be notified that they will be required to assume complete responsibility for the geotechnical phase of the project, and must either concur with the recommendations in this report or provide alternate recommendations.

8.0 REFERENCES

California Building Code (CBC) (2010), California Code of Regulations, Title 24, Part 2, Volume 2 of 2, Based on 2006 International Building Code.

California Department of Conservation, Division of Mines and Geology, 1998, "Seismic Hazard Evaluation of the Venice 7.5-Minute Quadrangle, Los Angeles County, Open File Report No. 98-036."

California Division of Mines and Geology, 1990, "Fault-Rupture Hazard Zones in California, Alquist-Priolo Special Studies Zones Act of 1972," Special Publication 42, Department of Conservation, California Division of Mines and Geology.

Ensoft LPILE version 5.0.

Legg M. R., Borrero J. C., and Synolakis C. E. (2002), "Evaluation of Tsunami Risk to Southern California Coastal Cities", the 2002 NEHRP professional fellowship report, published by EERI.

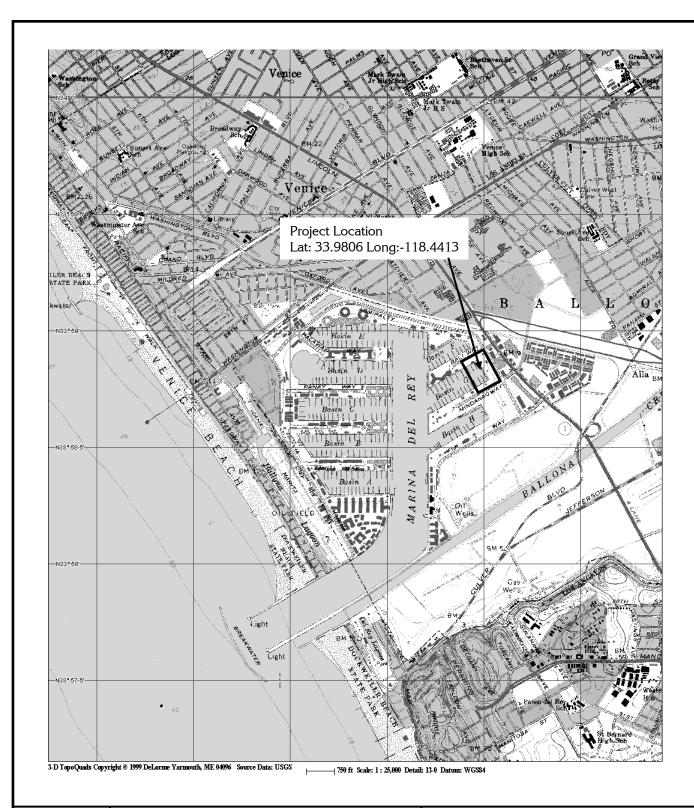
Tokimatsu, K. and Seed, H.B., 1987, "Evaluation of Settlements in Sands Due to Earthquake Shaking," J. of Geotech. Eng. Division, ASCE, Vol. 113, No. 8.

Youd, T. L., et. al., "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 10, October 2001.

TABLE 4 SETTLEMENT CALCULATION

	PROJE	CT NAME:	Marina De	l Rey - Restro	oom						-	PROJECT	NUMBER:	LA-1049			
i	PROBLEM DES	CRIPTION:	Footings I	Foundation													
	Length, L Width, B	6	ft ft	L <u>≥</u> B					(A) (B)								
Area	Load, Q	2,500	psf				1		(c)								
-	Depth, D	2	ft	must be at a	layer bour	ndary			(D)								
Loaded	Settlement Point Loc.	1	1=center,	2=short edge	e, 3=long ed	dge, 4=corr	ner		(E)								
(1)		(2)		(3) Layer	(4)	(5)	(6)	(7)	(8)	(9)	(10) Compress.	(11)	(12)	(13)	(14)	(15)	(16)
Soil	De	epth (feet)		Height	γ	σ' _ν			Stress D	istribution	Туре	E	<u>Cr</u>	Cc	OCR	Strain	Layer
Layer	top	bottom	center	(feet)	(pcf)	(psf)	OCR	σ' _p (psf)	lσ	Δσ (psf)	E or C	(ksf)	1+e0	1+e0	Case	ε (in/in)	Settle (in)
	0	1.5	0.75	1.5	120	90											
	1.5	5	3.25	3.5	120	390			0.9559	2,390	Е	300			N/A	0.007966	0.33
	5	7	6	2	68	668	1.5	1,002	0.5489	1,372	С		0.01	0.0997	2	0.032549	0.78
	7	10	8.5	3	68	838	1.5	1,257	0.2996	749	С		0.0121	0.1242	2	0.014706	0.53
	10	15	12.5	5	68	1,110	1.5	1,665	0.1372	343	С		0.0121	0.1242	1	0.001415	0.08
	15	20	17.5	5	68	1,450	1.5	2,175	0.0673	168	С		0.0159	0.1242	1	0.000758	0.05
	20	22.5	21.25	2.5	68	1,705	1.5	2,558	0.0446	111	С		0.0189	0.1242	1	0.00052	0.02
	22.5	25	23.75	2.5	68	1,875	1.5	2,813	0.0352	88	С		0.0171	0.1166	1	0.000341	0.01
	25	50	37.5	25	120	3,460			0.0135	34	Е	1200			N/A	2.81E-05	0.01
						ļ											
						ļ											
						ļ											
																	ļ

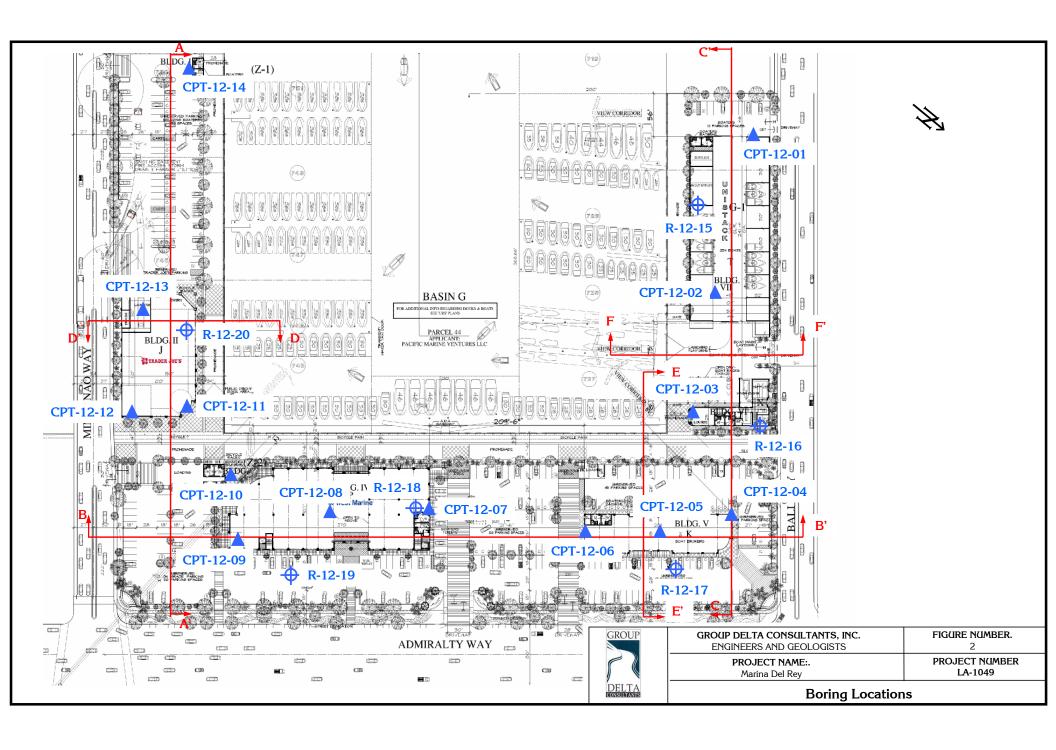
TABLE 1 SETTLEMENT CALCULATION

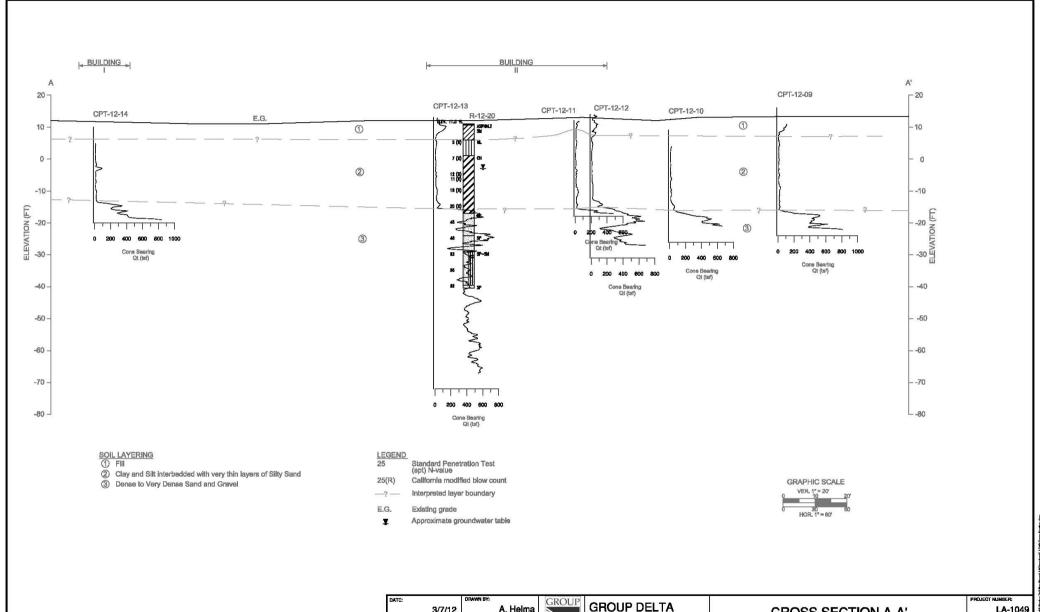

INSTRUCTIONS:

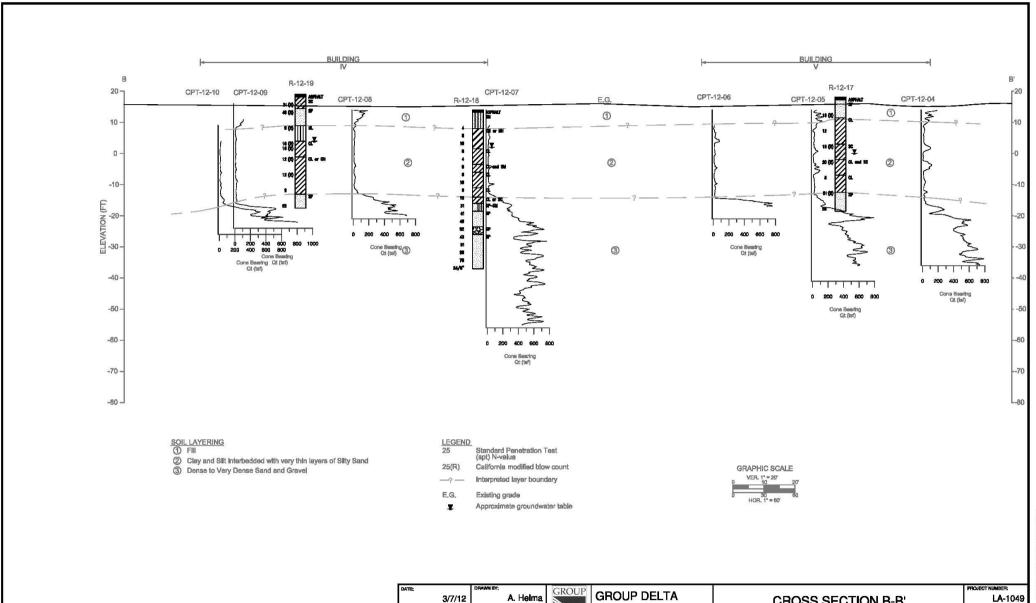
- 1 Program calculates settlement under center, short edge, long edge, or corner of shaded rectangular loaded areas, using Boussinesq stress distribution and consolidation theory or elastic modulus compressibility.
- 2 Input data in shaded fields. Unshaded fields are automatically calculated. Up to 26 soil layers may be used.
- 3 Explanation of the calculation procedure and guidance for input of data in rows (A) through (E) and columns (1) through (16) is provided below.

ROW AND COLUMN NOTES

- (A) Input length (long side) of rectangular loaded area.
- (B) Input width (short side) of rectangular loaded area.
- [C) Input applied load at the base of the loaded area (pounds per square foot)
- (D) Input depth of applied load below the ground surface (the depth must coincide with a bottom-of-layer boundary specified in Column (2)
- (E) Input 1, 2, 3, or 4 to calculate the settlement under the center, midpoint of short edge, midpoint of long edge, or corner, respectively, of the rectangular loaded area.
- (1) Input Soil Layer number and/or description (optional).
- (2) Starting with the ground surface (depth = 0) input the depth to top and bottom of each soil layer below the ground surface. The depth to center of the layer is automatically calculated.
- (3) The layer height or thickness is automatically computed (H=depth to top of layer minus depth to bottom of layer).
- (4) Input unit weight of soil in the layer (total unit weight above the water table, buoyant unit weight below the water table).
- (5) Vertical effective stress (pounds per square foot) at the center of each layer prior to the new loading is automatically computed.
- (6) Input Overconsolidation Ratio (OCR) defined as the ratio of maximum past preconsolidation pressure (column (7)) to current effective vertical stress (Column (5)). OCR=1 is Normally Consolidated.
- (7) Maximum past preconsolidation pressure is calculated as the product of Column (5) and Column (6), or σ'_p = OCR * σ'_ν.
- (8) The stress increase coefficient (Io) at the center of each layer is computed using Newmark integration of Boussinesq theory based on vertical depth below bottom of loaded area and position on loaded area input in Row E.
- (9) The increase in stress (Δσ) at the center of each layer due to the loaded area is computed as the product of Iσ (Column (8)) and load Q (Row (C)).
- (10) Input compressibility type for each layer. "E" means elastic modulus (slope of stress versus strain curve) is used, "C" means consolidation theory is used (slope of log stress versus strain curve) is used.
- (11) Input elastic modulus (E in ksf) value for each layer where "E" is selected in Column 10.
- (12) Input Recompression Ratio, or slope of log stress versus strain curve, in the overconsolidated range (if soil is normally consolidated this value need not be input).
- (13) Input Virgin Compression Ratio, or slope of log stress versus strain curve, in the normally consolidated range.
- (14) Virgin and/or Recomp. Case determined ("C" Comp. Type Only). Case 1 = entire loading is within recompression range, Case 2 Loading patially recompression partially virgin, Case 3 entirely virgin (norm cons.)
- (15) Strain ε is calculated as Δσ / E if "E" is specified in Column (10), or by consolidation theory using the appropriate recompression and/or virgin slopes if "C" is specified in Column (10).
- (16) Layer settlement (inches) is computed as Strain (Column (15)) times Height (Column (3) converted to inches). Total settlement (inches) of all layers is summed up at the bottom of Column (16).

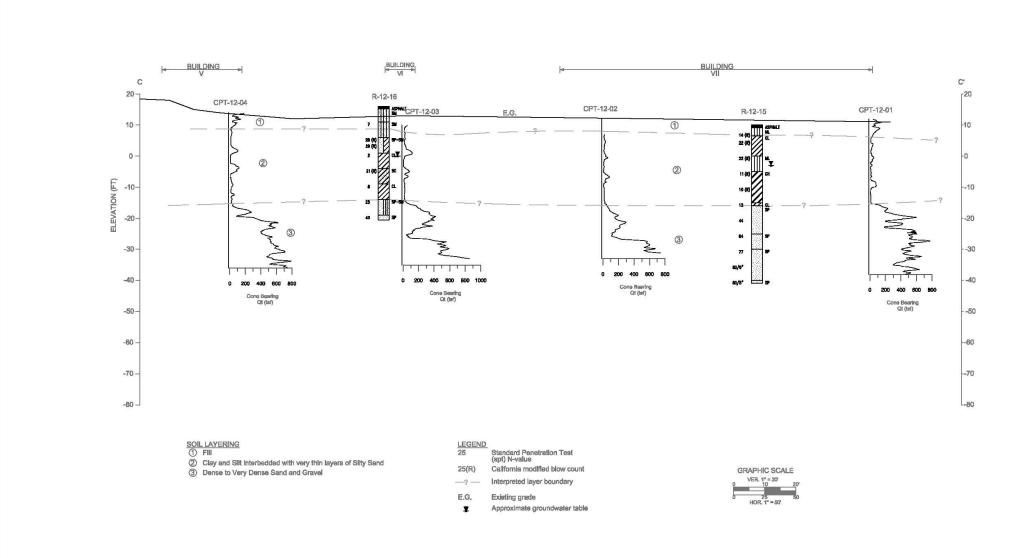




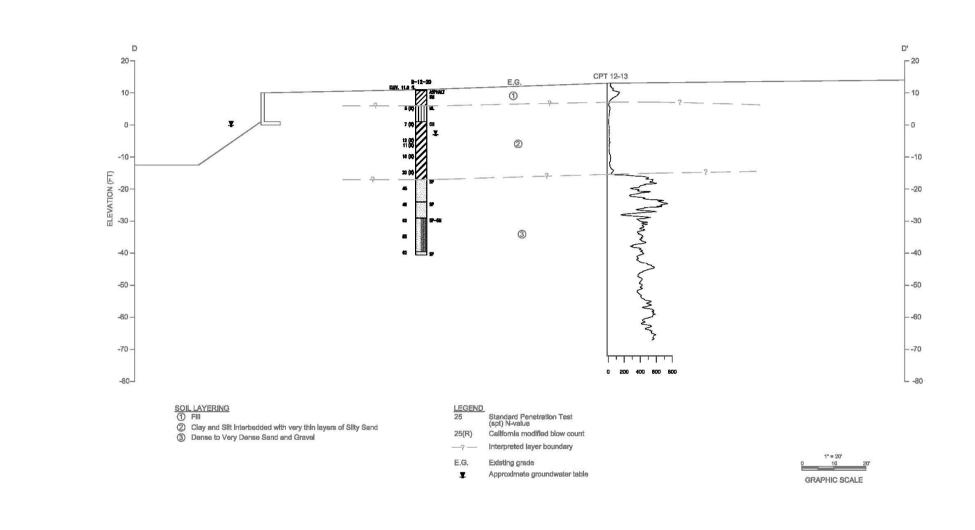

GROUP DELTA CONSULTANTS, INC.	FIGURE NUMBER
ENGINEERS AND GEOLOGISTS	1
PROJECT NAME: Marina Del Rey – Parcel 44	PROJECT NUMBER LA-1049

VICINITY MAP

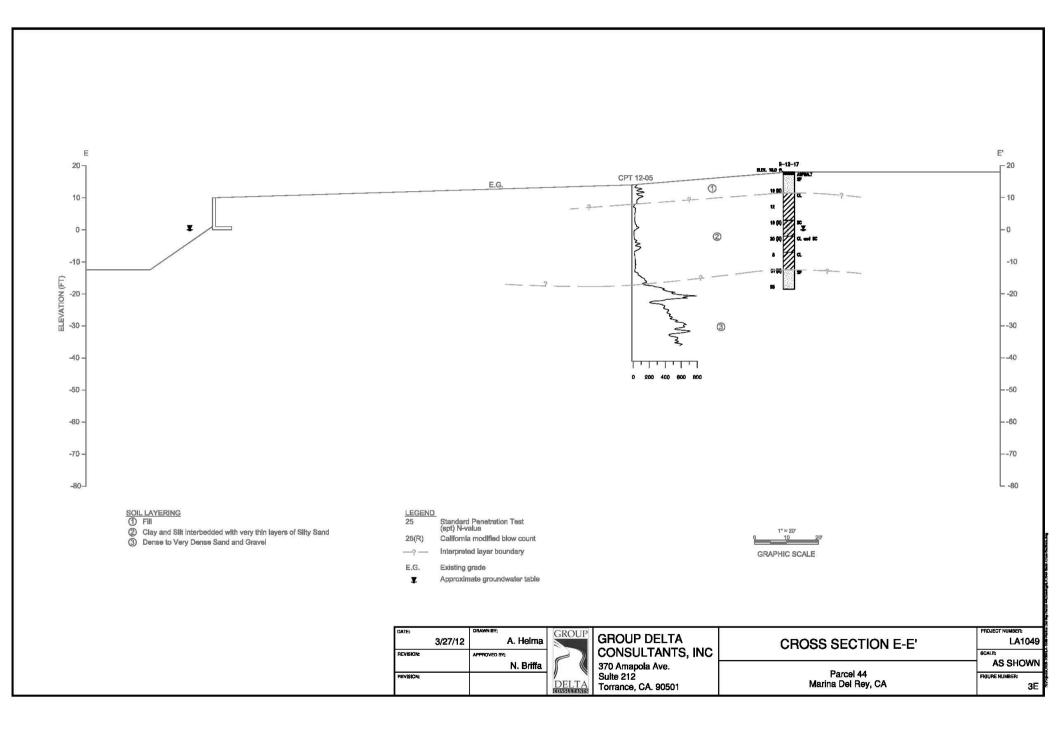
DATE: 3/7/12	PRAWN BY: A. Helma	GROUP	GROUP DELTA	CROSS SECTION A-A'	PROJECT NUMBER: LA-1049	
REVISIONS	APPROVED BY: N. Briffa		CONSULTANTS, INC 370 Amapola Avenue	3.1333 3 <u>2</u> 3.113.11.11	SCALE: AS SHOWN	
REVISION:	96-000107044-0-0-0010025	DELTA	Suite 212 Torrance, CA 90501	Parcel 44 Marina Del Rey, California	FIGURE NUMBER:	

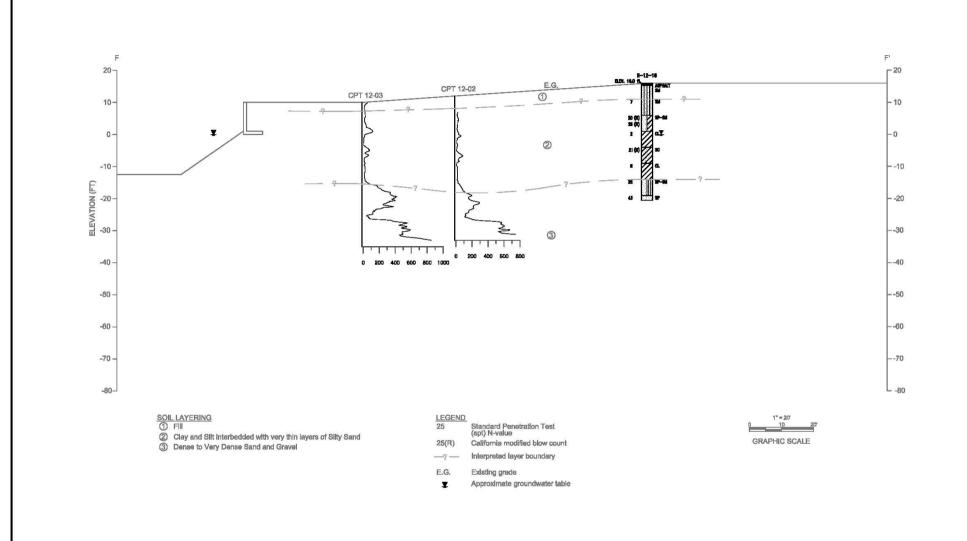

DATE:	DRAWN BY;
3/7/12	A. Helma
REVISION:	APPROVED BY:
	N. Briffa
REVISION:	

ı	GROUP
Ĺ	DELTA
	CONSULTANTIS

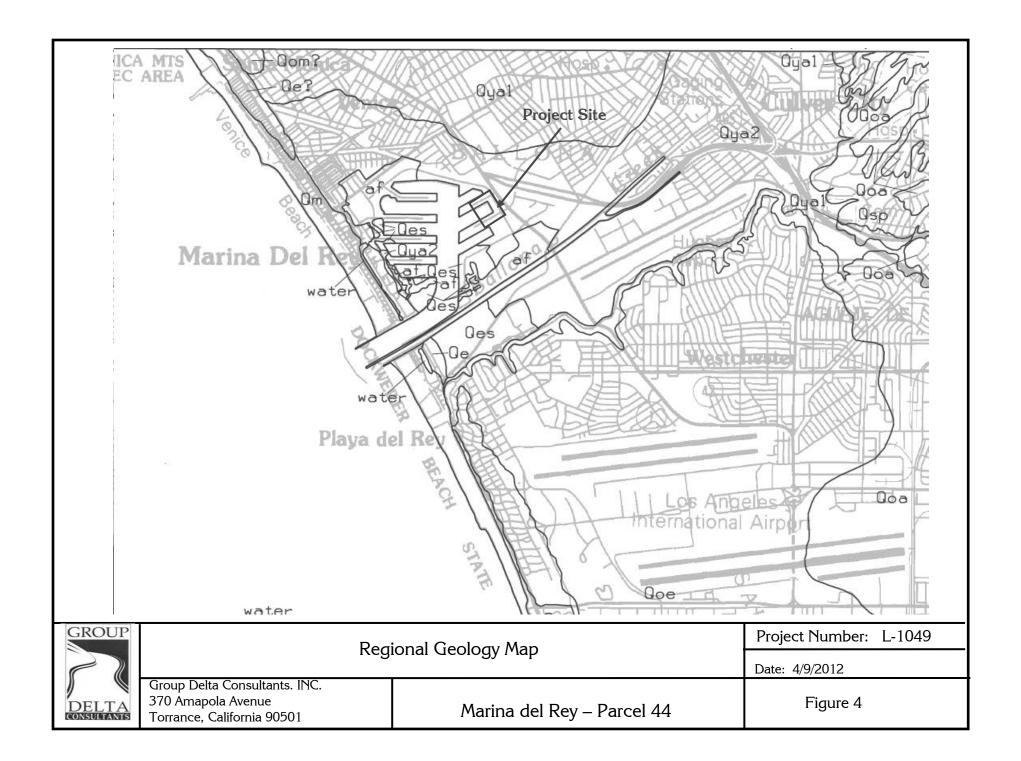

GROUP DELTA CONSULTANTS, INC
370 Amapola Avenue
Sulte 212
Torrance, CA 90501

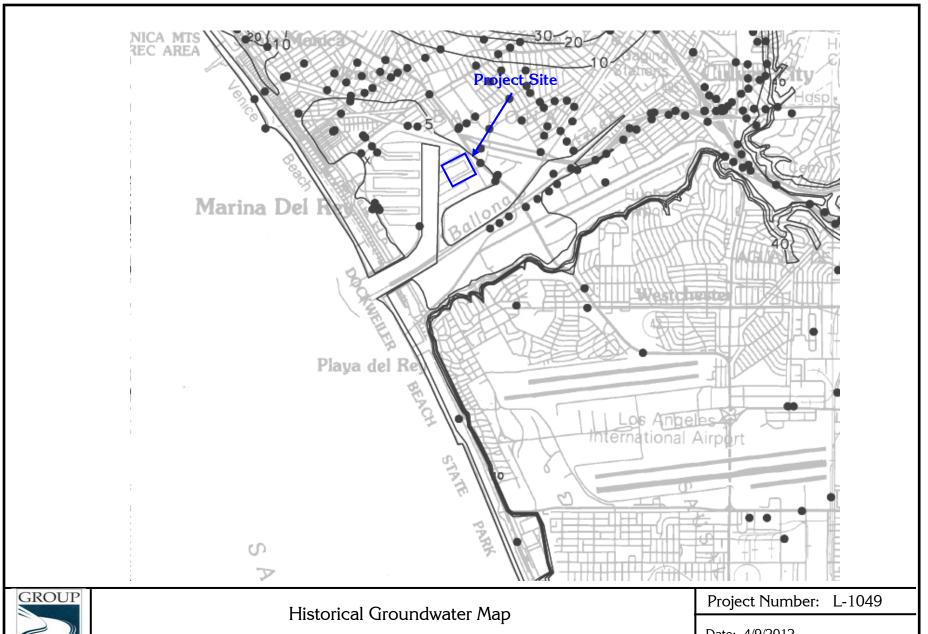
CROSS	SECTION B-B'


	SCALE:
	AS SHOW
Parcel 44 Marina Del Rey, California	FIGURE NUMBER:

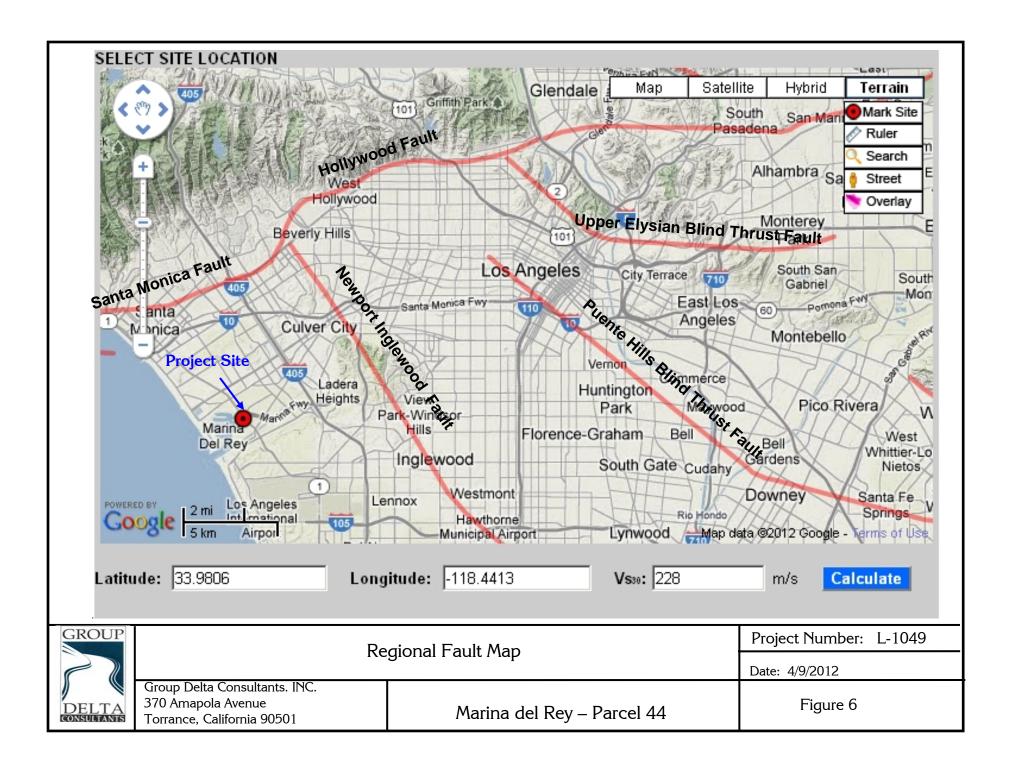


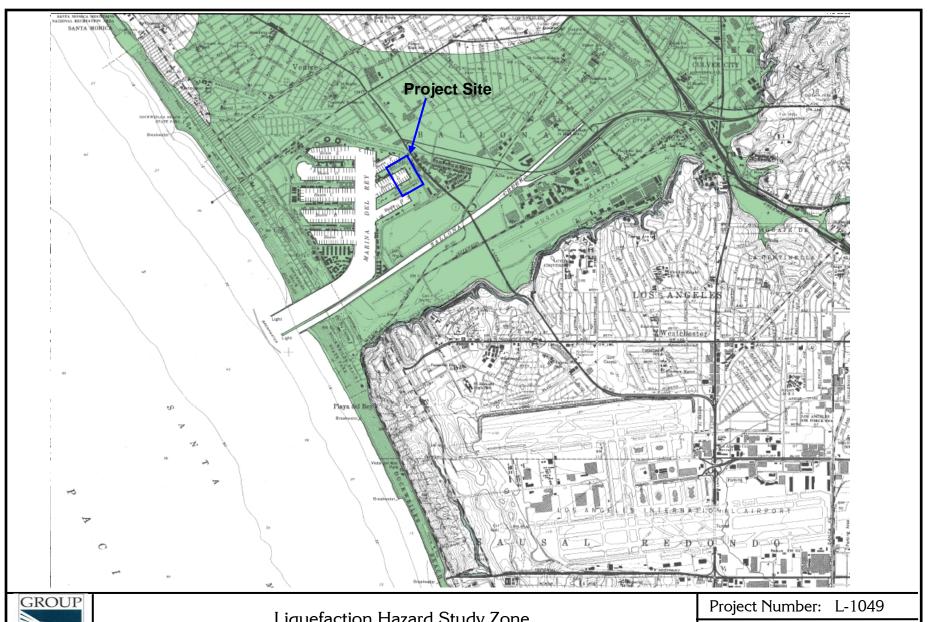
DATE: 3/7/12	A. Helma	GROUP	GROUP DELTA	CROSS SECTION C-C'	PROJECT NUMBER: LA-104
REVISION:	APPROVED BY: N. Briffa		CONSULTANTS, INC 370 Amapola Avenue		AS SHOW
REVISION	THE SIME	DELTA	Sulte 212 Torrance, CA 90501	Parcel 44 Marina Del Rey, California	FIGURE NUMBER:




DATE:	DRAWN BY;	GROUP			PROJECT NUMBER:
3/27/1	12 A. Helma	SKOOT	GROUP DELTA	CROSS SECTION D-D'	LA1049
REVISION:	APPROVED BY:		CONSULTANTS, INC		SCALE:
	N. Briffa		370 Amapola Ave.		AS SHOWN
REVISION:		"	Sulte 212	Parcel 44	FIGURE NUMBER:
		DELTA	Torrance, CA. 90501	Marina Del Rey, CA	3D

DATE:	DRAWN BY;	GROUP			PROJECT NUMBER:
3/27/	12 A. Helma		GROUP DELTA	CROSS SECTION F-F'	LA1049
REVISION:	APPROVED BY:		CONSULTANTS, INC	5.1.555 5_5.1.5.1.	SCALF:
	N. Briffa		370 Amapola Ave.	1 - 100mm	AS SHOWN
REVISION:		7	Sulte 212	Parcel 44	FIGURE NUMBER:
		DELTA	Torrance, CA. 90501	Marina Del Rey, CA	3F




Date: 4/9/2012

Group Delta Consultants. INC. 370 Amapola Avenue Torrance, California 90501

Marina del Rey – Parcel 44

Figure 5

Liquefaction Hazard Study Zone

Date: 4/9/2012

Group Delta Consultants. INC. 370 Amapola Avenue Torrance, California 90501

Marina del Rey – Parcel 44

Figure 7

NOTES

- 1) Perforated pipe should be an ASTM standard Acrylonitrile Butadiene Styrene (ABS), Polyvinyl Chloride (PVC), or Polyethylene (PE) with a 0.25% slope for drainage and wrapped with a filter fabric (Mirafi 140 or equivalent).
- 2) Gravel 3/8" or 3/4" gravel
- 3) If no drainage composite is used, Pervious Backfill material should be used above the gravel zone. Pervious Material should be meet Public Works Standard (Greenbook 2000, 3.0.0-3.5.2) as follows:

100% passing 3/4" 80-100% passing 3/8" 0-8% passing -100 sieve 0-3% passing -200 sieve

- 4) If a drainage composite is used, non expansive backfill material may be used above the gravel zone. Drainage Composite Material should be MiraDrain 6000 material or equivalent. Backfill should have an EI<20 and conform to Group Delta Grading and Backfill Recommendations.
- 5) If the wall is supported by the deck, no backfill shall be placed before the deck is constructed and a structural engineer's approval is given.
- 6) No heavy equipment or compaction equipment should be used above the perforated pipe, or within 8 feet of the wall. Only hand compaction equipment should be used above adjacent to the walls.
- 7) Utility Laterals Remove loose material and hand compact backfill or use 2-sack sand/cement slurry.

Retaining Wall Backfill														
	Marina del Re	v - Parcel	44	PROJECT N	LA-1049									
	Marina der Rey - Farcer 44 DATE: 4/9/2012													
GROUP	SCALE:	DRAWN BY:	A Helma	REVISED:										
	Not To Scale	APPROVED BY:	Y Liu	FIGURE:	8									
DELTA	GROUP DE	LTA C	ONSUL	ΓΑΝ	TS, INC.									

APPENDIX A FIELD EXPLORATION

APPENDIX A FIELD EXPLORATION

The subsurface conditions at the site were investigated between February 23, 2012 and March 2, 2012. The field exploration program included drilling 6 mud rotary wash borings and performing 14 Cone Penetration Test (CPT) probes. The locations of explorations are shown in Figure 2 of the main report.

The borings and CPTs were advanced to depths ranging from 29 to 80 feet below the existing grades. The explorations were performed under the continuous technical supervision of our field engineer, who also maintained detailed logs of the soils encountered, classified the materials, and assisted in obtaining soil samples. Subsurface materials encountered in the borings were visually classified and logged in accordance with the Unified Soil Classification System (USCS). Logs of the borings are presented in Figures A-2 to A-7.

Relatively undisturbed modified California ring samples and Standard Penetration Test (SPT) samples were taken in the borings at depth intervals of 2.5 feet and 5 feet. In addition, representative bulk samples were taken within the upper 5 feet. The locations of samples are indicated on the boring logs. The relatively undisturbed samples were obtained with a 3-inch O.D. split-barrel sampler lined with 1-inch high brass rings. The sampler was driven into the soil using a 140-pound hammer falling a distance of 30 inches. The number of blows required to drive the sampler 12 inches into the soil is recorded on the boring logs.

The Standard Penetration Tests (SPT) were conducted in accordance with ASTM D 1586, using a standard 2-inch outside diameter, 1.375-inch inside diameter, split-spoon sampler. The SPT sampler was driven into the soil using a 140-pound hammer free-falling 30 inches. The N-value blow counts are shown directly on the boring logs.

All samples were sealed to prevent moisture loss and returned to our laboratory for additional visual examination and laboratory testing. A discussion of the laboratory testing program, including test results, is provided in Appendix B.

The CPT probes were performed in general accordance with ASTM D5778 using a 30-ton CPT Rig provided by Kehoe Testing and Engineering, Huntington Beach, CA. A CPT sounding is performed by pushing a conical tipped steel probe with a cylindrical friction sleeve into soil while simultaneously recording the end bearing and side friction resistance. The conical tip had a 60-degree apex angle and a projected cross sectional area of 15 cm² and is advanced with a hydraulic ram. The cylindrical friction sleeve has a surface area of 225 cm². Both the tip and sleeve have outside diameters of 4.37 cm.

As the probe is advanced, electronic instruments measure and record both the tip resistance and the frictional resistance on the sleeve. The tip and frictional resistance are then analyzed, using available correlations, to estimate soil classification, density, strength and compressibility of subsurface materials. Unlike soil borings, in which drive samples are generally taken every 2.5 to 5 feet, CPT soundings provide a near continuous record of soil properties with depth by recording the parameters at approximately 1 inch intervals. Logs of the CPT probes are presented in Figures A-8 to A-21.

The following are attached and complete this appendix:

Figure A-0 Key for Soil Classification
Figure A-1 Legend for Log of Test Borings
Figures A-2 to A-7 Logs of Borings

Figures A-8 to A-21 CPT Logs

KEY FOR SOIL CLASSIFICATION

		UNIFIE	D SOIL CLA	ASSIFICATION SYSTEM (ASTM D-2487)
PI	RIMARY DIVIS	IONS	GROUP SYMBOL	SECONDARY DIVISIONS
No.		CLEAN GRAVEL	GW	Well-graded gravel, gravel with sand, little or no fines
SOILS sing the	GRAVEL (% GRAVEL >	(Less than 5% fines)	GP	Poorly-graded gravel, gravel with sand, little or no fines
D SC assing	% SAND)	"DIRTY" GRAVEL	GM	Silty gravel, silty gravel with sand, silty or non-plastic fines
GRAINED fines pas 30 Sieve)		(More than 12% fines)	GC	Clayey gravel, clayey gravel with sand, clayey or plastic fines
E GRAINEI % fines pa 200 Sieve)		CLEAN SAND	SW	Well-graded sand, sand with gravel, little or no fines
COARSE than 50%	SAND	(Less than 5% fines)	SP	Poorly-graded sand, sand with gravel, little or no fines
COARSE GRANNED SOILS (less than 50% fines passing the No 200 Sieve)	(% SAND ≥. % GRAVEL)	"DIRTY" SAND	SM	Silty sand, silty sand with gravel, silty or non-plastic fines
<u>a</u>)		(More than 12% fines)	SC	Clayey sand, clayey sand with gravel, clayey or plastic fines
S. Sing	011 TO AA	ID OLAYO	ML	Inorganic silt, sandy silt, gravelly silt, or clayey silt with low plasticity
SOILS passin eve)		ND CLAYS less than 50)	CL	Inorganic clay of low to medium plasticity, sandy clay, gravelly clay, silty clay, Lean Clay
NED fines 00 Si	(Elquia Ellilli	1000 (11011 00)	OL	Low to medium plasticity Silt or Clay with significant organic content (vegetative matter)
GRAINED SOILS more fines passing No. 200 Sieve)	CIL TO AA	ND CLAYS	MH	Inorganic elastic silt, sandy silt, gravelly silt, or clayey silt of medium to high plasticity
FINE (50% or the P		t 50 or more)	CH	Inorganic clay of high plasticity, Fat Clay
F (50%)	(2.quiu Eirii		OH	Medium to high plasticity Silt or Clay with significant organic content (vegetative matter)
HIG	HLY ORGANIC	SOILS	PT	Peat or other highly organic soils

Note: Dual symbols are used for coarse grained soils with 5 to 12% fines (ex: SP-SM), and for soils with Atterberg Limits falling in the CL-ML band in the Plasticity Chart. Borderline classifications between groups may be indicated by two symbols separated by a slash (ex: CL/CH, SW/GW).

	CONSIST	ENCY CLASSIFICATION								
COARSE G	RAINED SOILS	F	INE GRAINED SOIL	LS						
Blowcount SPT ¹ (CAL) ²	Consistency	Blowcount ³ SPT ¹ (CAL) ²	Consistency	Undrained Shear Strenth ³ , S _u (ksf)						
0-4	Very Loose	<2 (<3)	Very Soft	< 0.25						
(0-6)	very Loose	2-4 (3-6)	Soft	0.25 -0.50						
5-10 (7-15)	Loose	5-8 (7-12)	Firm	0.50 - 1.0						
11-30 (16-45)	Med. Dense	9-15 (13-22)	Stiff	1.0 - 1.5						
31-50 (46-75)	Dense	16-30 (23-45)	Very Stiff	1.5 - 2.0						
>50 (>75)	Very Dense	>31 (>45)	Hard	>2.0						

MOISTURE CLASSIFICATION	
sence of moisture, dusty, dry to the touch lamp but no visible water	
ble free water, usually soil is below water table	

CONSISTENCY NOTES:

Number of blows of a 140-lb. hammer falling 30-inches to drive a 2-inch OD (1.375-inch ID) SPT Sampler [ASTM D-1585] the final 12-inches of driving
 Number of blows of a 140-lb. hammer falling 30-inches to drive a 3-inch OD (2.42-inch ID) California Ring Sampler the final 12-inches of driving.

3. Undrained shear strength of cohesive soils predicted from field blowcounts is generally unreliable. Where possible, consistency should be based on $S_{\rm u}$ data from pocket penetrometer, torvane, or laboratory testing.

CLASSIFICATION CRITERIA BASED ON LABORATORY TESTS

Grain Size Classification

CLAV	AND SILT		SAND		GRA	VEL	COB	BLES	BOULDERS		
CLAT	AND SILT	Fine	Medium	Coarse	Fine	Coarse	COB	BLLS			
US Std Sieve	No. 200	No. 40	No. 10	No. 4	3/4"	3"		12"		1	
Grain Size (mm)	0.075	0.425	2	4.75	19.1	76.2		304.8			

Group

Classification of earth materials shown on the logs is based on field inspection and should not be construed to imply laboratory analysis unless so stated.

Granular Soil Gradation Parameters

Coefficient of Uniformity: $C_u = D_{60} / D_{10}$ Coefficient of Curvature: $C_C = (D_{30})^2 / (D_{10} \times D_{60})$

 D_{10} = 10% of the soil is finer than this diameter D_{30} = 30% of the soil is finer than this diameter D_{30} = 60% of the soil is finer than this diameter

Symbol	Gradation or Plasticity Requirement
SW	C _u >6 and C _c between 1 and 3
GW	C _u >4 and C _c between 1 and 3
GP or SP	Clean gravel or sand not meeting requirement for GW or SW
GM or SM	Plots below "A" Line on Plasticity Chart or PI < 4

GC or SC Plots above "A" Line on Plasticity Chart and PI > 7

	LOG OF TEST BORING PROJECT N.																					
	LOCAT		ı	LS	ПВС	וואל	NG	Marina	Del I	Rey -	Parcel 4	14	STAF		LA-104			LEGEND SHEET NO.				
1			a D	el Rey	,								SIAF	ΚI	FINI	эн		1 of 1				
DRILL	LING CO	OMPA	NY	Crrcy	<u>'</u>				DRILL	ING MI	ETHOD				LOGGED	ВҮ	CHE	CKED BY				
	cal Dri									ary W												
	ING E			Г						NG DIA	. (in)	TOTAL	DEPTH (ft)	GROUN	D ELEV (ft)			ROUND WATER (ft)				
	yhew PLING N							NOTES	5"							▼ / na	7					
SP	T & Ca	al. Mo	od.																			
					7 ^				8	TS												
eet)	S		SAMPLE TYPE	ġ.	PENETRATION RESISTANCE (BLOWS / 6 IN)	DRY DENSITY (pcf)	쀭	~	PASSING #200	ATTERBERG LIMITS LL:PL:PI	POCKET PEN (tsf)	U										
DEPTH (feet)	A	(feet)		SAMPLE NO.	TRA STAI NS /	ENS ocf)	MOISTURE (%)	OTHER	NIN O	P.F.G	ET F Isf)	GRAPHIC LOG		DES	SCRIPTION A	AND CLAS	SIFICAT	TION				
EP.		=	MP	AM	ESI SLOS	3) C \	NON NON	5#	AS	IRBE) CK	GR/	DESCRIPTION AND CLASSIFICATION									
			ŝ	Ø		Ö	_		%	ΙË	Ğ											
			\dashv							1												
-													אוום	CAL SD	T - Refers t	o the can	anlina m	othod as				
														ed below		o trie san	ipiirig iii	leti lou as				
-																						
_																						
_																						
_5			\boxtimes	B-1														od of placing				
-		Þ	\boxtimes										disturbe	ea son cu	uttings into a	a large pla	astic dag	3				
-																						
-																						
_10																						
			X	R-2											NIA MODIF			. split tube ngs generally				
-													driven i	into the s	soil by a 140) lbs. ham	mer fre	e falling 30 inch				
L																						
-																						
₹_15		L											0.77 (0									
11/17			X	S-3														A 2.0" o.d. split the soil with a				
		ŕ	\dashv												ree falling a							
)G.G																						
CCC																						
2 <u>ق</u>																						
25.GF																						
5 – 20													ADDD	=\/IATI ^ N	NS FOR OT	TIED TE	270.					
ODO																						
5 PR														tterberg l Consolida			= Grain = Pocke	Size Analyses				
L-67:													CO = C	Corrosivity	V	RV	= R-Val	ue				
L _A 2													CP = L DS = D	aborator	y Compaction			on #200 Sieve sion Index				
₹														quid Limi			= Torva					
NING -																						
GDC_LOG_BORING_1A_LA2_L-675 PRODUCT 425.GPJ GDCLOG.GDT 11/17/11	UP									Η.	T. IIC C: "	40.4000/ 4	DDI IEO OL''	\/ AT T! "	FLOCATION	LOF T						
9		GRC	UF	P DE	LTA CO	DNSU	LTAN	ITS, I	NC.	- 1 -	THIS BOF	RING AND	PPLIES ONL O AT THE TIM	ME OF DF	RILLING.							
Si Co		370) <i>A</i>	Amar	ola Av	enue	, Sui	te 21	2				NDITIONS M MAY CHANG			ER N	FIGU	RE A-1b				
	370 Amapola Avenue, Suite 212 DELTA Torrance, CA 90501										WITH THE PASSAGE OF TIME. THE DATA PRESENTED											
DEL	TA			ı orra	ance, (JA 9	U5U1			IS A SIMPLIFICATION OF THE ACTUAL CONDITIONS ENCOUNTERED.												

Г	LOG OF TEST BORING PROJECT NAME PROJECT NUMBER BORING R-12-15																		
	LOC) I BC	וואכ	NG	Marina	a Del	Rey -	Parcel	44	STAF	RT.	LA.	-104			R-12-15 SHEET NO.
	Pier 44	4, Marii	na D	el Rey	У									2/2012		3/2	2/2012		1 of 3
١		COMPA Drilling							1	ING MI ary W					LOG	GED E	BY	CHEC	CKED BY
C		EQUIP		Г					BORI	NG DIA		TOTAL DEPT	ΓH (ft)	GROUI	ND ELEV		DEPTH/E		ROUND WATER (ft)
		v 1000						NOTES	5"			50.9		10			¥ 13.0	/ -3 .0	1
- 1				., 30"	(Automat	tic)			•										
	DEPTH (feet)	ELEVATION (feet)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS / 6 IN)	DRY DENSITY (pcf)	MOISTURE (%)	OTHER TESTS	% PASSING #200	ATTERBERG LIMITS LL:PL:PI	POCKET PEN (tsf)	GRAPHIC LOG		DE	SCRIPT	ION A	ND CLASS	IFICAT	ION
F													sphalt ase =						
ŀ		_										S	Sandy	Silt (M					tiff, olive brown,
+	-	_											noist, l	ow plas	ticity, fir	ne gra	ined sand	, low p	lasticity.
ŀ	-	_	abla	R-1	_	99	24.3	DS			1.0								
L		_	$oldsymbol{\Delta}$	K-I	5	99	24.3	03			1.0				ean Cla			CL) , v	ery stiff, dark
	-5 -	_5			8								•		·	iaslici	ty.		
		_0	M	R-2	5	101	22.2	DS			4.0	T	race r	oots up	to 1/8".				
T		_	$oldsymbol{\triangle}$		8 14														
ŀ		_			'-														
ŀ		_																	
ŀ	-	_																	
L	- 10	_0										///	ile. C	and (SI	M\ 0 " Sa	nd.	Silt (ML)		otiff grov
L		_	М	R-3	6	110	19.1				3.5		noist, f	ine grai		d, fev			black spots,
					8 14								ace ar	ngular 11	ne grav	eı.			
ſ												$ \ \ \ \ \downarrow$							
t		_										Y							
ŀ		_																	
F	- 15	_ -5										F	at Cla	y (CH)	, stiff, c	olive b	rown, mo	st, me	dium to high ———
ŀ	-	_	X	R-4	3 4	86	33.3				1.25	p	lasticty	y, little o	xidation	ı, trac	e fine grai	ned sa	nd.
/12	-	_ '			7														
4/10		_																	
3.GDT																			
CLOC		_																	
기	-20	—-10	abla	D. 5		07	00.0	ON.			7.5						oxidation, i		n to high ttom of chute.
749.GF	-	_	$oldsymbol{\Delta}$	R-5	3 4	87	32.6	CN		51 26	.75		iasticit	y, siigi ii	odor, n	ne gr	anica san	J 111 DO	tion of chate.
-F-10	-	_			6					25									
-LA2		_																	
BORING 1A LA2 LA-1049.GPJ GDCLOG.GDT 4/10/12	-	_																	
BORIN	I DOTT																		
907 W	ROUP	GR	OUI	P DE	LTA CO	ONSU	LTAN	ITS, I	INC.			MMARY APPLIE RING AND AT T					OF		
370 Amapola Avenue, Suite 212											SUBSUR	FACE CONDITIONS AND MAY (ONS N	IAY DIFF	FER AT	OTHE			
1	Torranco CA 00501											IE PASSAGE OF PLIFICATION OF	F TIME	. THE C	ATA PR	RESEN	ITED		
CO	DELTA	3		1011	ano c , (<i>∪</i> ∩ 3	JJUI					ITERED.							

1		= 7	ΓES	ТВС	DRIN	162	PROJEC Marina		Rey - Parcel 44 LA-1049 R-12-1								R-12-15
SITE LO		na F	al Day									STAF			NISH 3/2/201:	2	SHEET NO.
DRILLIN	4, Mari	ANY	Jei Kej	/				DRILL	ING ME	THOD		3/2	2/2012	LOGGE			2 of 3 ECKED BY
	ıl Drilling								ary W					NB		Y	L
	G EQUIP		Т						NG DIA.	(in)	TOTAL DEP	TH (ft)		D ELEV (ft	·		GROUND WATER (ft)
	w 1000 NG METH						NOTES	5"			50.9		10		▼ 1	3.0 / - 3.	.0
			30"	(Automat	tic)		NOTES	•									
T Idilli	1101. 140		5., 00		110)				S		1						
DEPTH (feet)	ELEVATION (feet)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS / 6 IN)	DRY DENSITY (pcf)	MOISTURE (%)	OTHER TESTS	% PASSING #200	ATTERBERG LIMITS LL:PL:PI	POCKET PEN (tsf)	GRAPHIC LOG			SCRIPTION			
		M	,	0		20.0						Lean C	lay with	Sand (C rained sar	L), stiff,	gray, mo	oist, medium
-	-	M	S-6	2 4		32.9			55 24	dense, light							
- - - -30	 			8					31					grained s		· · · · · · · · · · · · · · · · · · ·	25.165, 1.5
-	_ _ _ _	X	S-7	11 20 22		30.9		10									
35 - - -	25 	X	S-8	16 31 33		12.0						coarse	graded grained posed co	sand, few) , very of fines, tra	dense, bi ce fine g	rown, wet, fine to gravel,
06.601 4/10/12	30 	X	S-9	18 35 42		18.3						brown,	wet, fine	Sand with to coarse es, ~1/8" I	grained	sand, su	very dense, olive horounded
COS BORING 14 LAZ LATORRIGAD GDCLOG.GDJ 4/10/12	35 		S-10	24 50/5"		15.6							se in med nd with s		arse graiı	ned sand	l, interbedded
DELTA CONSULTAN	GR0 37		٩map	LTA Co oola Av ance, 0	enue	, Suit	te 21			THIS BOI SUBSUR OCATIO WITH TH	MMARY APPLII RING AND AT FACE CONDIT INS AND MAY E PASSAGE C PLIFICATION C ITERED.	THE TIME TONS NOTE: TONS NOTE: TONS NOTE: TONS TIME	ME OF DEMAY DIFF SE AT THE THE DA	RILLING. ER AT OTI IS LOCATI ATA PRES	HER ON ENTED		

	2 01			T D (<u> </u>	10	PROJE	CT NAN	1.100_0.110.110_11							BORING		
				T BC	וואכ	NG	Marina	Del F	Rey -	Parcel	44			L/	A-104			R-12-15
SITE LO												STAF			FINIS			SHEET NO.
Pier 4	4, Mari G COMP	na L ANY	Del Re	<i>y</i>				DPILI	ING MI	ETHOD		3/2	2/2012	10	GGED E	2/2012 RY	CHEC	3 of 3 CKED BY
	ıl Drilling								ary W						NB	5 1	YL	OKED DI
DRILLIN	G EQUIP	MEN.	T						NG DIA		TOTAL	DEPTH (ft)	GROUN			DEPTH/E		ROUND WATER (ft)
	w 1000							5"			50.9		10			¥ 13.0) / -3.0)
	NG METH						NOTES	3										
Hamn	ner: 140) lbs	s., 30"	(Automa	tic)			ı	1.00									
DEPTH (feet)	ELEVATION (feet)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS / 6 IN)	DRY DENSITY (pcf)	MOISTURE (%)	OTHER TESTS	% PASSING #200	ATTERBERG LIMITS LL:PL:PI	POCKET PEN (tsf)	GRAPHIC LOG					ND CLAS		
-	_	X	S-11	28 50/5"		17.6						(SP-SN	graded i) , very nded fine	dens	se, brov	or poorly vn, wet, fii	grade ne grair	d Sand with Silt ned sand, little
_	_																	
_												Possibl	oring De e Fill to:	3.5 ft	t bgs.	40.65	.	
-	_															13 ft bgs (13 ft bgs (
55	<u>45</u>																	
-	_																	
-	_																	
-	_																	
_	_																	
60	<u></u> -50																	
_	_																	
_																		
_																		
-	_																	
<u> 65 </u>	<u>55</u>																	
-																		
7/12	_																	
)T 4/1(_																	
06.6 <u>r</u>	_																	
- 70	—-60																	
9.GP.																		
LA-104	_																	
Z -	_																	
GDC_LOG_BORING_1A_LAZ_LA-1049.GPJ_GDCLOG.GDT_4/10/12	_																	
GROU!	 P								<u> </u>	TUIC CI "	ANAA DALA	חסו ובפ סגיי	V AT TII	IE I O	CATION	I OF		
	GR			LTA CO					-	THIS BOF SUBSUR	RING AND FACE CO	PPLIES ONL) AT THE TIN NDITIONS M	<i>I</i> E OF DI IAY DIFF	RILLIN	NG. T OTHE	R		
/		U A	-	oola Av				2	\	NITH TH	E PASSA	MAY CHANG GE OF TIME ON OF THE	. THE D	ATA F	PRESEN	NTED		
DELTA			ıorr	ance, (JA 9	บอปไ				ENCOUN		CIT OF THE	I UAL	. 5011	אוטווים	<u> </u>		

	2 0		ΓEQ	T BC	JDIN	162	PROJE									IUMBER		BORING
	CATION			יו טכ	וואכ	NG	Marina	a Del I	Rey -	Parcel	44	STAF	RT	LA-	-104 FINIS			R-12-16 SHEET NO.
Pier 4	14, Mar	ina E	Del Rey	У								3/1	/2012	1.00		1/2012		1 of 2
	IG COMP al Drillin								.ing me ary W	ETHOD ash				NE	GED E	BY	CHEC	KED BY
DRILLIN	IG EQUIF	MEN	Т					BORII	NG DIA		TOTAL DEP	TH (ft)	GROUN				<i>LEV.</i> G	ROUND WATER (ft)
Mahe	w 1000) HOD					NOTES	5" S			36.5		16			¥ 16.0	0.0	
			s., 30"	(Automa	tic)													
DEPTH (feet)	ELEVATION (feet)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS / 6 IN)	DRY DENSITY (pcf)	MOISTURE (%)	OTHER TESTS	% PASSING #200	ATTERBERG LIMITS LL:PL:PI	POCKET PEN (tsf)	GRAPHIC LOG			SCRIPTI	ION A	ND CLASS	SIFICAT	ION
	15										E	Asphal Base =	6"					
-	15 											•	and (SN s from 2				, fine gr	rained sand.
5 _ _ _ _ 10	 10 		S-1	4 4 3 3		25.9		42				Silty S sand.	and (SN	i) , loos	se, oli	ve brown	, moist,	fine grained
- 10 - -	 5 	X	R-2a R-2b	8 9 11	125	7.5		16			r	nediur sand, fi	n dense,	grayish arse gra	h brov	vn, moist,	fine to	(SP-SC) , coarse grained lty sand in
- - 15				14 15														
-	 		S-3	2 1 1		25.5						Sandy blastici	Lean Cl	lay (CL rained s) , so	off, olive b	prown, v	vet, low — — — -
BORING 1A LAZ LA-1049. GPJ. GPC. OG. GDT 4/10/12	 5 	X	R-4	6 10 11	101	25.2		36				Clayey grained		SC) , n	nediui	m dense,	olive br	own, wet, fine
GROU DELT.	GR 37		Amap	LTA Co oola Av ance, (enue/	, Sui	te 21			THIS BO SUBSUR LOCATIC WITH TH S A SIMI	MMARY APPLIE RING AND AT 1 FACE CONDITI DNS AND MAY (IE PASSAGE O PLIFICATION O ITERED.	THE TINIONS N CHANC F TIME	ME OF DI MAY DIFF SE AT TH S. THE DA	RILLING ER AT (IIS LOC ATA PR	B. OTHE ATION RESEN	R N ITED		

	$\overline{}$	= =		TDC		10	PROJEC	CT NAM	ΛE					PROJECT	NUMBER		BORING
				T BC	וואכ	NG	Marina	Del F	Rey -	Parcel	44			LA-104			R-12-16
SITE LO		F	Sal Day									STAF		FINI	sн 1/2012		SHEET NO.
DRILLIN	4, Mari	na L ANY	Jei Ke	У				DRILL	ING ME	ETHOD		3/1	/2012	LOGGED		CHEC	2 of 2 CKED BY
	l Drilling								ary W					NB		YL	
DRILLIN	G EQUIP	MEN.	T						NG DIA.		TOTAL	DEPTH (ft)	GROUN	D ELEV (ft)	DEPTH/E		ROUND WATER (ft)
	w 1000							5"			36.5		16		¥ 16.0	0.0 / 0	
	NG METH		00"	/A 1			NOTES	5									
Hamn	ner: 140	J IDS	s., 30"	(Automat	IIC)				1 (0								
DEPTH (feet)	ELEVATION (feet)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS / 6 IN)	DRY DENSITY (pdf)	MOISTURE (%)	OTHER TESTS	% PASSING #200	ATTERBERG LIMITS LL:PL:PI	POCKET PEN (tsf)	GRAPHIC LOG			SCRIPTION A			
-	10 		S-5	3 4 4		23.5			33 16 17			Sandy fine gra plasticit	ined sar	ay (CL) , n	nedium stif dium grain	ff, olive ned san	brown, moist, d, low
Poorly graded Sand with Silt (SP-SM), medium dense, olive brown, moist, fine grained sand. Poorly graded Sand with Silt (SP-SM), medium dense, olive brown, moist, fine grained sand. Poorly graded Sand with Gravel (SP), dense, olive															nedium dense, —		
35 	 20	X	S-7	16 19 24		15.2						brown,	moist, fir	ne to mediu			nse, olive
GDC_LOG_BORING_1A_LAZ_LA-1048;GPJ_GDC_LOG_GDT_4/10/12												Possibl Ground	e Fill to: lwater m	pth: 36.5 ft. 4 ft bgs. easured at: easured at:	16 ft bgs (@ 2:45 @ 3:30	pm. pm.
N N N N N N N N N N N N N N N N N N N																	
GROUI DELTA CONSULTANT	GR6		٩map	LTA Co pola Av ance, (enue	, Suit	te 21			THIS BOF SUBSUR LOCATIC WITH TH	RING AND FACE COI INS AND I E PASSA PLIFICATIO	AT THE TIN NDITIONS M MAY CHANG GE OF TIME	ME OF DI NAY DIFF SE AT TH . THE DA	E LOCATION RILLING. ER AT OTHE IS LOCATIO ATA PRESEI CONDITION	ER N NTED		

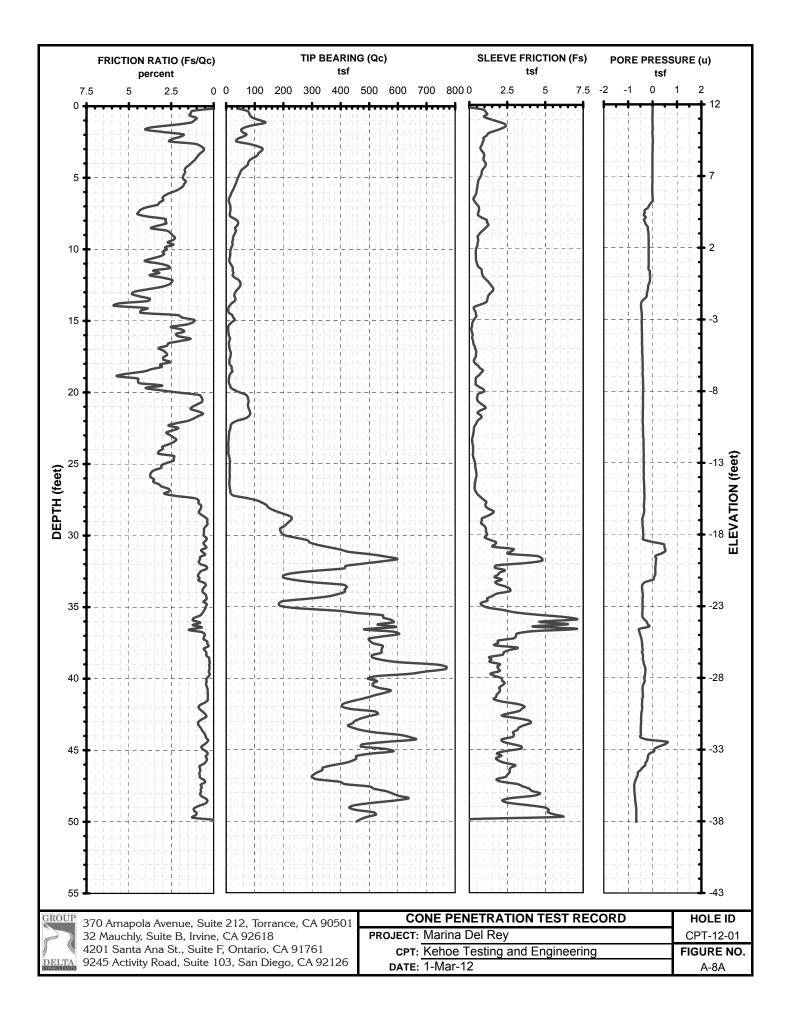
			= 7	ΓES	T BC	DRII	162	PROJE Marina			Parcel	44			PROJECT	19	BORING R-12-17
	LOCA												STAI		FINI		SHEET NO.
DRI	er 44, LLING	, Marii COMP	na L ANY	el Rey	У				DRILL	ING MI	ETHOD		3/	1/2012	LOGGED	1/2012 BY	1 of 2
S	oCal [Drilling	1							ary W					NB		YL
		EQUIP		Г						NG DIA	. (in)	TOTAL DE	PTH (ft)	GROUN	D ELEV (ft)		LEV. GROUND WATER (ft)
		1000 METH						NOTES	5"			36.5		18		¥ 18.0	/ 0.0
				30"	(Automat	tic)		NOIL	,								
				.,		,				<u>S</u>		1					
(feet)		ELEVATION (feet)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS / 6 IN)	DRY DENSITY (pcf)	MOISTURE (%)	OTHER TESTS	% PASSING #200	ATTERBERG LIMITS LL:PL:PI	POCKET PEN (tsf)	GRAPHIC LOG		DES	CRIPTION A	AND CLASS	SIFICATION
													Asphal Base =				
-	-	- - -15 -											Poorly	graded	Sand with ist, few clay	Gravel (SF and silt se	P) , medium dense, eams.
_5	_	-	M	R-1	8	102	19.9										
Г		_			8 11							-	1 oan (etiff_darl	r gray wet	, few fine grained
F		-											sand, r	nedium p	lasticity.	c gray, wet	, icw iiiic grained
-	_	-10															
		_															
10) -		\square														
			X	S-2	2 5		41.7										
			\square		5 7												
F	_	-			,												
L	_	-5															
		-															
15	5 -	-										/////	Clave	Sand (S	C) mediu	m dense d	olive brown, wet, fine
L			М	R-3	11	107	20.0						graine	d sand, tra	ace oxidatio	n.	2,,
					10 9												
10/12	-	-															
_ 	-	-0										//					
3.GD																	
25		_															
B _20) -	-										///// -	Interbe	edded Le	an Clay wi	th Sand (0	CL) and Clayey Sand
<u>.</u>		_	М	R-4	4	105	19.7				1.0		(SC),	stiff, olive	e brown, mo	oist, fine gra	ained sand, medium
1049					8 12								piastici	ty, trace c	oxidation.		
ځ۲		-															
<u> </u>		_ -5															
2		_															
LOG_BORING_1A_LA2_LA-1049.GPJ_GDCLOG.GDT_4/10/12																	
GR	OUP		<u></u>		L TA 0.5			IT 2	<u> </u>	 	THIS SUI	HALLA APPL	JES ONI	LY AT THE	E LOCATION	l OF	
					LTA CO					-	THIS BO	RING AND AT	THE TI	ME OF DF	rilling.		
000		37	'0 <i>A</i>	۱map	oola Av	enue	, Sui	te 21	2		OCATIO	ONS AND MAY	CHANG	GE AT TH	IS LOCATIO	N	
DE	370 Amapola Avenue, Suite 212 ELTA Torrance, CA 90501											IE PASSAGE (PLIFICATION (ITERED					

				TDC		10	PROJEC	CT NAM	ΛE					PROJEC	T NUMBE	R	BORING
				T BC	וואכ	NG	Marina	Del I	Rey -	Parcel	44	1	_	LA-10			R-12-17
SITE LO		F	Sal Day									STAF		I	NISH	2	SHEET NO.
DRILLIN	4, Mari	na L ANY	ei Re	У				DRILL	ING MI	ETHOD		3/1	/2012	LOGGE	3/1/201: DBY		2 of 2 ECKED BY
1	l Drilling								ary W					NB		Y	
DRILLIN	G EQUIP	MEN.	Т						NG DIA		TOTAL	DEPTH (ft)	GROUN	ID ELEV (ft) DEPT		GROUND WATER (ft)
	w 1000							5"			36.5		18		▼ 1	8.0 / 0.0	0
	NG METH		00"	(A. 1	(* . X		NOTES	5									
Hamn	ner: 140	Sal C	s., 30°	(Automa	lic)				Lm		1 1						
DEPTH (feet)	ELEVATION (feet)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS / 6 IN)	DRY DENSITY (pdf)	MOISTURE (%)	OTHER TESTS	% PASSING #200	ATTERBERG LIMITS LL:PL:PI	POCKET PEN (tsf)	GRAPHIC LOG			SCRIPTION			
	_ _ 10 _		S-5	2 3 5		24.1				1.75		Lean C grained few oxi	sand to	n Sand (C n medium (L) , stiff, grained s	olive bro and, med	own, wet, fine dium plasticity,
- - - -35	 15 	X	R-6	8 20 31	113	16.8				2.0		to medi		ned sand.), dense	e, olive b	rown, wet, fine
-	_ _ 20	X	S-7	19 27 31		16.1						Total B Possibl Ground	oring De e Fill to: water m	epth: 36.5 6.5 ft bgs leasured a	it: 18 ft b	gs @ 12:	:15 pm.
- 400 - 440/15 - 400 - 4												Giound	water II	icasureu a	ii. 10 ii b	ys (y, ∪.∓	о рпі.
ORING 1A_LAZ_LA-1049.GPJ (30																
DELTA CONSULTANT	GR6		Amap	LTA Co pola Av ance, (enue/	, Suit	te 21		- - - - - - - - - -	THIS BOI SUBSUR LOCATIC WITH TH	RING AND FACE COI ONS AND I IE PASSAC PLIFICATIC	PPLIES ONL AT THE TIN NDITIONS M MAY CHANG JE OF TIME ON OF THE	ME OF D NAY DIFF SE AT TH . THE D	RILLING. ER AT OT IIS LOCAT ATA PRES	HER ON ENTED		

	2 01			T DC		10	PROJE	CT NAM	ΛE					PROJEC	T NUMBE	R	BORING
			ES	ST BC	וואכ	NG	Marina	a Del I	Rey -	Parcel	44			LA-1			R-12-18
SITE LO												STAF			NISH	^	SHEET NO.
DRILLIN	4, Mari	na L ANY	el Re	у				DRILL	ING MI	ETHOD		3/1	/2012	LOGGE	3/1/201		1 of 3 HECKED BY
1	ıl Drilling							l	ary W					NB	55.		YL
DRILLIN	G EQUIP	MEN ⁻	Т						NG DIA		TOTAL D	EPTH (ft)	GROUN	ID ELEV (f) DEP1		. GROUND WATER (ft)
Mahe	w 1000)						5"			51		14		¥ 1	2.0 / 2	.0
1	NG METH		00"	.			NOTES	3									
Hamr	ner: 140	JIDS	i., 30"	(Automat	IIC)				1 (0								
DEPTH (feet)	ELEVATION (feet)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS / 6 IN)	DRY DENSITY (pcf)	MOISTURE (%)	OTHER TESTS	% PASSING #200	ATTERBERG LIMITS LL:PL:PI	POCKET PEN (tsf)	GRAPHIC LOG			SCRIPTION	N AND CL	ASSIFIC	CATION
												Asphalt Base =					_
+	-											Silty S	and (SN			enish b	rown, moist, fine
-	_											grained	sand, tr	ace grave	ls.		
		\otimes	D 4														
		\bowtie	B-1				СО					Little gr	avels.				
+	_10	$\times\!\!\times\!\!\!\times$															
5	_																
		V	S-2	4		29.6		47									
<u> </u>		\triangle	-	2				''				Fat Cla	y (CH)	or Elastic	Silt (MI	I) , me	dium stiff, greenish
-	-			2								brown,	moist, ti	ne graine	a sand, m	nealum	to high plasticity.
		\square															
		XI	S-3	PUSH 2		42.9			53 29								
-	_5	\cap		3					24								
10	_											Gray t	ace fine	roots			
		X	S-4	2		28.6						Gray, ti	ace iii ie	10015.			
		\triangle		2 5 5													
-	_			5							//						
	_	\square		_								Lean C	lay with	Sand(C	L) , med	ium stiff	f, gray moist,
		M	S-5	2 4		25.9			46 18			mottled	, mealur	n plasticit	y .		
T .	-0			4					28								
15	-	\vdash										Soft. oli	ive brow	n, trace ro	ots. incre	ease in	plasticity.
		IXI	S-6	1		36.6						,		,	,		,
		\square		2 2													
10/12	-			_													
 - -	_	M	S-7	1		25.9		51									and (SM), medium oxidation, low to
9.GD	5	M	3-1	1 3		25.9		31					n plastcit		400 1001	s, a 400	oxidation, low to
25				5													
ਉ—20	-	\forall										Lean C	lay (CL) , mediu	m stiff, ol	ive brov	vn, moist,
<u> </u>		X	S-8	2		33.8						mediun	n plastici	ty, sand ii	n bottom	of chute) .
1049		\vdash		3													
<u>ક</u> ે												_					
<u> </u>	-	M	S-9	4		29.7			43			Trace o	organic b	lebs, trace	e sand ar	nd grave	2 1.
G 7	10	\square	50	5					21								
GDC_LOG_BORING_1A_LA2_LA-1049.GPJ_GDC_LOG.GDT_4/10/12				5					22								
GROU	P		D D D	T				NIC.	<u> </u>	THIS SUI	MMARY APF	PLIES ONI	Y AT TH	E LOCATI	ON OF		
2				LTA CO						THIS BO	RING AND A FACE COND	AT THE TIM	/IE OF DI	RILLING.			
ĕ C	37	'0 <i>A</i>	\map	oola Av	enue/	, Sui	te 21	2	l	_OCATIC	NS AND MA	AY CHANG	E AT TH	IIS LOCAT	ION		
DEI W	Torrance CA 00501										IE PASSAGE PLIFICATION						
DELTA			1 011	uno c , (J/ \ 3	JJU 1				ENCOUN							

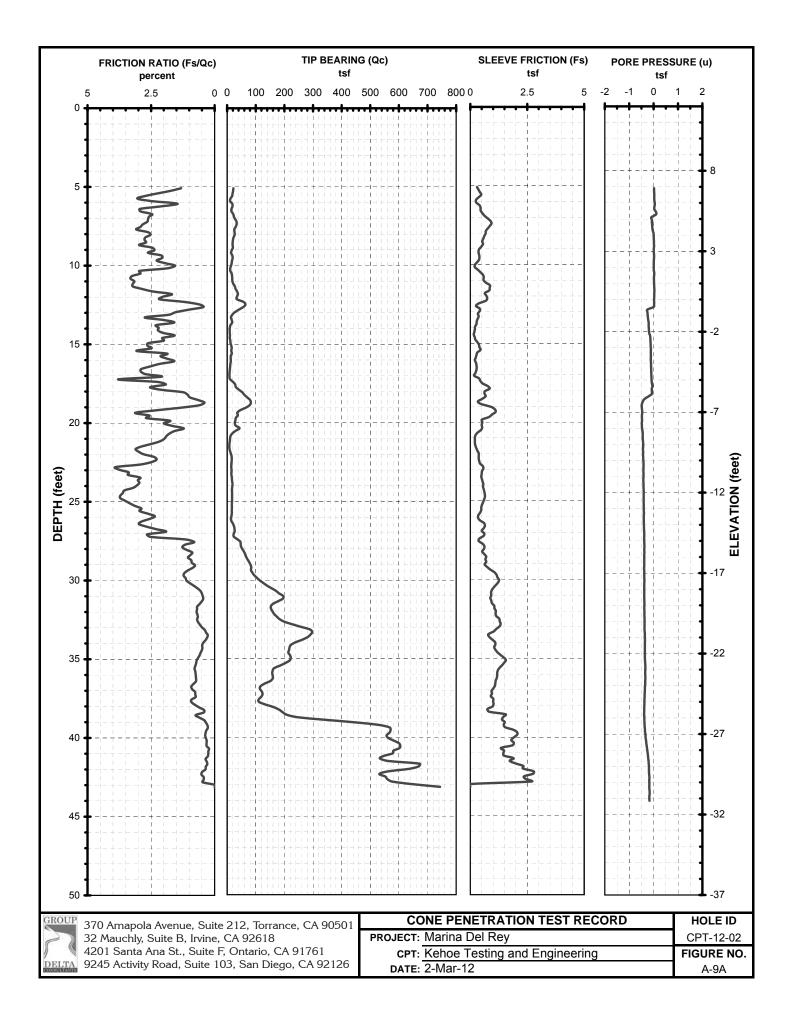
	2 0	= 7		T BC	JDIN	167	PROJEC							PROJECT			BORING
SITE LO		- 1		ט וט	וואל	NG	Marina	Del l	Rey -	Parcel	44	STAF	PT .	LA-104			R-12-18 SHEET NO.
Pier 4	4, Mari	na D	el Re	y									/2012		1/2012		2 of 3
DRILLIN	G COMP	ANY								ETHOD				LOGGED	BY		CKED BY
DRILLING	I Drilling G EQUIP I	MEN [.]	Т						ary W NG DIA		TOTAL	DEPTH (ft)	GROUN	NB ND ELEV (ft)	DEPTH	YL <i>IELEV.</i> G	ROUND WATER (ft)
Mahe	w 1000)						5"		- ()	51		14	(,		.0 / 2.0	
1	NG METH		20"	/ At a .aa a .	H: a\		NOTES	3									
Hamin	ner. 140	פטו <i>כ</i>	5., 30	(Automat	lic)				W		1						
DEPTH (feet)	ELEVATION (feet)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS / 6 IN)	DRY DENSITY (pcf)	MOISTURE (%)	OTHER TESTS	% PASSING #200	ATTERBERG LIMITS LL:PL:PI	POCKET PEN (tsf)	GRAPHIC LOG		DES	SCRIPTION A	AND CLAS	SSIFICAT	TION
-	_	X	S-10	4 4 5		28.8				1.75		Silty C brown,	lay (CL) wet, few) , stiff, dark v oxidation, t	brown ir race san	nterbedd d.	led with reddish
- - -30	 15	X	S-11	3 5 10		21.5			31 22 9			brow, w trace fir	et, fine ne grave	to coarse gr el.	ained sai	nd, trace	·
-	_	X	S-12	12 14 17		26.6		11						Sand with grained sa		SM) , d	ense, light
-	_ 20	X	S-13	15 19 22		13.9								Sand with rse grained			ense, light brown, T to 2".
35 	_	X	S-14	16 24 25		21.0						Decrea	se in gra	avel.			
-	_ 25	X	S-15	25 29 23		13.8							wet, me				ery dense, olive — angular gravel
— 40 -	_	X	S-16	22 23 20		11.0						Poorly mediun	graded n graine	Sand (SP) d sand, trace	, very de e gravel,	ense, oliv trace fin	ve brown, wet, es.
BORING 1A_LAZ LA-1049.GPJ GDCLOG.GDT 4/10/12	_ 30	X	S-17	16 27 34		19.6											
	_	X	S-18	19 28 30		22.2						Interbed	dded fine	e grained sa	nd.		
OKING_1A_LA2	 35	X	S-19	22 33 45		19.1						Black, s	strong o	dor, possilbl	e hydroca	arbon or	petroleum.
GROUI DELTA	GR0		Amap	LTA CO pola Av ance, (enue	, Sui	te 21		- : ! !	THIS BOI SUBSUR _OCATIC WITH TH	RING AND FACE COI ONS AND N E PASSA PLIFICATIO	AT THE TIN NDITIONS M MAY CHANG GE OF TIME	ME OF D NAY DIFF SE AT TH . THE D	IE LOCATION RILLING. ER AT OTHI HIS LOCATION ATA PRESE CONDITION	ER N NTED		

	2 0	= 7		T BC	JDIN		PROJE							PROJECT		
SITE LO) DC	וואכ	NG	Marina	a Del I	Rey -	Parcel	44	STAF	PT.	LA-10		R-12-18 SHEET NO.
Pier 4	4, Mari	na E	Del Rev	/									/2012		/1/2012	
DRILLIN	IG COMP	ANY						1		ETHOD				LOGGED	BY	CHECKED BY
DRILLIN	I Drilling G EQUIP	MEN.	Т						ary W		TOTAL	DEPTH (ft)	GROUN	NB ND ELEV (ft)	DEPTH	YL H/ELEV. GROUND WATER (ft)
Mahe	w 1000)						5"			51		14	(2.0 / 2.0
	NG METH		20"	(Automat	tio\		NOTES	3								
Hailii	1161. 140		5., 50						ုပ္							
DEPTH (feet)	ELEVATION (feet)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS / 6 IN)	DRY DENSITY (pcf)	MOISTURE (%)	OTHER TESTS	% PASSING #200	ATTERBERG LIMITS LL:PL:PI	POCKET PEN (tsf)	GRAPHIC LOG		DES	SCRIPTION	AND CLA	SSIFICATION
		M	S-20	28		22.1			4.							
		\square		54/6"								Total B	orina De	epth: 51 ft.		
-												Possib	e Fill to:	3.5 ft bgs.	14 ft ha	s @ 10:30 am.
-	_											Ground	lwater m	neasured at	12 ft bg	s @ 3:50 pm.
-	40															
55	_															
-	-															
-	_															
_																
	45															
	43															
<u> 60 </u>	_															
-	_															
-	_															
-	_															
	50															
<u> 65 </u>	_															
_	_															
2																
4/10/.																
GDT 																
	—-55															
GDC_LOG_BORING_1A_LAZ_LA-1049.GPJ_GDC_LOG.GDT_4/10/12																
49.GP																
A-10 ²																
Z																
<u>4</u>	60															
NEING T	<u> -60 </u>															
GROU	P	— О ! !			ייטוער	T ^ *	ITC	INIC	<u> </u>	THIS SUN	/IMARY AI	PPLIES ONL	Y AT TH	IE LOCATIO	N OF	
				LTA CO					-	THIS BOF SUBSUR	RING AND) AT THE TIN NDITIONS N	ME OF D MAY DIFF	RILLING. ER AT OTH	ER	
g) (31	U A	-	oola Av				_	١ ١	WITH TH	E PASSA	GE OF TIME	. THE D	IIS LOCATION ATA PRESE	NTED	
DELTA CONSULTAN	A DS		Torr	ance, (CA 9	0501				S A SIMF ENCOUN	PLIFICATION	ON OF THE	ACTUAL	. CONDITION	NS	

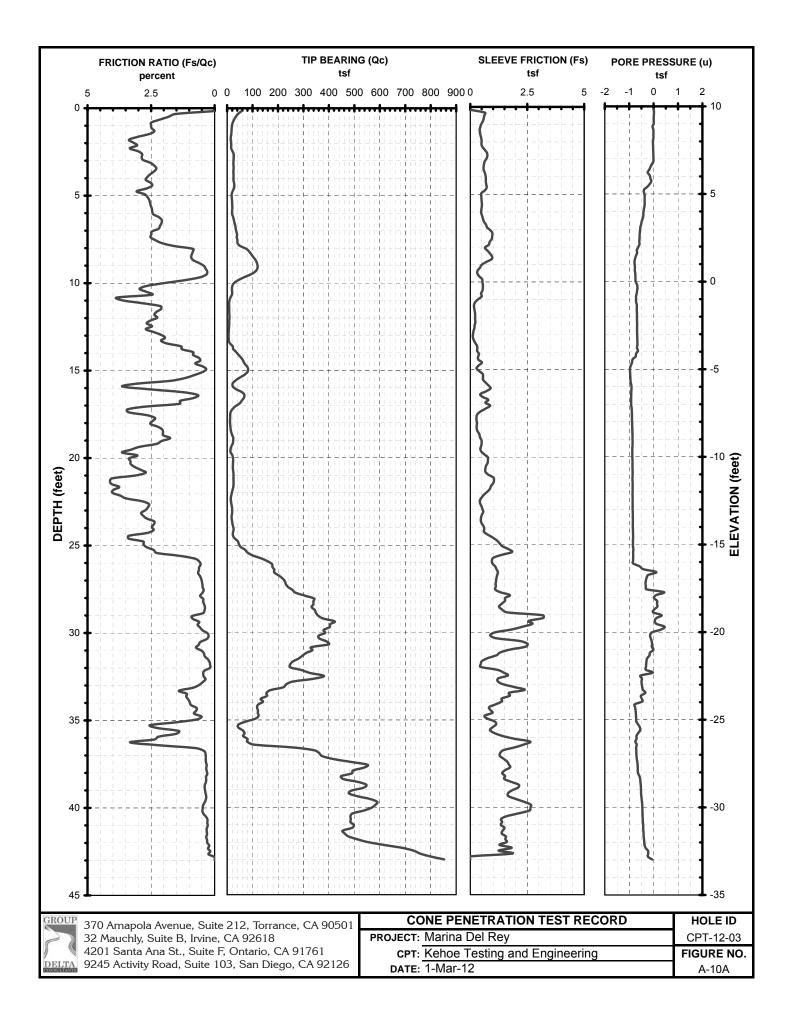

LOC	G O	F	ΓES	T BC	DRII	177	PROJE Marina			Parcel	44				ECT N	IUMBER		BORING R-12-19
SITE LO	CATION						iviaiiii	a Dei	ivey -	i aicei		STAI	₹T	LA	FINIS	SH		SHEET NO.
Pier 4	4, Mari		Del Rey	У				וופח	I ING M	ETHOD		3/2	2/2012	LOG	3/2 GED E	2/2012	CHE	1 of 2 CKED BY
	l Drillin								tary W					NE		, ,	YL	
DRILLIN	G EQUIP	MEN	Т					BORI	NG DIA		TOTAL DE	PTH (ft)	GROUNI	D ELE	/ (ft)		ELEV. G	ROUND WATER (f
	w 1000 NG METI						NOTES	5"			36.5		19			¥ 15.0) / 4.0	
			s., 30"	(Automa	tic)		INO IL	•										
			,	Ì				0	TS									
DEPTH (feet)	ELEVATION (feet)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS / 6 IN)	DRY DENSITY (pdf)	MOISTURE (%)	OTHER TESTS	% PASSING #200	ATTERBERG LIMITS LL:PL:PI	POCKET PEN (tsf)	GRAPHIC LOG		DES	CRIPT	ION A	ND CLAS	SIFICAT	ΓΙΟΝ
									1			Asphal Base =						
	_	X	R-1	7	118	11.8						Clayey	Sand (S	ace me	edium		wn, mo e graine	sist, fine ed sand, trace
	<u>_15</u>			10 21														
5	_											Poorly	graded s	Sand ((SP)	, dense, y trace gra	rellowis	h brown, moist,
	_	X	R-2	12 19 21		3.4						iiile to	coarse gr	airieu	sanu,	trace gra	vei.	
	_																	
	_10																	
- 10	_												. 					
	_	X	R-3	2 2 3	85	36.0	DS			0		Silt (M	L) , med	ium st	iff, gra	ayish brov	wn, wet	, low plasticity.
- 15	_5																	
10		M	R-4a	6								Silty C sand, t	lay (CL) race grav	, stiff, el up t	olive o 2.5'	brown, w ', medium	et, trac plastic	e fine grained city.
				7 9														
		X	R-4b	4 7	95	27.6				1.0								
				9														
	<u> </u>																	
-20	_											l oan (lav (CI)	or Fa	t Clay	, <u>(CH</u>) —	etiff oliv	ve brown, wet,
	_	X	R-5	2 4 8	104	18.7				0.75		mediur	n to high in bottom	plastic	ity, liti	tle coarse	graine	d sand and fine
	_																	
	<u></u> -5																	
ROU	GR			LTA C					'	THIS BO	MMARY APPL RING AND AT RFACE CONDI	THE TI	ME OF DR	RILLING	3.			
	37	70 <i>i</i>	٩map	oola Av	enue/	, Sui	te 21	2		LOCATIO	DNS AND MAY IE PASSAGE (CHANC	E AT THI	SLOC	1OITA:	N		
, DELTA	1		Torr	ance, (CA 9	0501					PLIFICATION (

				TDC		10	PROJEC	CT NAM	ΛE					PROJEC	T NUMBE	R	BORING
			E2	T BC	וואכ	NG	Marina	Del F	Rey -	Parcel	44			LA-1			R-12-19
SITE LO		F	Nal Day									STAI		I	NISH 3/2/201	2	SHEET NO.
DRILLIN	4, Mari	na L ANY	jei ke	/				DRILL	ING MI	ETHOD		3/2	2/2012	LOGGE			2 of 2 HECKED BY
1	l Drilling								ary W					NB			YL
DRILLIN	G EQUIP	MEN.	Т						NG DIA		TOTAL	DEPTH (ft)	GROUN	ID ELEV (f) DEP		. GROUND WATER (ft)
	w 1000							5"			36.5		19		▼ 1	5.0 / 4	.0
1	NG METH		00"	/A 1	•		NOTES	3									
Hamin	ner: 140	פטו כ 	., 30	(Automat	IC)				LΩ		1						
DEPTH (feet)	ELEVATION (feet)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS / 6 IN)	DRY DENSITY (pdf)	MOISTURE (%)	OTHER TESTS	% PASSING #200	ATTERBERG LIMITS LL:PL:PI	POCKET PEN (tsf)	GRAPHIC LOG			SCRIPTIO	N AND CL	ASSIFIC	CATION
	 10	X	R-6	3 5 7	89	33.2				1.0			e in plas		e fine gr	ained sa	and medium
- - - -35	 15 	X	S-8	17 23		24.4						Poorly fine to	graded medium	Sand (SF grained s	P) , very and.	dense, I	light brown, wet,
400 - 40				29								Possib Ground	le Fill to: Iwater m	epth: 36.5 4.5 ft bgs leasured a leasured a	at: 15 ft b	gs @ 2: gs @ 2:	20 pm. 40 pm.
GDC_LOG_BOKING_TA_LAZ_LA-1049.GPJ_GDC_LOG.GDT_	25 _ _ _ _ _ _																
DELTA- CONSULTANT	GR0		Amap	LTA CO pola Av ance, (enue	, Suit	te 21		- - - - - - - -	THIS BOI SUBSUR LOCATIC WITH TH	RING AND FACE COI INS AND I E PASSA PLIFICATIO	PPLIES ONL AT THE TII NDITIONS IMAY CHANG GE OF TIME ON OF THE	ME OF DI MAY DIFF SE AT TH S. THE DA	RILLING. ER AT OT IIS LOCAT ATA PRES	HER ION SENTED		

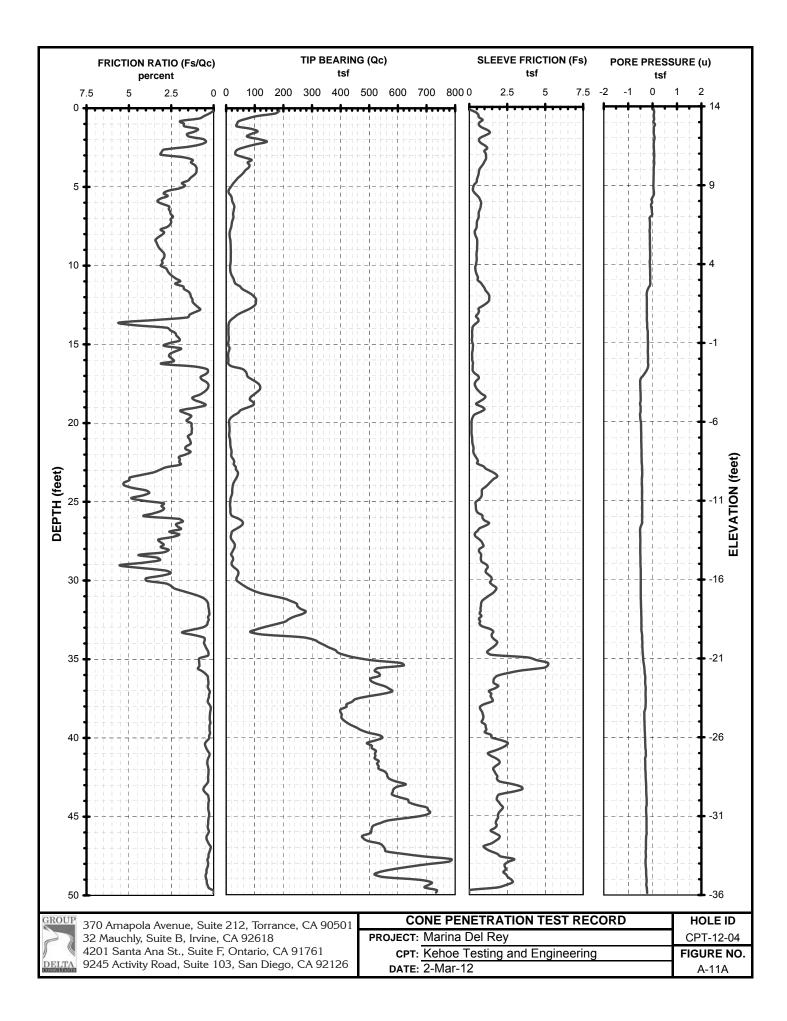
LOC	G O	F 7	ΓES	T BC	DRI	ייאו	PROJE Marin			Parcel	44				ECT N -104	NUMBER		BORING R-12-20
SITE LO	CATION						IVICITIE	a DCI	rtcy -	1 arcci		STAI		L/\	FINIS	SH		SHEET NO.
	4, Mar		Del Re	У				DRIL	LING M	ETHOD		3/2	2/2012	LOG	3/2 GED E	2/2012 3 Y	CHE	1 of 3 CKED BY
SoCa	l Drillin	g							tary W					NE			YL	
	G EQUIF		Т					1	NG DIA	. (in)	TOTAL DE	PTH (ft)	GROUN	D ELE	√ (ft)			ROUND WATER (
	w 1000 NG METI						NOTE	5" S			51.5		11			▼ 14.0	17-3.6)
Hamr	ner: 14	0 lbs	3., 30"	(Automa	tic)					1								
DEPTH (feet)	ELEVATION (feet)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS / 6 IN)	DRY DENSITY (pcf)	MOISTURE (%)	OTHER TESTS	% PASSING #200	ATTERBERG LIMITS LL:PL:PI	POCKET PEN (tsf)	GRAPHIC LOG		DES	6CRIPT	'ION A	ND CLASS	SIFICAT	TION
	40											Asphal No Bas						
	_10	\otimes) , oliv	e brov	vn, moist,	mediu	m plasticity.
	_		B-1				EI		39 20			Gravel	s from 2	feet to	4 feet	t.		
	-	$\otimes \otimes$							19									
	_																	
5											44.							
	_5	М	R-2	1	97	26.1	CN					trace fo	L) , med gs in bott	om of	ιπ, αa chute.	rk gray, w	et, me	dium plasticity,
	_5			1 4														
				•														
	-																	
	_																	
10																		
	_0	M	R-3	2		46.7							a y (CH) I sand, h				ay, we	t, trace fine
	_0			3 4														
				•														
	_																	
	_																	
15	_																	
	5	М	R-4	4														
	_=5			5 7														
		M	R-5	5	96	26.2	CN											
	-			5 6														
	-																	
20	_											Incress	e in fine	araino	d san	d		
	10	M	R-6	5	92	31.4						ii ici cas		granic	u sail	u.		
				7 11														
	-																	
	_																	
ROU.	D								<u> </u>									
	GR	OU	P DE	LTA C	ONSU	ILTAN	NTS,	INC.	'	THIS BO	MMARY APPL RING AND AT	THE TI	ME OF DE	RILLING	3.			
	37	70 <i>i</i>	4map	oola Av	venue	, Sui	te 21	2		LOCATIO	FACE COND ONS AND MAY	Y CHANG	SE AT TH	IS LOC	10ITA:	N		
ET W	N A		Torr	ance,	$C\Delta$ 0	<u> </u> 0501					IE PASSAGE PLIFICATION							
ELTA	1		1011	uno c , '	U/ 3					ENCOUN								


	G OF	= 7	ΓES	ТВС	PRIN	162 1	PROJE Marina			Parcel	44	STAF)T	PROJECT LA-10	49		BORING R-12-20 SHEET NO.
	44, Mari	па Г)el Rev	,									2/2012		юн /2/2012		2 of 3
DRILLIN	IG COMP	ANY	<i>y</i>	<u> </u>				DRILL	ING ME	ETHOD		1 3/2	72012	LOGGED		CHE	CKED BY
SoCa	al Drilling)							ary W					NB		YL	
	IG EQUIP		Т						NG DIA.	. (in)	TOTAL D	EPTH (ft)		ID ELEV (ft)			ROUND WATER (ft)
	ew 1000 ING METH						NOTES	5" S			51.5		11		¥ 14	.0 / -3.0)
			s., 30" ((Automat	tic)												
DEPTH (feet)	ELEVATION (feet)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS / 6 IN)	DRY DENSITY (pcf)	MOISTURE (%)	OTHER TESTS	% PASSING #200	ATTERBERG LIMITS LL:PL:PI	POCKET PEN (tsf)	GRAPHIC LOG		DES	SCRIPTION :	AND CLAS	SSIFICAT	TION
-	15 	X	R-7	7 9 11			CN		Α,			Mediun	n plastici	ty, trace fin	e grained	sand.	
- -30 - - -			S-8	17 22 23		15.6						Poorly to med odor.	graded um grair	Sand (SP) ned sand, tr	, dense, ace coars	grayish se graine	black, wet, fine ed sand, strong
-35 - - -	 25 _ _ _	X	S-9	18 25 23		9.2						black, v	vet, med	lium to coar	se graine	ed sand,	ense, grayish — — — angular fine to and, slight odor.
06.6DT 4/10/12		X	S-10	27 30 33		12.6						dense,	grayish I	Sand with black, wet, rse gravel u	fine to coa	arse grai	
LOG_BORING_1A_LA2_LA-1049.GPJ_GDCLOG.GDT_4/10/12	 35 		S-11	22 27 28		10.6						Decrea	se in gra	avels.			
GROU	GR		٩map	LTA Co	enue	, Suit			3 L	THIS BOI SUBSUR LOCATIC WITH TH	MMARY APF RING AND A FACE CONI INS AND MA E PASSAGE PLIFICATION	AT THE TIME DITIONS MAY CHANG OF TIME	ME OF DEMAY DIFF SE AT THE THE DA	RILLING. ER AT OTH IIS LOCATIC ATA PRESE	ER ON :NTED		
DELT	A		ıorr	ance, (JA 9	บอปไ				ENCOUN		, Or THE	, 10 I UAL	SONUTION			

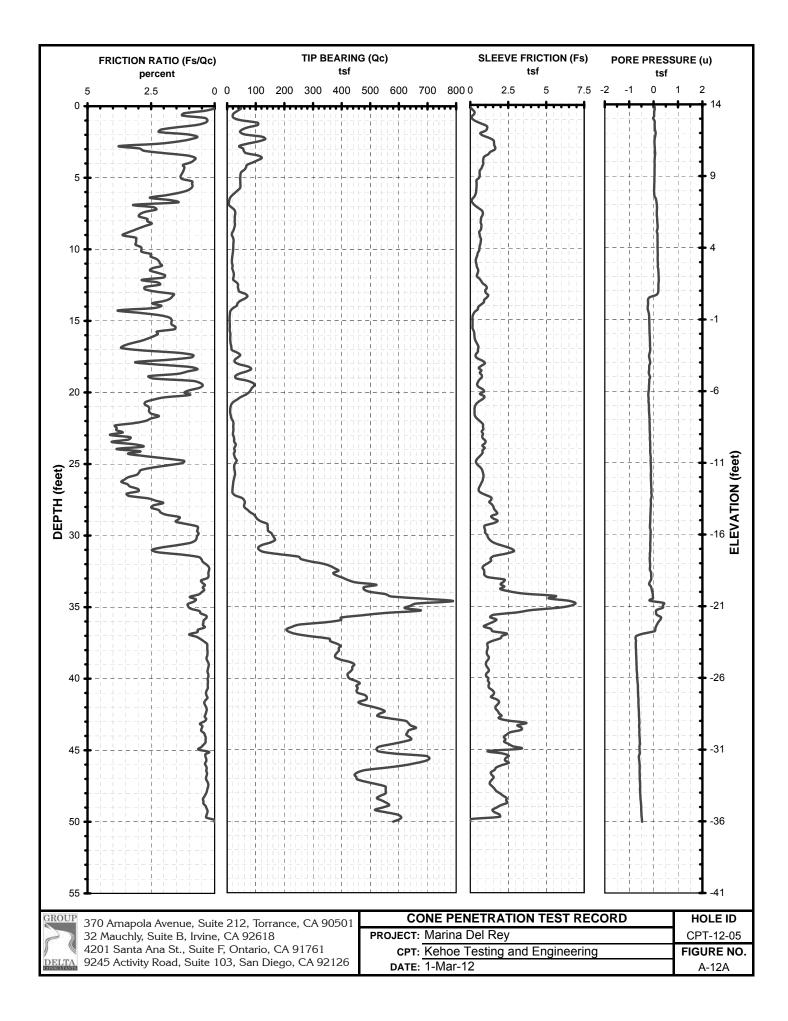
		= 7	ΓES	ТВС	DRIN		PROJE Marina			Parcel	44			PROJECT	49	R	BORING R-12-20
	CATION) - I D - :	_								STAI		FIN			SHEET NO.
DRILLIN	4, Mari	na L ANY	Jei Re	У				DRILL	ING ME	ETHOD		3/2	2/2012	LOGGED	/2/2012 BY		3 of 3 CKED BY
	ıl Drilling								ary W					NB		YL	
	G EQUIP		Т					BORII	NG DIA.		TOTAL	DEPTH (ft)	GROUN	D ELEV (ft)	DEPTH		ROUND WATER (ft)
	w 1000							5"			51.5		11		▼ 14	.0 / -3.0)
	NG METH		00"	(A. (a)	C A		NOTES	3									
Hamr	ner: 140	J IDS	s., 30°	(Automa	tic)				1 (0		. 1						
DEPTH (feet)	ELEVATION (feet)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS / 6 IN)	DRY DENSITY (pcf)	MOISTURE (%)	OTHER TESTS	% PASSING #200	ATTERBERG LIMITS LL:PL:PI	POCKET PEN (tsf)	GRAPHIC LOG		DES	SCRIPTION :	AND CLA	SSIFICA ⁻	TION
-	40	X	S-12	27 29		13.6						Poorly fine to	graded medium	Sand(SP) grained sar	, very de	ense, gra g odor.	yish black, wet,
-	_			33								Total B	oring De	pth: 51.5 ft			
												Possib	le Fill to:	4 ft bgs.		- 6 45 -	20
												Ground	dwater m dwater m	easured at	14 ft bg 14 ft bg	s @ 12:0 s @ 12:2	10 pm. 25 pm.
-	<u> </u>														- 3	_	•
55	<u> </u>																
-	45																
-	_																
	_																
<u> 60 </u>	_																
+	<u></u> 50																
-	_																
}	_																
-	_																
<u></u> 65	_																
-	<u>55</u>																
ZL/01																	
4																	
- 106.6																	
_70																	
9.5 - 2.5 - 3.5 -	—-60																
-A-10 -	_																
<u> </u>	_																
86 - 18	_																
GDC_LOG_BORNNG_TA_LOGS_GDT_GT_GT_GT_GT_GT_GT_GT_GT_GT_GT_GT_GT_GT	GR		٩map	LTA Co pola Av	enue/	, Sui	te 21		3 L	THIS BOF SUBSUR LOCATIC WITH TH	RING AND FACE COI ONS AND I E PASSAG	PPLIES ONL) AT THE TII NDITIONS I MAY CHANG GE OF TIME ON OF THE	ME OF DE MAY DIFF SE AT TH E. THE DA	RILLING. ER AT OTH IS LOCATIC ATA PRESE	ER)N NTED		
DELTA	A nsi		ıorr	ance, (UA 9	บอปใ				ENCOUN		OIT OI IIIE	, 10 I UAL	COMPINION			


```
"Output file from CPTINT - Version 5.2
"INPUT FILE: C:\CPTINT\C1.csv
"-----
"Developed by: UBC In-Situ Testing FREEWARE
    Program: Piezocone Interpretation
   Web Site: www.civil.ubc.ca/home/in-situ
"Interpreter Name: YL
"SUMMARY SHEET
"'a' for calculating Qt:
                                  0.830
"Value for Water Table (in m):
                                  5.790
"Valid Zone Classification based on:
                                  Rf
"Missing unit weight to start depth:
                                  18.860
"Method for calculating Su:
"Value of the constant Nk:
                                  15.000
"Method used to calculate OCR:
                                  Su/EOS
"(Su/EOS) for normal consolidation:
                                  0.250
"Define Zone 6 for Sand Parameters?
                                  YES
"Sand Compressibility for calc Dr:
                                  Moderate
"Method for Friction Angle:
                                  Robertson & Campanella
"Vertical Flow Gradient, i (- up):
                                  +0.000
"CPT to SPT N60 Conversion:
                                  Robertson & Campanella
"Soil Behavior Type Zone Numbers
"For Rf Zone & Bq Zone Classification
"-----
"Zone #1=Sensitive fine grained
                              Zone #7 =Sand with some Silt
"Zone #2=Organic material
                              Zone #8 =Fine sand
"Zone #3=Clay
                              Zone #9 =Sand
"Zone #4=Silty clay
                              Zone #10=Gravelly sand
"Zone #5=Clayey silt
                              Zone #11=Very stiff fine grained *
"Zone #6=Silty sand
                              Zone #12=Sand to clayey sand *
" * Overconsolidated and/or cemented
"NOTE:
"For soil classification, Rf values > 8 are assumed to be 8.
"( Note: 9E9 means Out Of Range )
" Depth
          Qt(avg) Fs(avg) Rf
                                   FC
                                           Rf Zone Ic
                                                            Spt N
                                                                                      Phi
                                                                     Spt N1
                                                                             Dr
                                                                                              Su
                                                                                                      OCR
" (feet)
         (TSF)
                          (왕)
                                   (왕)
                                           (zone #) index
                                                            (blow/ft) (blow/ft) (%)
                                                                                      (degree) (psf)
                                                                                                      (ratio)
                                  ______
   0.500
          82.700
                   0.917
                            1.108
                                    13.630
                                                     1.615
                                                             20
                                                                     30
                                                                              135
                                                                                      50
                                                                                                 9E9
                                                                                                          9E9
   1.500
          80.200
                   1.945
                            2.425
                                    30.063
                                                     2.002
                                                             31
                                                                     47
                                                                              110
                                                                                      50
                                                                                                 9E9
                                                                                                          9E9
                                             6
                                                                     2.7
   2.500
          74.317
                    0.913
                            1.229
                                    15.112
                                             8
                                                     1.650
                                                             18
                                                                              96
                                                                                      47
                                                                                                 9E9
                                                                                                          9E9
   3.500
          99.983
                   0.917
                            0.917
                                    8.410
                                                     1.492
                                                             24
                                                                              100
                                                                                      47
                                                                                                 9E9
                                                                                                          9E9
```

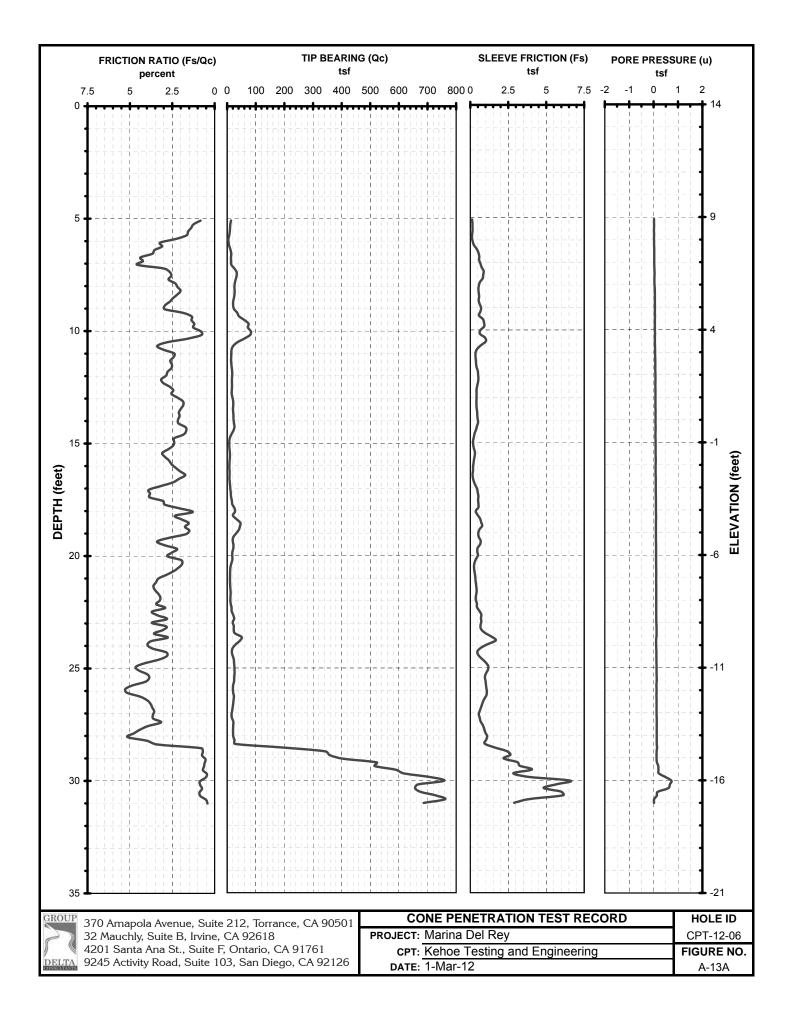
4.500	55.883	0.918	1.643	26.404	7	1.916	18	27	72	45	9E9	9E9
5.500	31.417	0.575	1.830	34.987	6	2.118	12	18	45	41	9E9	9E9
6.500	13.117	0.388	2.961	55.336	4	2.598	8	12	9E9	9E9	1695.641	14.343
7.500	16.983	0.645	3.798	58.871	4	2.681	11	17	9E9	9E9	2209.996	16.789
8.500	35.950	1.075	2.990	47.911	5	2.423	17	26	9E9	9E9	4733.594	37.241
9.500	23.000	0.573	2.493	49.836	5	2.468	11	17	9E9	9E9	2991.470	18.226
10.500	13.729	0.443	3.226	61.883	4	2.752	9	13	9E9	9E9	1750.279	8.237
11.500	23.917	0.752	3.143	56.081	5	2.615	11	14	9E9	9E9	3099.604	15.030
12.500	43.817	1.365	3.115	50.569	5	2.485	21	26	9E9	9E9	5743.065	29.233
13.500	25.417	1.147	4.511	64.332	3	2.810	24	28	9E9	9E9	3282.977	13.182
14.500	16.767	0.380	2.266	56.698	5	2.630	8	9	9E9	9E9	2123.395	6.998
15.500	10.500	0.182	1.730	59.278	5	2.691	5	5	9E9	9E9	1286.286	3.448
16.500	11.133	0.258	2.320	64.327	5	2.810	5	5	9E9	9E9	1358.303	3.421
17.500	13.900	0.397	2.854	65.768	5	2.844	7	7	9E9	9E9	1723.729	4.288
18.500	16.467	0.667	4.049	70.756	4	2.961	11	10	9E9	9E9	2053.591	4.987
19.500	14.733	0.547	3.710	71.083	4	2.969	9	8	9E9	9E9	1814.416	4.072
20.500	71.614	0.693	0.967	27.015	8	1.930	17	15	50	39	9E9	9E9
21.500	72.317	0.748	1.035	28.461	8	1.964	17	14	50	39	9E9	9E9
22.500	14.517	0.348	2.400	64.608	5	2.816	7	6	9E9	9E9	1765.282	3.585
23.500	8.300	0.217	2.610	74.869	4	3.058	5	4	9E9	9E9	925.951	1.556
24.500	10.467	0.278	2.659	71.974	4	2.990	7	6	9E9	9E9	1204.688	2.104
25.500	12.417	0.430	3.463	74.438	4	3.048	8	6	9E9	9E9	1458.974	2.602
26.500	12.367	0.378	3.059	72.667	4	3.006	8	6	9E9	9E9	1442.079	2.498
27.500	80.900	0.823	1.018	28.447	8	1.964	19	15	51	39	9E9	9E9
28.500	192.050	1.250	0.651	10.341	9	1.537	37	28	84	43	9E9	9E9
29.500	201.483	0.977	0.485	4.372	9	1.396	39	29	86	43	9E9	9E9
30.500	284.850	1.412	0.496	1.281	10	1.323	45	33	99	43	9E9	9E9
31.500	502.143	3.709	0.739	5.285	10	1.418	80	57	120	47	9E9	9E9
32.500	297.433	1.890	0.635	6.362	10	1.443	47	33	99	43	9E9	9E9
33.500	368.450	2.247	0.610	3.744	10	1.382	59	41	107	45	9E9	9E9
34.500	265.900	1.223	0.460	1.463	10	1.328	42	29	94	43	9E9	9E9
35.500	459.550	4.075	0.887	10.519	10	1.541	73	49	115	45	9E9	9E9
36.500	562.733	4.945	0.879	9.146	10	1.509	90	59	9E9	9E9	9E9	9E9
37.500	525.833	2.440	0.464	0.000	10	1.189	84	55	9E9	9E9	9E9	9E9
38.500	541.900	1.870	0.345	0.000	10 10	1.039	87 110	56	9E9 9E9	9E9 9E9	9E9 9E9	9E9
39.500 40.500	688.017 526.250	1.807 2.132	0.263 0.405			0.858 1.133		69 52	9E9			9E9 9E9
40.500	467.600	2.132	0.405	0.000	10 10	1.133	84 75	46	9E9 113	9E9 45	9E9 9E9	9E9 9E9
42.499	484.783	3.088	0.494	3.841	10	1.384	75 77	47	113	45	9E9	9E9
43.499	485.450	3.322	0.684	5.518	10	1.423	77	46	114	45	9E9	9E9
44.499	561.233	2.803	0.499	0.000	10	1.239	90	53	9E9	9E9	9E9	9E9
45.499	475.500	2.050	0.431	0.000	10	1.205	76	44	112	45	9E9	9E9
46.499	327.367	2.663	0.814	13.041	9	1.601	63	36	98	43	9E9	9E9
47.499	450.900	3.098	0.687	6.759	10	1.453	72	41	110	45	9E9	9E9
48.499	561.483	3.377	0.601	2.216	10	1.345	90	51	9E9	9E9	9E9	9E9
49.499	480.367	4.520	0.941	13.299	9	1.607	92	51	111	45	9E9	9E9
50.499	455.100	0.000	0.000	9E9	10	9E9	9E9	9E9	109	45	9E9	9E9
50.177	133.100	0.000	0.000	747	10	2112	7117	727	100	13	7117	7117


```
"Output file from CPTINT - Version 5.2
"INPUT FILE: C:\CPTINT\C2.csv
"-----
"Developed by: UBC In-Situ Testing FREEWARE
     Program: Piezocone Interpretation
    Web Site: www.civil.ubc.ca/home/in-situ
"Interpreter Name: YL
"SUMMARY SHEET
"'a' for calculating Qt:
                                   0.830
"Value for Water Table (in m):
                                   3.350
"Valid Zone Classification based on:
                                   Rf
"Missing unit weight to start depth:
                                   18.860
"Method for calculating Su:
"Value of the constant Nk:
                                   15.000
"Method used to calculate OCR:
                                   Su/EOS
"(Su/EOS) for normal consolidation:
                                   0.250
"Define Zone 6 for Sand Parameters?
                                   YES
"Sand Compressibility for calc Dr:
                                   Moderate
"Method for Friction Angle:
                                   Robertson & Campanella
"Vertical Flow Gradient, i (- up):
                                   +0.000
"CPT to SPT N60 Conversion:
                                   Robertson & Campanella
"Soil Behavior Type Zone Numbers
"For Rf Zone & Bq Zone Classification
"-----
"Zone #1=Sensitive fine grained
                               Zone #7 =Sand with some Silt
"Zone #2=Organic material
                               Zone #8 =Fine sand
"Zone #3=Clay
                               Zone #9 =Sand
"Zone #4=Silty clay
                               Zone #10=Gravelly sand
"Zone #5=Clayey silt
                               Zone #11=Very stiff fine grained *
"Zone #6=Silty sand
                               Zone #12=Sand to clayey sand *
" * Overconsolidated and/or cemented
"NOTE:
"For soil classification, Rf values > 8 are assumed to be 8.
"( Note: 9E9 means Out Of Range )
"--- INPUT FILE: C:\CPTINT\C2.csv |------
" Depth
          Qt(avg) Fs(avg) Rf
                                    FC
                                             Rf Zone Ic
                                                              Spt N
                                                                                        Phi
                                                                                                 Su
                                                                       Spt N1
                                                                                Dr
                                                                                                          OCR
" (feet)
          (TSF)
                           (왕)
                                    (왕)
                                             (zone #) index
                                                              (blow/ft) (blow/ft) (%)
                                                                                        (degree) (psf)
                                                                                                          (ratio)
"______
   0.500
           52.533
                    0.428
                             0.815
                                      4.793
                                                       1.406
                                                               17
                                                                        26
                                                                                118
                                                                                         50
                                                                                                    9E9
                                                                                                             9E9
   1.500
           35.400
                    0.468
                             1.323
                                     17.603
                                              7
                                                       1.708
                                                               11
                                                                       17
                                                                                79
                                                                                         47
                                                                                                    9E9
                                                                                                             9E9
                                                                        20
   2.500
           52.350
                    0.407
                             0.777
                                      6.018
                                              8
                                                       1.435
                                                               13
                                                                                83
                                                                                         47
                                                                                                    9E9
                                                                                                             9E9
   3.500
           33.317
                    0.372
                             1.116
                                     19.808
                                                       1.760
                                                               11
                                                                       17
                                                                                         43
                                                                                                    9E9
                                                                                                             9E9
```

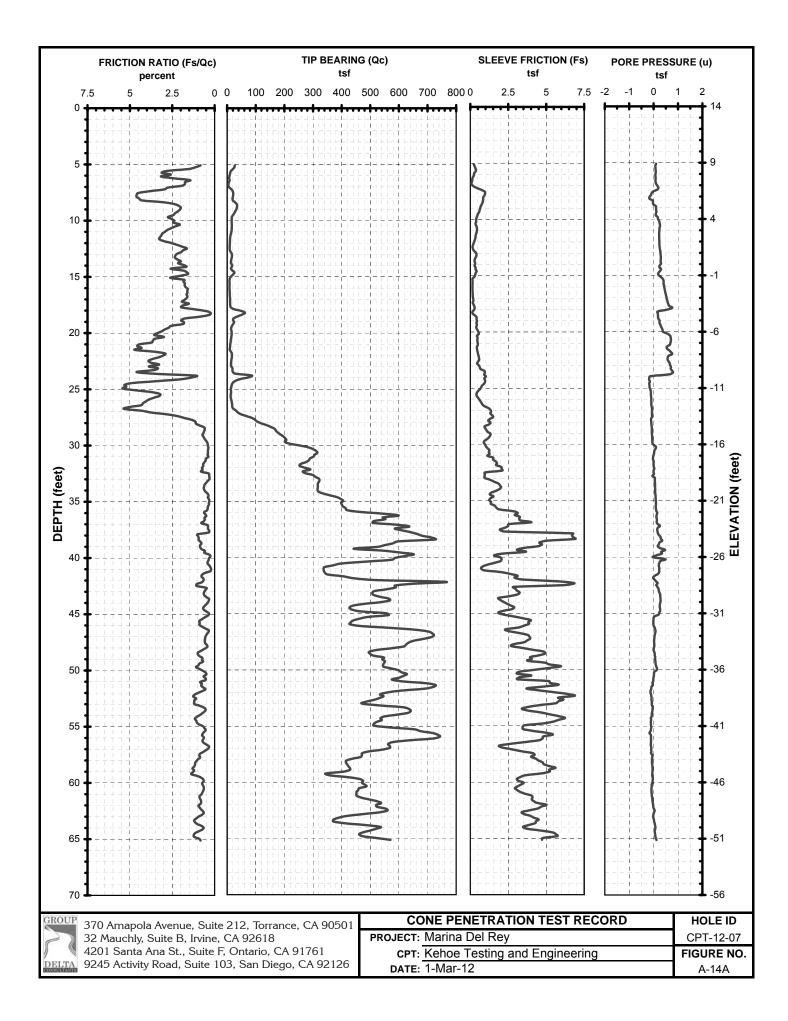
4.500	19.083	0.257	1.345	31.473	6	2.035	7	11	31	39	9E9	9E9
5.500	16.850	0.360	2.136	44.102	5	2.035	8	12	9E9	9E9	2202.894	25.264
6.500	18.733	0.448	2.136	47.005	5	2.333	9	14	9E9	9E9	2446.066	23.404
	29.083	0.448	2.393	47.066	6		11	17	36		9E9	23.404 9E9
7.500					-	2.403	10	15	36 9E9	39		
8.500	21.267	0.570	2.680	50.818	5	2.491				9E9	2767.421	19.386
9.500	16.717	0.372	2.223	51.210	5	2.501	8	12	9E9	9E9	2152.425	12.308
10.500	14.971	0.417	2.786	58.004	5	2.661	7	10	9E9	9E9	1911.662	9.379
11.500	30.783	0.762	2.474	48.275	6	2.431	12	16	30	37	9E9	9E9
12.500	46.733	0.478	1.024	26.909	7	1.928	15	19	45	39	9E9	9E9
13.500	14.467	0.297	2.051	54.613	5	2.581	7	9	9E9	9E9	1822.218	7.310
14.500	9.950	0.208	2.094	60.727	5	2.725	5	6	9E9	9E9	1211.835	4.186
15.500	14.483	0.342	2.359	58.273	5	2.667	7	8	9E9	9E9	1806.210	6.585
16.500	10.200	0.247	2.418	64.077	4	2.804	7	8	9E9	9E9	1233.615	3.912
17.500	22.700	0.523	2.305	53.115	6	2.545	9	10	13	33	9E9	9E9
18.500	70.550	0.543	0.770	19.343	8	1.749	17	19	56	41	9E9	9E9
19.500	40.700	0.895	2.199	46.142	6	2.381	16	17	34	37	9E9	9E9
20.500	24.314	0.396	1.627	47.028	6	2.402	9	9	13	33	9E9	9E9
21.500	9.517	0.260	2.732	69.575	4	2.933	6	6	9E9	9E9	1107.787	2.763
22.500	15.200	0.447	2.939	64.777	5	2.820	7	7	9E9	9E9	1857.758	5.086
23.500	16.667	0.518	3.110	65.014	5	2.826	8	8	9E9	9E9	2040.915	5.523
24.500	17.167	0.608	3.544	67.462	4	2.884	11	10	9E9	9E9	2101.818	5.537
25.500	16.300	0.468	2.873	64.642	5	2.817	8	7	9E9	9E9	1971.559	4.945
26.500	20.700	0.517	2.496	59.255	5	2.690	10	9	9E9	9E9	2559.266	6.633
27.500	37.233	0.520	1.397	41.420	7	2.270	12	11	26	35	9E9	9E9
28.500	65.617	0.632	0.963	27.874	8	1.950	16	14	47	39	9E9	9E9
29.500	89.400	0.940	1.051	26.206	8	1.911	21	18	59	39	9E9	9E9
30.500	147.550	1.078	0.731	13.892	9	1.621	28	24	77	41	9E9	9E9
31.500	170.686	0.986	0.578	7.985	9	1.482	33	27	83	43	9E9	9E9
32.500	200.917	1.237	0.616	7.755	9	1.476	38	31	88	43	9E9	9E9
33.500	276.433	0.968	0.350	0.000	10	1.141	44	35	100	45	9E9	9E9
34.500	218.783	1.203	0.550	5.139	9	1.414	42	33	91	43	9E9	9E9
35.500	181.300	1.355	0.747	13.440	9	1.610	35	27	83	43	9E9	9E9
36.500	138.500	1.107	0.799	17.900	9	1.715	27	20	72	41	9E9	9E9
37.500	119.467	0.968	0.799	20.111	8	1.767	29	22	66	41	9E9	9E9
38.500	220.483	1.157	0.525	5.077	9	1.413	42	31	89	43	9E9	9E9
39.500		1.157		0.000	10	0.978	42 86	62	89 9E9	9E9	9E9	9E9 9E9
	540.067		0.324									
40.500	588.000	1.715	0.292	0.000	10	0.912	94	67	9E9	9E9	9E9	9E9
41.499	600.371	1.883	0.314	0.000	10	0.949	96	67	9E9	9E9	9E9	9E9
42.499	572.717	2.168	0.379	0.000	10	1.057	91	62	9E9	9E9	9E9	9E9
43.499	743.900	0.000	0.000	9E9	10	9E9	9E9	9E9	9E9	9E9	9E9	9E9


```
"Output file from CPTINT - Version 5.2
"INPUT FILE: C:\CPTINT\C3.csv
"-----
"Developed by: UBC In-Situ Testing FREEWARE
     Program: Piezocone Interpretation
    Web Site: www.civil.ubc.ca/home/in-situ
"Interpreter Name: YL
"SUMMARY SHEET
"'a' for calculating Qt:
                                    0.830
"Value for Water Table (in m):
                                    0.610
"Valid Zone Classification based on:
                                    Rf
"Missing unit weight to start depth:
                                    18.860
"Method for calculating Su:
"Value of the constant Nk:
                                    15.000
"Method used to calculate OCR:
                                    Su/EOS
"(Su/EOS) for normal consolidation:
                                    0.250
"Define Zone 6 for Sand Parameters?
                                    YES
"Sand Compressibility for calc Dr:
                                    Moderate
"Method for Friction Angle:
                                    Robertson & Campanella
"Vertical Flow Gradient, i (- up):
                                    +0.000
"CPT to SPT N60 Conversion:
                                    Robertson & Campanella
"Soil Behavior Type Zone Numbers
"For Rf Zone & Bq Zone Classification
"-----
"Zone #1=Sensitive fine grained
                               Zone #7 =Sand with some Silt
"Zone #2=Organic material
                               Zone #8 =Fine sand
"Zone #3=Clay
                               Zone #9 =Sand
"Zone #4=Silty clay
                               Zone #10=Gravelly sand
"Zone #5=Clayey silt
                               Zone #11=Very stiff fine grained *
"Zone #6=Silty sand
                               Zone #12=Sand to clayey sand *
" * Overconsolidated and/or cemented
"NOTE:
"For soil classification, Rf values > 8 are assumed to be 8.
"( Note: 9E9 means Out Of Range )
"--- INPUT FILE: C:\CPTINT\C3.csv |------
" Depth
          Qt(avg) Fs(avg) Rf
                                     FC
                                              Rf Zone Ic
                                                               Spt N
                                                                                          Phi
                                                                        Spt N1
                                                                                 Dr
                                                                                                   Su
                                                                                                            OCR
" (feet)
          (TSF)
                            (왕)
                                     (왕)
                                              (zone #) index
                                                               (blow/ft) (blow/ft) (%)
                                                                                          (degree) (psf)
                                                                                                            (ratio)
                                    _____
   0.500
           33.467
                     0.478
                              1.429
                                     17.372
                                                        1.703
                                                                11
                                                                         17
                                                                                  101
                                                                                           50
                                                                                                       9E9
                                                                                                                9E9
   1.500
           16.050
                    0.450
                              2.804
                                     39.118
                                               5
                                                        2.215
                                                                 8
                                                                         12
                                                                                  9E9
                                                                                           9E9
                                                                                                   2128.551 123.970
                                                                                  9E9
   2.500
           21.750
                     0.643
                              2.958
                                      41.031
                                               5
                                                        2.261
                                                                10
                                                                         15
                                                                                           9E9
                                                                                                   2880.577 108.309
   3.500
           25.033
                    0.618
                              2.470
                                     37.468
                                                        2.177
                                                                10
                                                                         15
                                                                                           43
                                                                                                      9E9
```

4.500	24.417	0.653	2.676	40.675	5	2.252	12	18	9E9	9E9	3223.992	77.598	
5.500	19.483	0.493	2.532	42.464	5	2.294	9	14	9E9	9E9	2562.317	48.815	
6.500	27.467	0.598	2.178	37.372	6	2.174	11	17	46	41	9E9	9E9	
7.500	40.650	0.903	2.222	35.605	6	2.133	16	24	59	43	9E9	9E9	
8.500	98.267	0.807	0.821	8.026	8	1.482	24	36	91	45	9E9	9E9	
9.500	91.367	0.410	0.449	0.000	8	1.202	22	33	86	45	9E9	9E9	
10.500	18.086	0.496	2.741	49.740	5	2.466	9	14	9E9	9E9	2344.719	22.937	
11.500	8.217	0.192	2.333	56.460	4	2.624	5	8	9E9	9E9	1019.230	7.394	
12.500	7.100	0.177	2.488	60.492	4	2.719	5	8	9E9	9E9	862.298	5.512	
13.500	17.283	0.223	1.292	38.123	6	2.192	7	11	15	37	9E9	9E9	
14.500	64.917	0.370	0.570	7.936	8	1.480	16	24	65	43	9E9	9E9	
15.500	45.300	0.587	1.295	28.576	7	1.967	14	21	50	41	9E9	9E9	
16.500	55.417	0.670	1.209	25.713	7	1.899	18	27	57	41	9E9	9E9	
17.500	16.583	0.478	2.884	56.482	5	2.625	8	12	9E9	9E9	2095.607	11.679	
18.500	16.167	0.332	2.052	50.897	5	2.493	8	12	9E9	9E9	2032.033	10.584	
19.500	18.017	0.500	2.775	55.938	5	2.612	9	13	9E9	9E9	2270.760	11.485	
20.500	23.314	0.727	3.119	55.856	5	2.610	11	15	9E9	9E9	2967.216	15.156	
21.500	23.311	0.930	3.991	61.332	4	2.739	15	20	9E9	9E9	2952.208	14.230	
22.500	16.667	0.495	2.970	59.853	5	2.704	8	10	9E9	9E9	2061.585	8.622	
23.500	19.867	0.515	2.592	55.610	5	2.704	10	12	9E9	9E9	2482.582	10.367	
24.500	31.317	0.915	2.895	53.015	5	2.543	15	18	9E9	9E9	3994.805	17.904	
24.500	99.283	1.375	2.895 1.385	26.792	8	1.925	24	28	9£9 71	9E9 41	3994.805 9E9	17.904 9E9	
26.500	191.167	1.125	0.588	3.251	9	1.370	37	42	96	45	9E9	9E9	
27.500	254.683	1.250	0.491	0.000	9	1.228	49	54	106	45	9E9	9E9	
28.500	340.817	1.448	0.425	0.000	10	1.107	54	58	116	47	9E9	9E9	
29.500	390.800	2.630	0.673	1.840	10	1.337	62	64	121	47	9E9	9E9	
30.500	371.217	1.700	0.458	0.000	10	1.144	59	60	118	47	9E9	9E9	
31.500	282.257	0.907	0.321	0.000	10	1.028	45	44	107	45	9E9	9E9	
32.500	304.517	1.358	0.446	0.000	10	1.179	49	47	109	45	9E9	9E9	
33.500	162.300	1.753	1.080	19.664	9	1.757	31	29	84	43	9E9	9E9	
34.500	118.783	0.865	0.728	15.054	9	1.648	23	21	71	41	9E9	9E9	
35.500	58.617	1.078	1.840	41.311	7	2.267	19	17	43	37	9E9	9E9	
36.500	205.967	1.937	0.940	15.328	9	1.655	39	34	92	43	9E9	9E9	
37.500	476.200	1.557	0.327	0.000	10	0.961	76	66	123	47	9E9	9E9	
38.500	498.683	1.738	0.349	0.000	10	0.991	80	68	125	47	9E9	9E9	
39.500	535.917	2.032	0.379	0.000	10	1.027	86	71	9E9	9E9	9E9	9E9	
40.500	508.517	1.953	0.384	0.000	10	1.047	81	66	124	47	9E9	9E9	
41.499	492.786	1.477	0.300	0.000	10	0.931	79	63	122	47	9E9	9E9	
42.499	741.817	1.030	0.139	0.000	10	0.472	118	92	9E9	9E9	9E9	9E9	


```
"Output file from CPTINT - Version 5.2
"INPUT FILE: C:\CPTINT\C4.csv
"-----
"Developed by: UBC In-Situ Testing FREEWARE
    Program: Piezocone Interpretation
   Web Site: www.civil.ubc.ca/home/in-situ
"Interpreter Name: YL
"SUMMARY SHEET
"'a' for calculating Qt:
                                 0.830
"Value for Water Table (in m):
                                 2.900
"Valid Zone Classification based on:
                                 Rf
"Missing unit weight to start depth:
                                 18.860
"Method for calculating Su:
"Value of the constant Nk:
                                 15.000
"Method used to calculate OCR:
                                 Su/EOS
"(Su/EOS) for normal consolidation:
                                 0.250
"Define Zone 6 for Sand Parameters?
                                 YES
"Sand Compressibility for calc Dr:
                                 Moderate
"Method for Friction Angle:
                                 Robertson & Campanella
"Vertical Flow Gradient, i (- up):
                                 +0.000
"CPT to SPT N60 Conversion:
                                 Robertson & Campanella
"Soil Behavior Type Zone Numbers
"For Rf Zone & Bq Zone Classification
"-----
"Zone #1=Sensitive fine grained
                             Zone #7 =Sand with some Silt
"Zone #2=Organic material
                             Zone #8 =Fine sand
"Zone #3=Clay
                             Zone #9 =Sand
"Zone #4=Silty clay
                             Zone #10=Gravelly sand
"Zone #5=Clayey silt
                             Zone #11=Very stiff fine grained *
"Zone #6=Silty sand
                             Zone #12=Sand to clayey sand *
" * Overconsolidated and/or cemented
"NOTE:
"For soil classification, Rf values > 8 are assumed to be 8.
"( Note: 9E9 means Out Of Range )
" Depth
         Qt(avg) Fs(avg) Rf
                                  FC
                                          Rf Zone Ic
                                                           Spt N
                                                                                    Phi
                                                                   Spt N1
                                                                           Dr
                                                                                            Su
                                                                                                    OCR
" (feet)
         (TSF)
                          (왕)
                                  (왕)
                                          (zone #) index
                                                           (blow/ft) (blow/ft) (%)
                                                                                    (degree) (psf)
                                                                                                    (ratio)
"------
   0.500 103.767
                   0.530
                            0.511
                                    0.000
                                                    1.236
                                                            20
                                                                    30
                                                                            143
                                                                                    50
                                                                                               9E9
                                                                                                        9E9
   1.500
         85.250
                   0.970
                           1.138
                                   11.912
                                            8
                                                    1.574
                                                            20
                                                                    30
                                                                            112
                                                                                    50
                                                                                               9E9
                                                                                                        9E9
   2.500
          69.767
                   0.952
                           1.364
                                   17.767
                                            7
                                                    1.712
                                                            22
                                                                    33
                                                                            93
                                                                                     47
                                                                                               9E9
                                                                                                        9E9
   3.500
          75.550
                   0.935
                           1.238
                                   16.625
                                                    1.685
                                                            18
                                                                    27
                                                                                     47
                                                                                               9E9
                                                                                                        9E9
```

4.500	38.767	0.518	1.337	24.659	7	1.875	12	18	58	43	9E9	9E9
5.500	15.067	0.435	2.887	51.470	5	2.507	7	11	9E9	9E9	1959.938	21.424
6.500	26.217	0.695	2.651	45.846	6	2.374	10	15	35	39	9E9	9E9
7.500	18.083	0.487	2.691	51.336	5	2.504	9	14	9E9	9E9	2354.813	18.300
8.500	14.417	0.473	3.283	59.115	4	2.687	9	14	9E9	9E9	1857.793	11.673
9.500	16.200	0.485	2.994	57.244	5	2.643	8	12	9E9	9E9	2085.406	11.767
10.500	19.071	0.470	2.464	52.213	5	2.524	9	13	9E9	9E9	2461.946	13.617
11.500	65.750	1.033	1.572	30.762	7	2.018	21	30	61	41	9E9	9E9
12.500	89.700	0.975	1.087	20.630	8	1.780	21	29	72	43	9E9	9E9
13.500	18.750	0.467	2.489	54.230	5	2.572	9	12	9E9	9E9	2397.589	11.111
14.500	8.217	0.187	2.272	64.069	4	2.804	5	6	9E9	9E9	984.774	3.474
								7				
15.500	8.700	0.208	2.395	64.800	4	2.821	6		9E9	9E9	1036.786	3.529
16.500	38.433	0.238	0.620	21.732	7	1.806	12	14	35	37	9E9	9E9
17.500	103.133	0.480	0.465	4.463	9	1.398	20	23	73	43	9E9	9E9
18.500	93.717	0.760	0.811	16.587	8	1.684	22	25	68	41	9E9	9E9
19.500	36.900	0.552	1.495	39.259	7	2.219	12	13	31	37	9E9	9E9
20.500	11.443	0.154	1.348	53.646	5	2.558	5	5	9E9	9E9	1371.113	3.997
21.500	16.250	0.243	1.497	50.802	6	2.491	6	6	-1	31	9E9	9E9
22.500	27.617	0.662	2.396	52.850	6	2.539	11	11	18	35	9E9	9E9
23.500	33.550	1.545	4.605	63.972	4	2.801	21	21	9E9	9E9	4294.667	14.790
					3	2.927	18	18				
24.500	19.150	0.822	4.291	69.281					9E9	9E9	2363.605	6.744
25.500	15.550	0.522	3.355	67.672	4	2.889	10	10	9E9	9E9	1875.309	4.871
26.500	43.783	0.913	2.086	46.255	6	2.384	17	16	33	37	9E9	9E9
27.500	22.850	0.655	2.867	60.470	5	2.719	11	10	9E9	9E9	2836.830	7.616
28.500	21.817	0.740	3.392	64.610	5	2.816	10	9	9E9	9E9	2690.677	6.886
29.500	34.533	1.203	3.485	59.982	5	2.707	17	15	9E9	9E9	4378.335	12.238
30.500	73.550	1.572	2.137	42.323	7	2.291	23	20	51	39	9E9	9E9
31.500	232.086	0.900	0.388	0.000	9	1.212	44	37	95	43	9E9	9E9
32.500	206.533	0.727	0.352	0.000	9	1.208	40	33	90	43	9E9	9E9
33.500	202.217	1.567	0.332	12.311		1.583	39	32	89	43	9E9	9E9
					9							
34.500	390.650	1.855	0.475	0.000	10	1.207	62	50	114	45	9E9	9E9
35.500	554.550	4.288	0.773	5.065	10	1.413	89	70	9E9	9E9	9E9	9E9
36.500	532.483	1.723	0.324	0.000	10	0.962	85	65	9E9	9E9	9E9	9E9
37.500	488.417	1.363	0.279	0.000	10	0.912	78	59	121	47	9E9	9E9
38.500	405.650	0.832	0.205	0.000	10	0.826	65	48	113	45	9E9	9E9
39.500	468.967	1.087	0.232	0.000	10	0.846	75	55	118	45	9E9	9E9
40.500	516.567	2.058	0.398	0.000	10	1.091	82	59	121	47	9E9	9E9
41.499	526.486	1.660	0.315	0.000	10	0.975	84	59	9E9	9E9	9E9	9E9
42.499	578.733	1.982	0.342	0.000	10	1.001	92	64	9E9	9E9	9E9	9E9
								65				
43.499	596.967	2.558	0.429	0.000	10	1.114	95		9E9	9E9	9E9	9E9
44.499	685.750	2.030	0.296	0.000	10	0.902	109	73	9E9	9E9	9E9	9E9
45.499	545.867	1.718	0.315	0.000	10	0.984	87	58	9E9	9E9	9E9	9E9
46.499	506.400	1.622	0.320	0.000	10	1.014	81	53	118	45	9E9	9E9
47.499	664.883	1.997	0.300	0.000	10	0.927	106	68	9E9	9E9	9E9	9E9
48.499	587.917	2.385	0.406	0.000	10	1.107	94	60	9E9	9E9	9E9	9E9
49.499	709.967	1.650	0.232	0.000	10	0.795	113	71	9E9	9E9	9E9	9E9
								• =				


```
"Output file from CPTINT - Version 5.2
"INPUT FILE: C:\CPTINT\C5.csv
"-----
"Developed by: UBC In-Situ Testing FREEWARE
    Program: Piezocone Interpretation
   Web Site: www.civil.ubc.ca/home/in-situ
"Interpreter Name: YL
"SUMMARY SHEET
"'a' for calculating Qt:
                                 0.830
"Value for Water Table (in m):
                                 3.350
"Valid Zone Classification based on:
                                 Rf
"Missing unit weight to start depth:
                                 18.860
"Method for calculating Su:
"Value of the constant Nk:
                                 15.000
"Method used to calculate OCR:
                                 Su/EOS
"(Su/EOS) for normal consolidation:
                                 0.250
"Define Zone 6 for Sand Parameters?
                                 YES
"Sand Compressibility for calc Dr:
                                 Moderate
"Method for Friction Angle:
                                 Robertson & Campanella
"Vertical Flow Gradient, i (- up):
                                 +0.000
"CPT to SPT N60 Conversion:
                                 Robertson & Campanella
"Soil Behavior Type Zone Numbers
"For Rf Zone & Bq Zone Classification
"-----
"Zone #1=Sensitive fine grained
                             Zone #7 =Sand with some Silt
"Zone #2=Organic material
                             Zone #8 =Fine sand
"Zone #3=Clay
                             Zone #9 =Sand
"Zone #4=Silty clay
                             Zone #10=Gravelly sand
"Zone #5=Clayey silt
                             Zone #11=Very stiff fine grained *
"Zone #6=Silty sand
                             Zone #12=Sand to clayey sand *
" * Overconsolidated and/or cemented
"NOTE:
"For soil classification, Rf values > 8 are assumed to be 8.
"( Note: 9E9 means Out Of Range )
" Depth
         Qt(avg) Fs(avg) Rf
                                  FC
                                          Rf Zone Ic
                                                           Spt N
                                                                                    Phi
                                                                   Spt N1
                                                                            Dr
                                                                                            Su
                                                                                                    OCR
" (feet)
         (TSF)
                          (왕)
                                  (왕)
                                          (zone #) index
                                                           (blow/ft) (blow/ft) (%)
                                                                                    (degree) (psf)
                                                                                                    (ratio)
"------
   0.500
          33.583
                   0.150
                            0.447
                                    0.000
                                                    1.047
                                                            11
                                                                    17
                                                                            101
                                                                                     50
                                                                                               9E9
                                                                                                        9E9
   1.500
          74.033
                   0.830
                           1.121
                                   11.650
                                            8
                                                    1.568
                                                            18
                                                                    27
                                                                            107
                                                                                     50
                                                                                               9E9
                                                                                                        9E9
   2.500
          88.450
                   1.392
                           1.573
                                   20.340
                                            7
                                                    1.773
                                                            28
                                                                    42
                                                                            103
                                                                                     50
                                                                                               9E9
                                                                                                        9E9
   3.500
          91.717
                   1.122
                           1.223
                                   15.400
                                                    1.656
                                                            22
                                                                    33
                                                                                     47
                                                                                               9E9
                                                                                                        9E9
```

4.500	56.583	0.705	1.246	20.054	7	1.766	18	27	73	45	9E9	9E9
5.500	44.133	0.435	0.986	18.785	7	1.736	14	21	59	43	9E9	9E9
6.500	12.350	0.233	1.889	47.277	5	2.408	6	9	9E9	9E9	1592.176	13.574
7.500	24.783	0.670	2.703	48.174	5	2.429	12	18	9E9	9E9	3242.213	27.575
8.500	23.967	0.687	2.865	51.008	5	2.425	11	17	9E9	9E9	3122.734	22.410
9.500	20.917	0.655	3.131	55.446	5	2.600	10	15	9E9	9E9	2707.622	16.264
10.500	18.586	0.466	2.506	53.583	5	2.556	9	13	9E9	9E9	2389.211	12.273
11.500	20.983	0.462	2.200	50.494	6	2.484	8	11	15	35	9E9	9E9
12.500	35.200	0.875	2.486	47.568	6	2.415	13	17	34	37	9E9	9E9
13.500	51.867	0.965	1.861	38.092	7	2.191	17	21	48	39	9E9	9E9
14.500	11.783	0.300	2.546	61.901	5	2.753	6	7	9E9	9E9	1457.560	5.209
15.500	9.550	0.177	1.850	59.885	5	2.705	5	6	9E9	9E9	1153.924	3.717
16.500	12.167	0.380	3.123	66.304	4	2.856	8	9	9E9	9E9	1492.677	4.908
17.500	31.683	0.512	1.615	42.443	6	2.294	12	13	26	37	9E9	9E9
18.500	56.667	0.725	1.279	31.642	7	2.039	18	20	47	39	9E9	9E9
19.500	75.933	0.607	0.799	19.684	8	1.757	18	19	58	41	9E9	9E9
20.500	38.900	0.664	1.708	42.259	7	2.290	12	12	31	37	9E9	9E9
				63.670	5	2.290		6	9E9	9E9		
21.500	13.350	0.338	2.534				6				1607.582	4.387
22.500	21.450	0.803	3.745	65.167	4	2.830	14	14	9E9	9E9	2677.469	7.994
23.500	25.983	0.887	3.412	61.458	5	2.742	12	12	9E9	9E9	3278.177	9.912
24.500	27.833	0.607	2.180	52.457	6	2.530	11	10	16	33	9E9	9E9
25.500	25.983	0.727	2.797	58.386	5	2.670	12	11	9E9	9E9	3259.275	9.151
26.500	20.567	0.688	3.347	65.102	5	2.828	10	9	9E9	9E9	2528.693	6.444
27.500	46.967	1.183	2.520	50.056	6	2.473	18	16	34	37	9E9	9E9
28.500	84.933	1.573	1.852	37.875	7	2.186	27	23	57	39	9E9	9E9
29.500	139.817	1.195	0.855	17.416	9	1.704	27	23	76	41	9E9	9E9
30.500	145.617	1.522	1.045	21.321	9	1.796	28	23	77	41	9E9	9E9
31.500	221.800	1.909	0.860	13.563	9	1.613	42	34	92	43	9E9	9E9
32.500	380.267	0.937	0.246	0.000	10	0.895	61	49	113	45	9E9	9E9
33.500	474.850	2.195	0.462	0.000	10	1.160	76	60	121	47	9E9	9E9
	652.083					1.466		81	9E9	9E9	9E9	9E9
34.500		5.730	0.879	7.341	10		104					
35.500	520.000	2.915	0.561	0.000	10	1.255	83	63	123	47	9E9	9E9
36.500	247.583	1.467	0.592	5.967	9	1.434	47	35	94	43	9E9	9E9
37.500	362.733	1.502	0.414	0.000	10	1.178	58	43	108	45	9E9	9E9
38.500	393.367	1.127	0.286	0.000	10	0.991	63	46	111	45	9E9	9E9
39.500	431.933	1.100	0.255	0.000	10	0.919	69	49	114	45	9E9	9E9
40.500	450.017	1.242	0.276	0.000	10	0.950	72	50	115	45	9E9	9E9
41.499	478.057	1.651	0.345	0.000	10	1.048	76	52	117	45	9E9	9E9
42.499	555.950	1.962	0.353	0.000	10	1.030	89	60	9E9	9E9	9E9	9E9
43.499	637.500	3.090	0.485	0.000	10	1.173	102	68	9E9	9E9	9E9	9E9
44.499	586.117	2.575	0.439	0.000	10	1.139	94	62	9E9	9E9	9E9	9E9
45.499	645.500	2.157	0.334	0.000	10	0.985	103	67	9E9	9E9	9E9	9E9
46.499	500.817	1.612	0.334	0.000	10	1.026	80	51	117	45	9E9	9E9
	520.167					0.958			117	45	9E9	9E9
47.499		1.465	0.282	0.000	10		83	52				
48.499	545.600	2.220	0.407	0.000	10	1.129	87	54	9E9	9E9	9E9	9E9
49.499	569.567	1.443	0.253	0.000	10	0.896	91	56	9E9	9E9	9E9	9E9
50.499	579.900	0.000	0.000	9E9	10	9E9	9E9	9E9	9E9	9E9	9E9	9E9


```
"Output file from CPTINT - Version 5.2
"INPUT FILE: C:\CPTINT\C6.csv
"-----
"Developed by: UBC In-Situ Testing FREEWARE
    Program: Piezocone Interpretation
   Web Site: www.civil.ubc.ca/home/in-situ
"Interpreter Name: YL
"SUMMARY SHEET
"'a' for calculating Qt:
                                 0.830
"Value for Water Table (in m):
                                 6.190
"Valid Zone Classification based on:
                                 Rf
"Missing unit weight to start depth:
                                 18.860
"Method for calculating Su:
"Value of the constant Nk:
                                 15.000
"Method used to calculate OCR:
                                 Su/EOS
"(Su/EOS) for normal consolidation:
                                 0.250
"Define Zone 6 for Sand Parameters?
                                 YES
"Sand Compressibility for calc Dr:
                                 Moderate
"Method for Friction Angle:
                                 Robertson & Campanella
"Vertical Flow Gradient, i (- up):
                                 +0.000
"CPT to SPT N60 Conversion:
                                 Robertson & Campanella
"Soil Behavior Type Zone Numbers
"For Rf Zone & Bq Zone Classification
"-----
"Zone #1=Sensitive fine grained
                             Zone #7 =Sand with some Silt
"Zone #2=Organic material
                             Zone #8 =Fine sand
"Zone #3=Clay
                             Zone #9 =Sand
"Zone #4=Silty clay
                             Zone #10=Gravelly sand
"Zone #5=Clayey silt
                             Zone #11=Very stiff fine grained *
"Zone #6=Silty sand
                             Zone #12=Sand to clayey sand *
" * Overconsolidated and/or cemented
"NOTE:
"For soil classification, Rf values > 8 are assumed to be 8.
"( Note: 9E9 means Out Of Range )
" Depth
         Qt(avg) Fs(avg) Rf
                                  FC
                                          Rf Zone Ic
                                                           Spt N
                                                                   Spt N1
                                                                                   Phi
                                                                                            Su
                                                                                                    OCR
" (feet)
         (TSF)
                          (왕)
                                  (왕)
                                          (zone #) index
                                                           (blow/ft) (blow/ft) (%)
                                                                                   (degree) (psf)
                                                                                                    (ratio)
"______
   0.500
          21.950
                   0.242
                           1.101
                                   11.429
                                            6
                                                    1.563
                                                            8
                                                                    12
                                                                            83
                                                                                    50
                                                                                               9E9
                                                                                                       9E9
   1.500
          25.600
                   0.343
                           1.341
                                   19.825
                                                    1.761
                                                           10
                                                                   15
                                                                            65
                                                                                    45
                                                                                               9E9
                                                                                                       9E9
                                            6
   2.500
          10.850
                   0.085
                           0.783
                                   21.178
                                            6
                                                    1.793
                                                            4
                                                                    6
                                                                            21
                                                                                    39
                                                                                               9E9
                                                                                                       9E9
   3.500
          13.400
                   0.088
                           0.659
                                   19.549
                                                    1.754
                                                            5
                                                                    8
                                                                                    39
                                                                                               9E9
                                                                                                       9E9
```

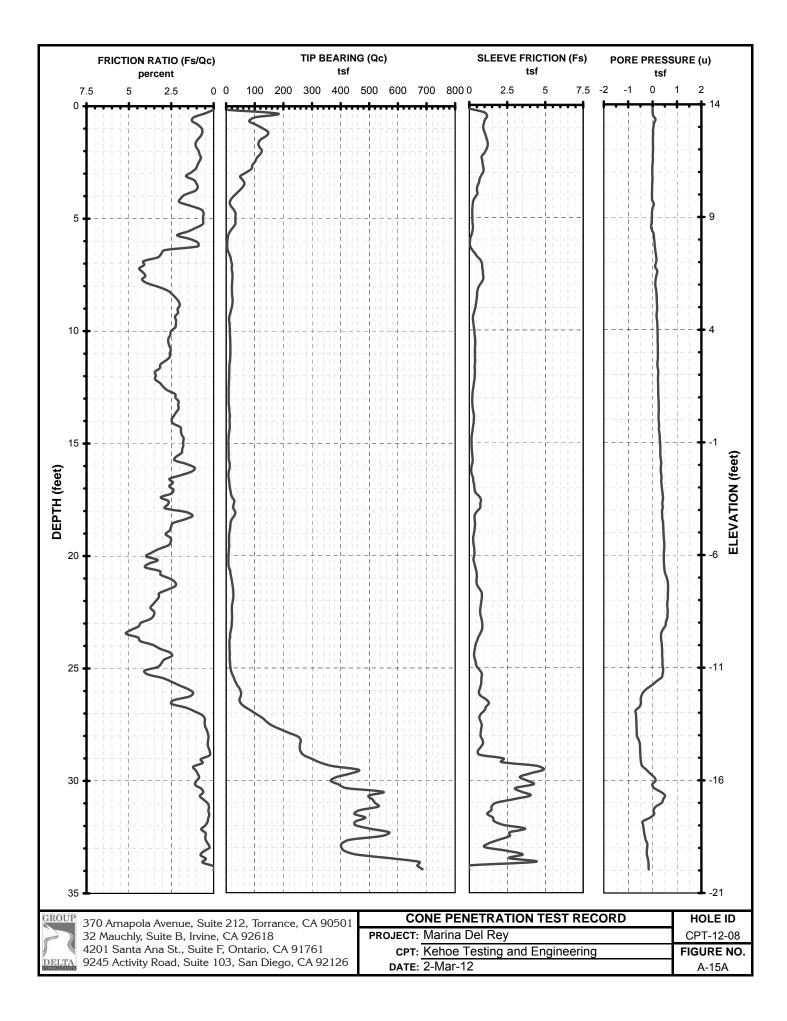
4.500	21.667	0.155	0.715	18.076	7	1.719	7	11	36	39	9E9	9E9
5.500	9.450	0.128	1.358	42.528	5	2.296	5	8	9E9	9E9	1215.635	11.903
6.500	11.000	0.420	3.818	62.170	3	2.759	11	17	9E9	9E9	1414.184	11.658
7.500	27.133	0.765	2.819	48.159	5	2.429	13	20	9E9	9E9	3557.516	30.755
8.500	23.833	0.567	2.378	47.333	6	2.409	9	14	26	37	9E9	9E9
9.500	51.467	0.763	1.483	31.043	7	2.025	16	24	53	41	9E9	9E9
10.500	44.557	0.691	1.552	34.415	7	2.105	14	20	45	39	9E9	9E9
11.500	15.750	0.415	2.635	57.559	5	2.650	8	10	9E9	9E9	2006.824	8.827
12.500	17.017	0.455	2.674	57.891	5	2.658	8	10	9E9	9E9	2167.753	8.774
13.500	21.450	0.433	2.020	50.752	6	2.490	8	9	12	33	9E9	9E9
14.500	17.367	0.335	1.929	53.567	5	2.556	8	9	9E9	9E9	2195.865	7.401
15.500	8.750	0.243	2.781	70.549	4	2.956	6	6	9E9	9E9	1038.673	2.675
16.500	8.833	0.207	2.340	68.374	4	2.905	6	6	9E9	9E9	1044.006	2.493
17.500	16.383	0.507	3.093	65.332	5	2.833	8	8	9E9	9E9	2042.931	5.365
18.500	35.250	0.593	1.683	45.090	6	2.356	14	13	24	35	9E9	9E9
19.500	22.117	0.558	2.524	59.123	5	2.687	11	10	9E9	9E9	2788.840	6.901
20.500	13.400	0.326	2.431	65.984	5	2.849	6	5	9E9	9E9	1616.556	3.297
21.500	11.217	0.380	3.388	74.800	4	3.057	7	6	9E9	9E9	1321.176	2.490
22.500	18.200	0.600	3.297	67.840	5	2.893	9	7	9E9	9E9	2244.525	4.697
23.500	33.100	1.100	3.323	60.789	5	2.726	16	13	9E9	9E9	4221.314	10.053
24.500	21.283	0.777	3.649	68.330	4	2.904	14	11	9E9	9E9	2637.010	5.423
25.500	23.750	1.040	4.379	70.712	4	2.960	15	12	9E9	9E9	2957.645	6.085
26.500	20.967	0.865	4.126	71.467	4	2.978	13	10	9E9	9E9	2578.098	4.984
27.500	19.467	0.765	3.930	71.840	4	2.987	12	9	9E9	9E9	2367.652	4.366
28.500	162.583	1.617	0.994	20.818	9	1.784	31	23	77	41	9E9	9E9
29.500	559.583	3.217	0.575	0.000	10	1.266	89	65	9E9	9E9	9E9	9E9
30.500	708.050	5.512	0.778	4.622	10	1.402	113	81	9E9	9E9	9E9	9E9
31.500	686.500	2.890	0.421	0.000	10	1.076	110	77	9E9	9E9	9E9	9E9


```
"Output file from CPTINT - Version 5.2
"INPUT FILE: C:\CPTINT\C7.csv
"-----
"Developed by: UBC In-Situ Testing FREEWARE
    Program: Piezocone Interpretation
   Web Site: www.civil.ubc.ca/home/in-situ
"Interpreter Name: YL
"SUMMARY SHEET
"'a' for calculating Qt:
                                 0.830
"Value for Water Table (in m):
                                 3.660
"Valid Zone Classification based on:
                                 Rf
"Missing unit weight to start depth:
                                 18.860
"Method for calculating Su:
"Value of the constant Nk:
                                 15.000
"Method used to calculate OCR:
                                 Su/EOS
"(Su/EOS) for normal consolidation:
                                 0.250
"Define Zone 6 for Sand Parameters?
                                 YES
"Sand Compressibility for calc Dr:
                                 Moderate
"Method for Friction Angle:
                                 Robertson & Campanella
"Vertical Flow Gradient, i (- up):
                                 +0.000
"CPT to SPT N60 Conversion:
                                 Robertson & Campanella
"Soil Behavior Type Zone Numbers
"For Rf Zone & Bq Zone Classification
"-----
"Zone #1=Sensitive fine grained
                             Zone #7 =Sand with some Silt
"Zone #2=Organic material
                             Zone #8 =Fine sand
"Zone #3=Clay
                             Zone #9 =Sand
"Zone #4=Silty clay
                             Zone #10=Gravelly sand
"Zone #5=Clayey silt
                             Zone #11=Very stiff fine grained *
"Zone #6=Silty sand
                             Zone #12=Sand to clayey sand *
" * Overconsolidated and/or cemented
"NOTE:
"For soil classification, Rf values > 8 are assumed to be 8.
"( Note: 9E9 means Out Of Range )
" Depth
         Qt(avg) Fs(avg) Rf
                                  FC
                                          Rf Zone Ic
                                                           Spt N
                                                                   Spt N1
                                                                                    Phi
                                                                           Dr
                                                                                            Su
                                                                                                    OCR
" (feet)
         (TSF)
                          (왕)
                                  (왕)
                                          (zone #) index
                                                           (blow/ft) (blow/ft) (%)
                                                                                    (degree) (psf)
                                                                                                    (ratio)
"______
   0.500
          22.600
                   0.162
                            0.715
                                    1.026
                                                    1.317
                                                                    11
                                                                            85
                                                                                    50
                                                                                               9E9
                                                                                                       9E9
   1.500
          18.617
                   0.205
                           1.101
                                   17.309
                                                    1.701
                                                            7
                                                                    11
                                                                            54
                                                                                    45
                                                                                               9E9
                                                                                                       9E9
                                            6
                                                                    17
   2.500
          28.033
                   0.393
                           1.403
                                   23.457
                                            6
                                                    1.846
                                                           11
                                                                            59
                                                                                    43
                                                                                               9E9
                                                                                                        9E9
   3.500
          42.417
                   0.413
                           0.974
                                   14.923
                                                    1.645
                                                           14
                                                                                    45
                                                                                               9E9
                                                                                                        9E9
```

4.500	28.183	0.367	1.301	26.887	6	1.927	11	17	46	41	9E9	9E9
5.500	17.667	0.297	1.679	38.954	6	2.212	7	11	24	37	9E9	9E9
6.500	6.667	0.138	2.075	56.982	4	2.637	4	6	9E9	9E9	836.423	6.071
7.500	17.483	0.712	4.071	59.996	4	2.708	11	17	9E9	9E9	2271.017	17.731
8.500	28.233	0.792	2.804	48.784	5	2.443	14	21	9E9	9E9	3694.329	27.818
9.500	23.017	0.535	2.324	48.438	6	2.435	9	14	22	37	9E9	9E9
10.500	16.000	0.397	2.482	55.219	5	2.595	8	11	9E9	9E9	2040.884	10.128
11.500	11.000	0.337	3.061	65.046	4	2.827	7	9	9E9	9E9	1366.993	5.487
12.500	11.000	0.222	2.015	58.461	5	2.671	5	6	9E9	9E9	1354.543	5.021
13.500	15.417	0.332	2.151	55.552	5	2.603	7	9	9E9	9E9	1940.027	7.503
14.500	18.567	0.342	1.840	50.742	6	2.490	7	8	7	33	9E9	9E9
15.500	8.817	0.168	1.909	62.802	5	2.774	4	5	9E9	9E9	1046.012	3.169
16.500	9.367	0.155	1.655	60.212	5	2.713	4	4	9E9	9E9	1102.470	3.243
17.500	13.267	0.218	1.646	55.371	5	2.599	6	7	9E9	9E9	1610.155	4.997
18.500			0.685		7	1.880	13	14	34	37	9E9	9E9
	40.650	0.278		24.888								
19.500	17.783	0.427	2.399	58.463	5	2.672	9	9	9E9	9E9	2207.640	6.854
20.500	13.771	0.491	3.568	69.962	4	2.943	9	9	9E9	9E9	1654.097	4.602
21.500	12.767	0.470	3.681	72.063	4	2.992	8	8	9E9	9E9	1515.901	3.979
22.500	14.800	0.537	3.626	70.072	4	2.945	9	9	9E9	9E9	1776.855	4.684
23.500	41.100	0.853	2.076	46.830	6	2.397	16	15	31	37	9E9	9E9
24.500	22.933	0.873	3.808	65.593	4	2.840	15	14	9E9	9E9	2862.853	7.912
25.500	13.233	0.492	3.715	72.742	4	3.008	8	7	9E9	9E9	1561.012	3.584
26.500	20.050	0.917	4.572	71.526	3	2.979	19	17	9E9	9E9	2461.966	6.128
27.500	73.200	1.352	1.847	39.206	7	2.218	23	20	51	39	9E9	9E9
28.500	154.317	1.113	0.721	12.880	9	1.597	30	26	80	43	9E9	9E9
29.500	201.750	1.127	0.558	5.252	9	1.417	39	33	90	43	9E9	9E9
30.500	295.417	1.153	0.390	0.000		1.162	47	39	104	45	9E9	9E9
					10							
31.500	276.086	1.613	0.584	3.593	9	1.378	53	43	101	45	9E9	9E9
32.500	292.650	1.330	0.454	0.000	10	1.248	47	37	102	45	9E9	9E9
33.500	317.983	1.768	0.556	1.732	10	1.334	51	40	105	45	9E9	9E9
34.500	366.650	1.408	0.384	0.000	10	1.127	59	45	110	45	9E9	9E9
35.500	416.117	1.795	0.431	0.000	10	1.162	66	50	114	45	9E9	9E9
36.500	544.017	3.303	0.607	0.102	10	1.296	87	64	9E9	9E9	9E9	9E9
37.500	622.000	3.037	0.488	0.000	10	1.163	99	72	9E9	9E9	9E9	9E9
38.500	642.333	5.780	0.900	8.437	10	1.492	103	74	9E9	9E9	9E9	9E9
39.500	563.433	3.050	0.541	0.000	10	1.240	90	63	9E9	9E9	9E9	9E9
40.500	459.150	1.585	0.345	0.000	10	1.055	73	50	116	45	9E9	9E9
41.499	390.200	2.239	0.574	2.175	10	1.345	62	42	109	45	9E9	9E9
42.499	610.417	4.630	0.758	5.229	10	1.417	97	65	9E9	9E9	9E9	9E9
43.499	536.417	2.495	0.465	0.000	10	1.184	86	57	9E9	9E9	9E9	9E9
44.499	465.867	2.445	0.525	0.000	10	1.276	74	48	115	45	9E9	9E9
45.499	469.733	3.367	0.717	6.110	10	1.437	75	48	115	45	9E9	9E9
46.499	641.133	3.102	0.484	0.000	10	1.183	102	64	9E9	9E9	9E9	9E9
47.499	653.833	3.445	0.527	0.000	10	1.227	104	65	9E9	9E9	9E9	9E9
48.499	524.283	4.278	0.816	8.581	10	1.496	84	52	9E9	9E9	9E9	9E9
49.499	551.017	4.835	0.877	9.984	10	1.529	88	53	9E9	9E9	9E9	9E9
50.499	604.583	3.460	0.572	0.000	10	1.292	97	58	9E9	9E9	9E9	9E9
51.499	675.417	4.872	0.721	4.484	10	1.399	108	64	9E9	9E9	9E9	9E9
52.499	520.214	6.017	1.157	16.894	9	1.692	100	58	116	45	9E9	9E9
								58 56			9E9	
53.499	608.550	4.247	0.698	4.655	10	1.403	97		9E9	9E9		9E9
54.499	528.700	5.278	0.998	13.709	9	1.616	101	57	9E9	9E9	9E9	9E9
55.499	682.617	4.382	0.642	2.216	10	1.346	109	61	9E9	9E9	9E9	9E9
56.499	605.000	3.278	0.542	0.000	10	1.282	97	54	9E9	9E9	9E9	9E9
57.499	479.983	3.793	0.790	9.663	10	1.521	77	42	111	45	9E9	9E9

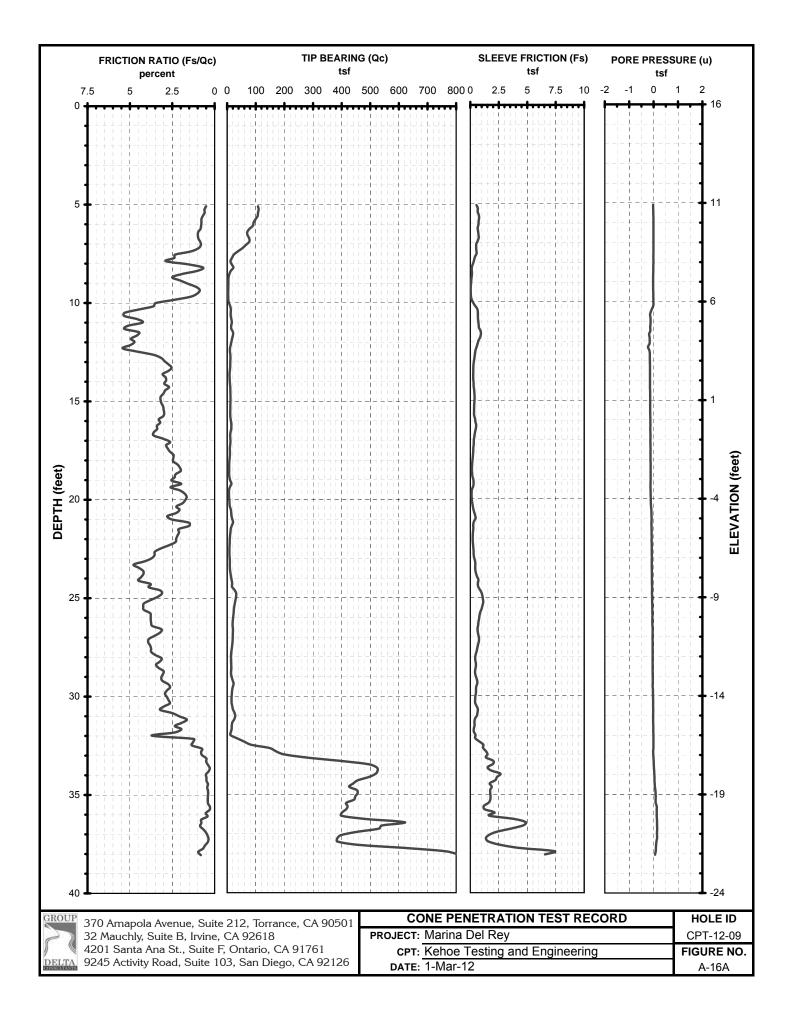
58.499	421.850	5.008	1.187	19.645	9	1.756	81	44	106	43	9E9	9E9
59.499	411.817	3.853	0.936	14.805	9	1.642	79	42	104	43	9E9	9E9
60.499	468.050	3.213	0.687	7.236	10	1.464	75	40	109	45	9E9	9E9
61.499	488.117	4.052	0.830	11.060	10	1.554	78	41	110	45	9E9	9E9
62.499	511.929	4.130	0.807	10.176	10	1.533	82	42	112	45	9E9	9E9
63.499	427.883	4.097	0.957	15.462	9	1.658	82	42	105	43	9E9	9E9
64.499	490.933	4.997	1.018	15.768	9	1.665	94	48	110	45	9E9	9E9
65.499	564.300	4.747	0.841	10.633	10	1.544	90	45	9E9	9E9	9E9	9E9
66.499	628.667	4.652	0.740	7.106	10	1.461	100	50	9E9	9E9	9E9	9E9
67.499	588.417	5.458	0.928	12.667	10	1.592	94	47	9E9	9E9	9E9	9E9
68.499	546.550	5.992	1.096	16.988	9	1.694	105	53	9E9	9E9	9E9	9E9
69.499	444.800	7.700	1.731	28.676	8	1.969	107	54	104	43	9E9	9E9

Admirality Way Marina Del Rey, CA

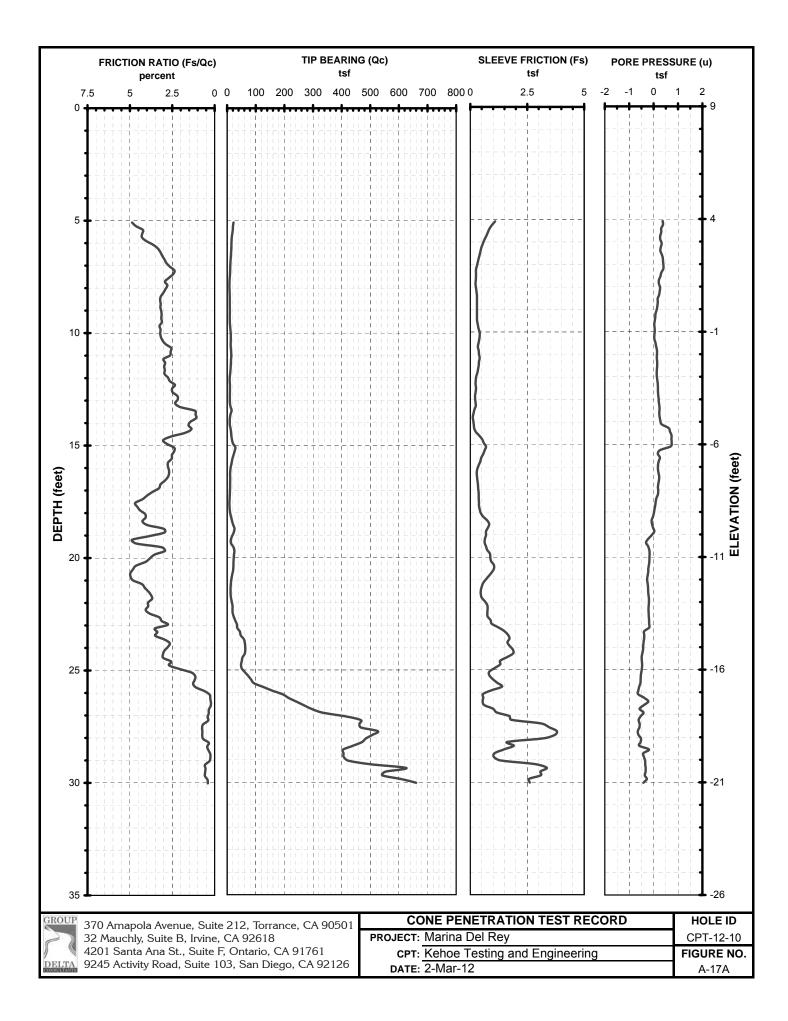

CPT-12-07

CPT Shear Wave Measurements

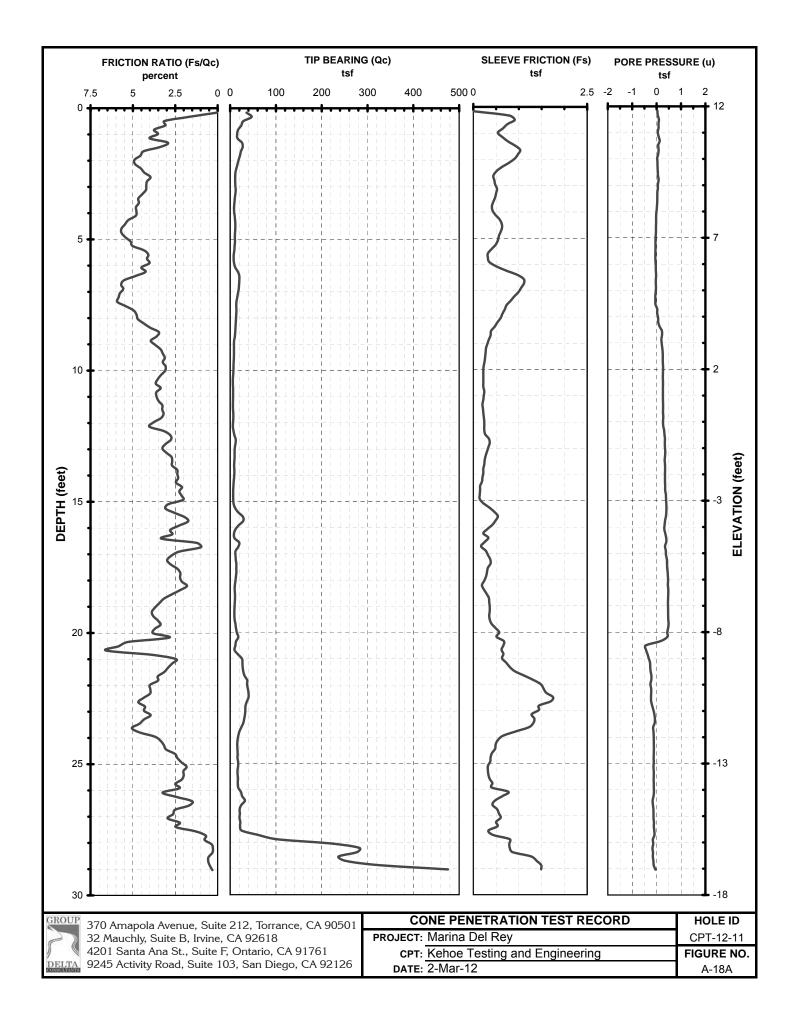
			S-Wave	Interval
	Travel	S-Wave	Velocity	S-Wave
Depth	Distance	Arrival	from Surface	Velocity
(ft)	(ft)	(msec)	(ft/sec)	(ft/sec)
5.25	7.25	12.17	595.73	_
10.10	11.27	20.13	559.85	505.01
15.11	15.92	29.95	531.41	473.11
20.13	20.74	37.42	554.29	646.04
25.10	25.59	44.03	581.27	733.96
30.08	30.49	50.89	599.19	714.22
35.06	35.41	55.80	634.67	1002.45
40.02	40.33	60.72	664.21	999.27
45.17	45.45	64.71	702.30	1281.89
50.02	50.27	67.33	746.61	1840.99
55.19	55.42	70.22	789.18	1780.88
60.06	60.27	73.44	820.64	1506.75
65.21	65.40	78.20	836.34	1078.50
69.70	69.88	81.11	861.54	1538.73


Shear Wave Source Offset = 5 ft

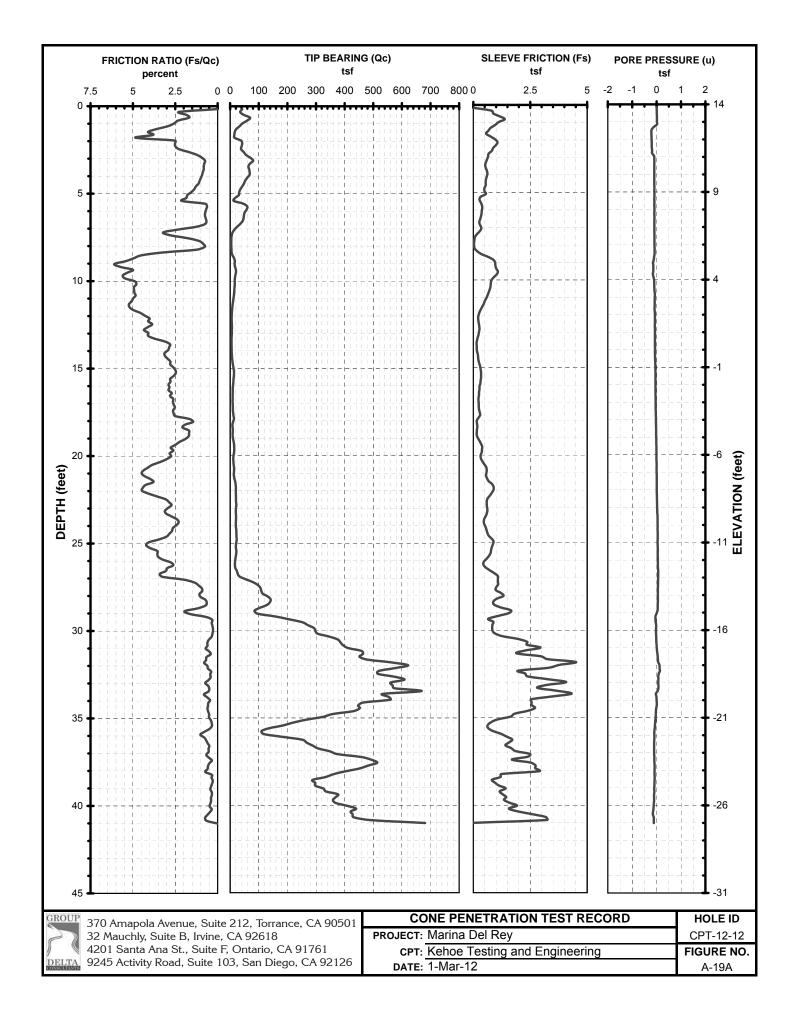
S-Wave Velocity from Surface = Travel Distance/S-Wave Arrival Interval S-Wave Velocity = (Travel Dist2-Travel Dist1)/(Time2-Time1)


```
"Output file from CPTINT - Version 5.2
"INPUT FILE: C:\CPTINT\C8.csv
"-----
"Developed by: UBC In-Situ Testing FREEWARE
    Program: Piezocone Interpretation
   Web Site: www.civil.ubc.ca/home/in-situ
"Interpreter Name: YL
"SUMMARY SHEET
"'a' for calculating Qt:
                                 0.830
"Value for Water Table (in m):
                                 1.830
"Valid Zone Classification based on:
                                 Rf
"Missing unit weight to start depth:
                                 18.860
"Method for calculating Su:
"Value of the constant Nk:
                                 15.000
"Method used to calculate OCR:
                                 Su/EOS
"(Su/EOS) for normal consolidation:
                                 0.250
"Define Zone 6 for Sand Parameters?
                                 YES
"Sand Compressibility for calc Dr:
                                 Moderate
"Method for Friction Angle:
                                 Robertson & Campanella
"Vertical Flow Gradient, i (- up):
                                 +0.000
"CPT to SPT N60 Conversion:
                                 Robertson & Campanella
"Soil Behavior Type Zone Numbers
"For Rf Zone & Bq Zone Classification
"-----
"Zone #1=Sensitive fine grained
                             Zone #7 =Sand with some Silt
"Zone #2=Organic material
                             Zone #8 =Fine sand
"Zone #3=Clay
                             Zone #9 =Sand
"Zone #4=Silty clay
                             Zone #10=Gravelly sand
"Zone #5=Clayey silt
                             Zone #11=Very stiff fine grained *
"Zone #6=Silty sand
                             Zone #12=Sand to clayey sand *
" * Overconsolidated and/or cemented
"NOTE:
"For soil classification, Rf values > 8 are assumed to be 8.
"( Note: 9E9 means Out Of Range )
" Depth
         Qt(avg) Fs(avg) Rf
                                  FC
                                          Rf Zone Ic
                                                           Spt N
                                                                                    Phi
                                                                                            Su
                                                                   Spt N1
                                                                           Dr
                                                                                                    OCR
" (feet)
         (TSF)
                          (왕)
                                  (왕)
                                          (zone #) index
                                                           (blow/ft) (blow/ft) (%)
                                                                                    (degree) (psf)
                                                                                                    (ratio)
"______
   0.500 100.550
                   0.842
                            0.837
                                    8.295
                                                    1.489
                                                            24
                                                                    36
                                                                            142
                                                                                    50
                                                                                               9E9
                                                                                                        9E9
   1.500
         127.150
                   1.115
                            0.877
                                    5.901
                                                    1.432
                                                                    45
                                                                            128
                                                                                    50
                                                                                               9E9
                                                                                                        9E9
                                            8
                                                            30
   2.500
          96.100
                   0.898
                            0.935
                                    7.838
                                            8
                                                    1.478
                                                            23
                                                                    35
                                                                            106
                                                                                     50
                                                                                               9E9
                                                                                                        9E9
   3.500
          50.650
                   0.613
                           1.211
                                   18.542
                                                    1.730
                                                           16
                                                                                     45
                                                                                               9E9
                                                                                                        9E9
```

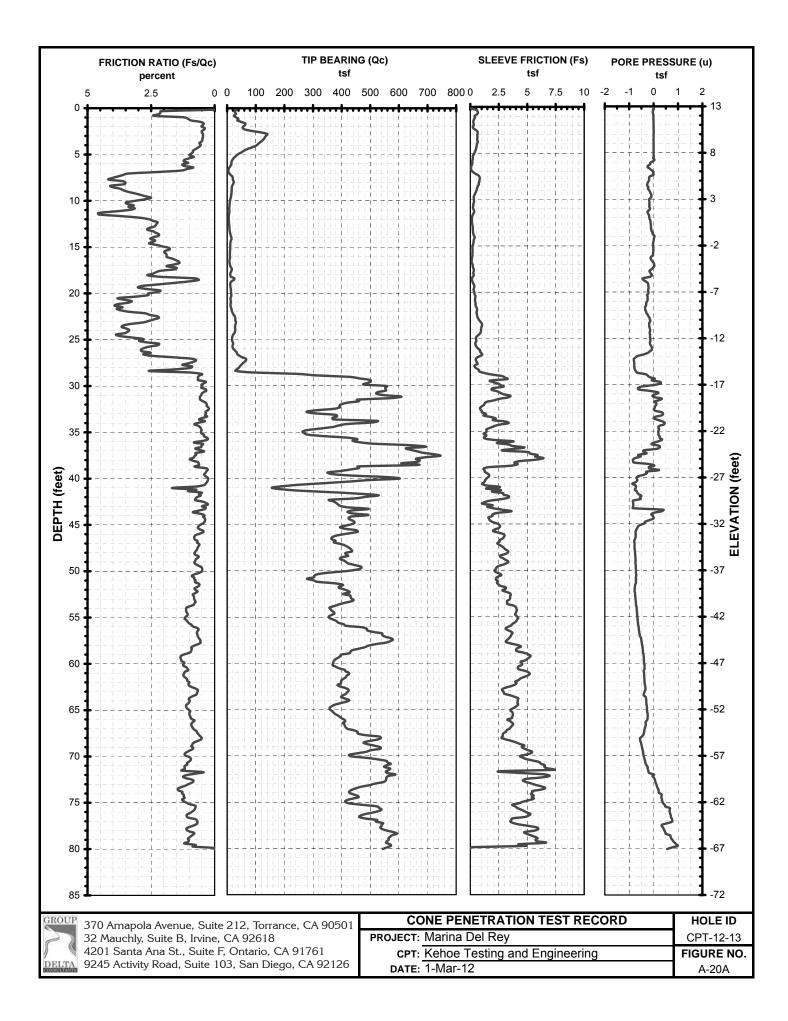
7.500 21.033 0.868 4.128 57.645 4 2.652 13 20 9E9 9E9 2741.413 25.8 8.500 21.233 0.518 2.441 47.556 5 2.414 10 15 9E9 9E9 2759.747 23.9 9.500 13.283 0.293 2.208 51.834 5 2.515 6 9 9E9 9E9 1691.299 11.1 10.500 14.100 0.364 2.584 54.843 5 2.586 7 11 9E9 9E9 1691.299 11.1 11.500 11.967 0.367 3.064 60.840 4 2.728 8 12 9E9 9E9 1499.690 8. 12.500 9.467 0.267 2.817 63.083 4 2.780 6 9 9E9 9E9 1153.820 5. 13.500 10.483 0.207 1.971 56.706 5 2.630 5 7 <th>9E9</th>	9E9
7.500 21.033 0.868 4.128 57.645 4 2.652 13 20 9E9 9E9 2741.413 25. 8.500 21.233 0.518 2.441 47.556 5 2.414 10 15 9E9 9E9 2759.747 23. 9.500 13.283 0.293 2.208 51.834 5 2.515 6 9 9E9 9E9 1691.299 11. 10.500 14.100 0.364 2.584 54.843 5 2.586 7 11 9E9 9E9 1792.530 11. 11.500 11.967 0.367 3.064 60.840 4 2.728 8 12 9E9 9E9 1499.690 8. 12.500 9.467 0.267 2.817 63.083 4 2.780 6 9 9E9 9E9 1153.820 5. 13.500 11.033 0.245 2.221 57.377 5 2.646 5 7 9E9 9E9 1354.760 6. 14.500 10.483 0.207 1.971 56.706 5 2.630 5 7 9E9 9E9 1273.403 5. 15.500 9.717 0.185 1.904 57.970 5 2.660 5 7 9E9 9E9 1273.403 5. 16.500 10.583 0.210 1.984 58.110 5 2.663 5 7 9E9 9E9 1272.955 5. 17.500 22.050 0.602 2.729 54.789 5 2.585 11 14 9E9 9E9 9E9 2785.178 13. 18.500 20.733 0.385 1.857 48.800 6 2.444 8 10 13 35 9E9 150.500 11.786 0.390 3.309 68.275 4 2.903 8 10 9E9 9E9 1393.976 4. 20.500 11.786 0.390 3.309 68.275 4 2.903 8 10 9E9 9E9 1393.976 4. 21.500 23.733 0.682 2.872 56.876 5 2.634 13 13 9E9 9E9 2777.330 11. 25.500 30.217 0.758 2.510 52.826 6 2.539 12 13 22 35 9E9 2540.158 9. 26.500 59.300 0.973 1.641 37.040 7 2.166 19 19 47 39 9E9	9E9
8.500 21.233 0.518 2.441 47.556 5 2.414 10 15 9E9 9E9 2759.747 23. 9.500 13.283 0.293 2.208 51.834 5 2.515 6 9 9E9 9E9 1691.299 11. 10.500 14.100 0.364 2.584 54.843 5 2.586 7 11 9E9 9E9 1792.530 11. 11.500 11.967 0.367 3.064 60.840 4 2.728 8 12 9E9 9E9 149.690 8. 12.500 9.467 0.267 2.817 63.083 4 2.780 6 9 9E9 9E9 1153.820 5. 13.500 11.033 0.245 2.221 57.377 5 2.646 5 7 9E9 9E9 1254.760 6 14.500 10.483 0.207 1.971 56.706 5 2.630 5 7 9E9 9E9 1273.403 5 15.500 9.717 0.185 <	883
9.500 13.283 0.293 2.208 51.834 5 2.515 6 9 9E9 9E9 1691.299 11. 10.500 14.100 0.364 2.584 54.843 5 2.586 7 11 9E9 9E9 1792.530 11. 11.500 11.967 0.367 3.064 60.840 4 2.728 8 12 9E9 9E9 1499.690 8. 12.500 9.467 0.267 2.817 63.083 4 2.780 6 9 9E9 9E9 1153.820 5. 13.500 11.033 0.245 2.221 57.377 5 2.646 5 7 9E9 9E9 1153.820 5. 14.500 10.483 0.207 1.971 56.706 5 2.630 5 7 9E9 9E9 1273.403 5. 15.500 9.717 0.185 1.904 57.970 5 2.660 5 7 9E9 9E9 1273.403 5. 17.500 22.050 0.602	201
10.500 14.100 0.364 2.584 54.843 5 2.586 7 11 9E9 9E9 1792.530 11. 11.500 11.967 0.367 3.064 60.840 4 2.728 8 12 9E9 9E9 9E9 1499.690 8. 12.500 9.467 0.267 2.817 63.083 4 2.780 6 9 9E9 9E9 1153.820 5. 13.500 11.033 0.245 2.221 57.377 5 2.646 5 7 9E9 9E9 9E9 1273.403 5. 14.500 10.483 0.207 1.971 56.706 5 2.630 5 7 9E9 9E9 1273.403 5. 15.500 9.717 0.185 1.904 57.970 5 2.660 5 7 9E9 9E9 1273.403 5. 17.500 22.050 0.602 2.729 54.789 5 2.585 11 14 9E9 9E9 1272.955 5. 18.500 <td< td=""><td>202</td></td<>	202
11.500 11.967 0.367 3.064 60.840 4 2.728 8 12 9E9 9E9 1499.690 8 12.500 9.467 0.267 2.817 63.083 4 2.780 6 9 9E9 9E9 1153.820 5 13.500 11.033 0.245 2.221 57.377 5 2.646 5 7 9E9 9E9 1273.403 5 14.500 10.483 0.207 1.971 56.706 5 2.630 5 7 9E9 9E9 1273.403 5 15.500 9.717 0.185 1.904 57.970 5 2.660 5 7 9E9 9E9 1156.482 4 16.500 10.583 0.210 1.984 58.110 5 2.663 5 7 9E9 9E9 1272.955 5 17.500 22.050 0.602 2.729 54.789 5 2.585 11 14 9E9 9E9 2785.178 13 18.500 20.733 0.385 1.	596
12.500 9.467 0.267 2.817 63.083 4 2.780 6 9 9E9 9E9 1153.820 5 13.500 11.033 0.245 2.221 57.377 5 2.646 5 7 9E9 9E9 1354.760 6 14.500 10.483 0.207 1.971 56.706 5 2.630 5 7 9E9 9E9 1273.403 5 15.500 9.717 0.185 1.904 57.970 5 2.660 5 7 9E9 9E9 1156.482 4 16.500 10.583 0.210 1.984 58.110 5 2.663 5 7 9E9 9E9 1272.955 5 17.500 22.050 0.602 2.729 54.789 5 2.585 11 14 9E9 9E9 2785.178 13 18.500 20.733 0.385 1.857 48.800 6 2.444 8 10 13 35 9E9 19.500 10.167 0.293 2.885 67.37	587
13.500 11.033 0.245 2.221 57.377 5 2.646 5 7 9E9 9E9 1354.760 6. 14.500 10.483 0.207 1.971 56.706 5 2.630 5 7 9E9 9E9 1273.403 5. 15.500 9.717 0.185 1.904 57.970 5 2.660 5 7 9E9 9E9 1156.482 4. 16.500 10.583 0.210 1.984 58.110 5 2.663 5 7 9E9 9E9 1272.955 5. 17.500 22.050 0.602 2.729 54.789 5 2.585 11 14 9E9 9E9 2785.178 13. 18.500 20.733 0.385 1.857 48.800 6 2.444 8 10 13 35 9E9 19.500 10.167 0.293 2.885 67.374 4 2.882 6 7 9E9 9E9 1184.146 4. 20.500 11.786 0.390 3.309 68.275 4 2.903 8 10 9E9 9E9 1393.976 4. 21.500 23.733 0.682 2.872 56.876 5 2.634 11 13 9E9 9E9 2777.330 11. 22.500 20.550 0.763 3.715 64.076 4 2.804 13 15 9E9 9E9 2540.158 9. 23.500 14.700 0.665 4.524 72.528 3 3.003 14 15 9E9 9E9 1756.229 5. 24.500 13.033 0.380 2.916 66.468 4 2.860 8 9 9E9 9E9 1525.777 4. 25.500 59.300 0.973 1.641 37.040 7 2.166 19 19 47 39 9E9	651
14.500 10.483 0.207 1.971 56.706 5 2.630 5 7 9E9 9E9 1273.403 5. 15.500 9.717 0.185 1.904 57.970 5 2.660 5 7 9E9 9E9 1156.482 4. 16.500 10.583 0.210 1.984 58.110 5 2.663 5 7 9E9 9E9 1272.955 5. 17.500 22.050 0.602 2.729 54.789 5 2.585 11 14 9E9 9E9 2785.178 13. 18.500 20.733 0.385 1.857 48.800 6 2.444 8 10 13 35 9E9 19.500 10.167 0.293 2.885 67.374 4 2.882 6 7 9E9 9E9 1184.146 4. 20.500 11.786 0.390 3.309 68.275 4 2.903 8 10 9E9 9E9 1393.976 4. 21.500 23.733 0.682 2.872 <	837
15.500 9.717 0.185 1.904 57.970 5 2.660 5 7 9E9 9E9 1156.482 4. 16.500 10.583 0.210 1.984 58.110 5 2.663 5 7 9E9 9E9 1272.955 5. 17.500 22.050 0.602 2.729 54.789 5 2.585 11 14 9E9 9E9 2785.178 13. 18.500 20.733 0.385 1.857 48.800 6 2.444 8 10 13 35 9E9 19.500 10.167 0.293 2.885 67.374 4 2.882 6 7 9E9 9E9 1184.146 4 20.500 11.786 0.390 3.309 68.275 4 2.903 8 10 9E9 9E9 1393.976 4 21.500 23.733 0.682 2.872 56.876 5 2.634 11 13 9E9 9E9 2540.158 9 23.500 14.700 0.665 4.524 <t< td=""><td>702</td></t<>	702
16.500	845
17.500 22.050 0.602 2.729 54.789 5 2.585 11 14 9E9 9E9 2785.178 13. 18.500 20.733 0.385 1.857 48.800 6 2.444 8 10 13 35 9E9 19.500 10.167 0.293 2.885 67.374 4 2.882 6 7 9E9 9E9 1184.146 4. 20.500 11.786 0.390 3.309 68.275 4 2.903 8 10 9E9 9E9 1393.976 4. 21.500 23.733 0.682 2.872 56.876 5 2.634 11 13 9E9 9E9 2977.330 11. 22.500 20.550 0.763 3.715 64.076 4 2.804 13 15 9E9 9E9 2540.158 9. 23.500 14.700 0.665 4.524 72.528 3 3.003 14 15 9E9 9E9 1756.229 5. 24.500 13.033 0.380 2.916	896
18.500 20.733 0.385 1.857 48.800 6 2.444 8 10 13 35 9E9 19.500 10.167 0.293 2.885 67.374 4 2.882 6 7 9E9 9E9 1184.146 4 20.500 11.786 0.390 3.309 68.275 4 2.903 8 10 9E9 9E9 1393.976 4 21.500 23.733 0.682 2.872 56.876 5 2.634 11 13 9E9 9E9 2977.330 11. 22.500 20.550 0.763 3.715 64.076 4 2.804 13 15 9E9 9E9 2540.158 9. 23.500 14.700 0.665 4.524 72.528 3 3.003 14 15 9E9 9E9 1756.229 5. 24.500 13.033 0.380 2.916 66.468 4 2.860 8 9 9E9 1525.777 4 25.500 59.300 0.973 1.641 37.040	229
19.500 10.167 0.293 2.885 67.374 4 2.882 6 7 9E9 9E9 1184.146 4 20.500 11.786 0.390 3.309 68.275 4 2.903 8 10 9E9 9E9 1393.976 4 21.500 23.733 0.682 2.872 56.876 5 2.634 11 13 9E9 9E9 2977.330 11. 22.500 20.550 0.763 3.715 64.076 4 2.804 13 15 9E9 9E9 2540.158 9. 23.500 14.700 0.665 4.524 72.528 3 3.003 14 15 9E9 9E9 1756.229 5. 24.500 13.033 0.380 2.916 66.468 4 2.860 8 9 9E9 9E9 1525.777 4. 25.500 59.300 0.973 1.641 37.040 7 2.166 19 19 47 39 9E9	179
20.500 11.786 0.390 3.309 68.275 4 2.903 8 10 9E9 9E9 1393.976 4. 21.500 23.733 0.682 2.872 56.876 5 2.634 11 13 9E9 9E9 2977.330 11. 22.500 20.550 0.763 3.715 64.076 4 2.804 13 15 9E9 9E9 2540.158 9. 23.500 14.700 0.665 4.524 72.528 3 3.003 14 15 9E9 9E9 1756.229 5. 24.500 13.033 0.380 2.916 66.468 4 2.860 8 9 9E9 9E9 1525.777 4. 25.500 30.217 0.758 2.510 52.826 6 2.539 12 13 22 35 9E9 26.500 59.300 0.973 1.641 37.040 7 2.166 19 19 47 39 9E9	9E9
21.500 23.733 0.682 2.872 56.876 5 2.634 11 13 9E9 9E9 2977.330 11. 22.500 20.550 0.763 3.715 64.076 4 2.804 13 15 9E9 9E9 2540.158 9. 23.500 14.700 0.665 4.524 72.528 3 3.003 14 15 9E9 9E9 1756.229 5. 24.500 13.033 0.380 2.916 66.468 4 2.860 8 9 9E9 9E9 1525.777 4. 25.500 30.217 0.758 2.510 52.826 6 2.539 12 13 22 35 9E9 26.500 59.300 0.973 1.641 37.040 7 2.166 19 19 47 39 9E9	095
22.500 20.550 0.763 3.715 64.076 4 2.804 13 15 9E9 9E9 2540.158 9. 23.500 14.700 0.665 4.524 72.528 3 3.003 14 15 9E9 9E9 1756.229 5. 24.500 13.033 0.380 2.916 66.468 4 2.860 8 9 9E9 9E9 1525.777 4. 25.500 30.217 0.758 2.510 52.826 6 2.539 12 13 22 35 9E9 26.500 59.300 0.973 1.641 37.040 7 2.166 19 19 47 39 9E9	795
23.500 14.700 0.665 4.524 72.528 3 3.003 14 15 9E9 9E9 1756.229 5. 24.500 13.033 0.380 2.916 66.468 4 2.860 8 9 9E9 9E9 1525.777 4. 25.500 30.217 0.758 2.510 52.826 6 2.539 12 13 22 35 9E9 26.500 59.300 0.973 1.641 37.040 7 2.166 19 19 47 39 9E9	819
24.500 13.033 0.380 2.916 66.468 4 2.860 8 9 9E9 9E9 1525.777 4. 25.500 30.217 0.758 2.510 52.826 6 2.539 12 13 22 35 9E9 26.500 59.300 0.973 1.641 37.040 7 2.166 19 19 47 39 9E9	267
25.500 30.217 0.758 2.510 52.826 6 2.539 12 13 22 35 9E9 26.500 59.300 0.973 1.641 37.040 7 2.166 19 19 47 39 9E9	596
26.500 59.300 0.973 1.641 37.040 7 2.166 19 19 47 39 9E9	502
	9E9
27 500 157 267 0 752 0 479 2 551 0	9E9
	9E9
28.500 259.500 0.747 0.288 0.000 10 1.001 41 40 103 45 9E9	9E9
29.500 380.133 3.520 0.926 9.912 9 1.527 73 69 117 47 9E9	9E9
30.500 456.050 3.583 0.786 5.338 10 1.419 73 68 124 47 9E9	9E9
31.500 479.357 1.616 0.337 0.000 10 0.964 77 70 125 47 9E9	9E9
32.500 475.633 2.208 0.464 0.000 10 1.138 76 67 124 47 9E9	9E9
33.500 578.033 2.165 0.375 0.000 10 1.000 92 80 9E9 9E9 9E9	9E9


```
"Output file from CPTINT - Version 5.2
"INPUT FILE: C:\CPTINT\C9.csv
"-----
"Developed by: UBC In-Situ Testing FREEWARE
    Program: Piezocone Interpretation
   Web Site: www.civil.ubc.ca/home/in-situ
"Interpreter Name: YL
"SUMMARY SHEET
"'a' for calculating Qt:
                                 0.830
"Value for Water Table (in m):
                                 4.270
"Valid Zone Classification based on:
                                 Rf
"Missing unit weight to start depth:
                                 18.860
"Method for calculating Su:
"Value of the constant Nk:
                                 15.000
"Method used to calculate OCR:
                                 Su/EOS
"(Su/EOS) for normal consolidation:
                                 0.250
"Define Zone 6 for Sand Parameters?
                                 YES
"Sand Compressibility for calc Dr:
                                 Moderate
"Method for Friction Angle:
                                 Robertson & Campanella
"Vertical Flow Gradient, i (- up):
                                 +0.000
"CPT to SPT N60 Conversion:
                                 Robertson & Campanella
"Soil Behavior Type Zone Numbers
"For Rf Zone & Bq Zone Classification
"-----
"Zone #1=Sensitive fine grained
                             Zone #7 =Sand with some Silt
"Zone #2=Organic material
                             Zone #8 =Fine sand
"Zone #3=Clay
                             Zone #9 =Sand
"Zone #4=Silty clay
                             Zone #10=Gravelly sand
"Zone #5=Clayey silt
                             Zone #11=Very stiff fine grained *
"Zone #6=Silty sand
                             Zone #12=Sand to clayey sand *
" * Overconsolidated and/or cemented
"NOTE:
"For soil classification, Rf values > 8 are assumed to be 8.
"( Note: 9E9 means Out Of Range )
" Depth
         Qt(avg) Fs(avg) Rf
                                  FC
                                          Rf Zone Ic
                                                           Spt N
                                                                   Spt N1
                                                                                    Phi
                                                                           Dr
                                                                                            Su
                                                                                                    OCR
" (feet)
         (TSF)
                          (왕)
                                  (왕)
                                          (zone #) index
                                                           (blow/ft) (blow/ft) (%)
                                                                                    (degree) (psf)
                                                                                                    (ratio)
"______
   0.500
         17.017
                   0.227
                           1.332
                                   16.448
                                                    1.681
                                                                    11
                                                                            74
                                                                                    50
                                                                                               9E9
                                                                                                       9E9
   1.500
          20.317
                   0.378
                           1.862
                                   28.411
                                                    1.963
                                                            8
                                                                    12
                                                                            57
                                                                                    45
                                                                                               9E9
                                                                                                       9E9
                                            6
   2.500
          39.100
                   0.297
                           0.759
                                   7.389
                                            7
                                                    1.467
                                                           12
                                                                    18
                                                                            72
                                                                                    45
                                                                                               9E9
                                                                                                       9E9
   3.500
          18.817
                   0.213
                           1.134
                                   25.448
                                                    1.893
                                                                    11
                                                                                    41
                                                                                               9E9
                                                                                                       9E9
```

4.500	48.167	0.310	0.644	7.148	8	1.462	12	18	67	43	9E9	9E9
5.500	104.100	0.680	0.653	2.793	8	1.359	25	38	92	45	9E9	9E9
6.500	77.500	0.693	0.895	13.224	8	1.605	19	29	77	43	9E9	9E9
7.500	34.783	0.477	1.370	30.957	7	2.023	11	17	43	39	9E9	9E9
8.500	11.333	0.150	1.324	45.440	5	2.364	5	8	9E9	9E9	1442.464	8.560
9.500	3.950	0.055	1.324	63.727	1	2.796	2	3	9E9	9E9	450.430	1.761
10.500	12.357	0.557	4.509	69.291	3	2.790	12	17	9E9	9E9	1564.173	7.426
11.500	16.967	0.815	4.804	67.979	3	2.896	16	21	9E9	9E9	2172.820	9.948
12.500	11.100	0.455	4.099	70.902	3	2.965	11	14	9E9	9E9	1384.277	5.082
13.500	9.500	0.455	2.789	66.972	3 4	2.872	6	7	9E9	9E9	1162.717	3.706
14.500	11.133	0.333	2.769	66.843	4	2.869	7	8	9E9	9E9	1368.102	4.248
							7	8				
15.500	11.317	0.350	3.093	67.718	4	2.890		-	9E9	9E9	1386.771	4.147
16.500	12.850	0.432	3.359	68.017	4	2.897	8	9 6	9E9	9E9	1585.488	4.711
17.500	10.000	0.265	2.650	67.706	4	2.889	6	•	9E9	9E9	1195.162	3.183
18.500	7.467	0.165	2.210	69.574	4	2.933	5	5	9E9	9E9	853.738	2.014
19.500	9.233	0.197	2.130	66.154	5	2.853	4	4	9E9	9E9	1076.905	2.596
20.500	12.186	0.281	2.309	63.889	5	2.799	6	6	9E9	9E9	1460.432	3.667
21.500	13.567	0.250	1.843	58.895	5	2.682	6	6	9E9	9E9	1636.602	4.085
22.500	8.600	0.270	3.140	75.444	3	3.072	8	7	9E9	9E9	966.204	2.044
23.500	10.733	0.467	4.348	78.400	3	3.142	10	9	9E9	9E9	1244.773	2.712
24.500	23.300	0.823	3.534	64.566	5	2.815	11	10	9E9	9E9	2912.426	7.582
25.500	24.883	0.995	3.999	66.501	4	2.861	16	14	9E9	9E9	3115.252	7.976
26.500	19.817	0.695	3.507	67.194	4	2.877	13	11	9E9	9E9	2429.127	5.664
27.500	16.917	0.642	3.793	71.107	4	2.970	11	9	9E9	9E9	2034.355	4.407
28.500	13.933	0.447	3.206	71.116	4	2.970	9	7	9E9	9E9	1628.470	3.242
29.500	18.617	0.537	2.883	65.414	5	2.835	9	7	9E9	9E9	2245.073	4.710
30.500	18.383	0.518	2.820	65.525	5	2.838	9	7	9E9	9E9	2205.949	4.483
31.500	18.386	0.401	2.183	61.299	5	2.738	9	7	9E9	9E9	2200.168	4.350
32.500	116.567	1.053	0.904	21.802	8	1.807	28	22	66	41	9E9	9E9
33.500	457.200	1.892	0.414	0.000	10	1.118	73	56	118	45	9E9	9E9
34.500	454.317	1.940	0.427	0.000	10	1.140	73	55	118	45	9E9	9E9
35.500	423.933	1.618	0.382	0.000	10	1.103	68	50	115	45	9E9	9E9
36.500	504.650	3.485	0.691	3.654	10	1.379	81	59	121	47	9E9	9E9
37.500	501.933	3.152	0.628	1.711	10	1.334	80	57	120	45	9E9	9E9
38.500	808.700	6.560	0.811	5.132	10	1.414	129	90	9E9	9E9	9E9	9E9
30.300	500.700	0.500	0.011	3.132	- 0		127	70	747	,,,	7.1.7	747

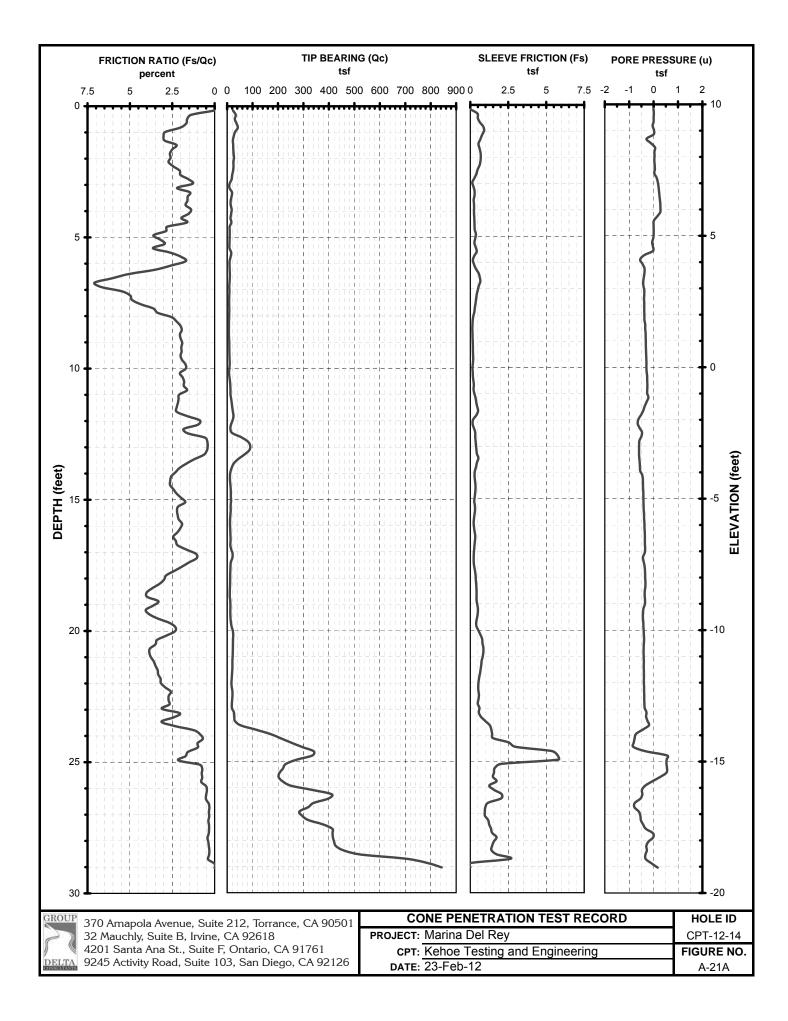

```
"Output file from CPTINT - Version 5.2
"INPUT FILE: C:\CPTINT\C10.csv
"_____
"Developed by: UBC In-Situ Testing FREEWARE
    Program: Piezocone Interpretation
   Web Site: www.civil.ubc.ca/home/in-situ
"Interpreter Name: YL
"SUMMARY SHEET
"'a' for calculating Qt:
                                 0.830
"Value for Water Table (in m):
                                 3.960
"Valid Zone Classification based on:
                                 Rf
"Missing unit weight to start depth:
                                 18.860
"Method for calculating Su:
"Value of the constant Nk:
                                 15.000
"Method used to calculate OCR:
                                 Su/EOS
"(Su/EOS) for normal consolidation:
                                 0.250
"Define Zone 6 for Sand Parameters?
                                 YES
"Sand Compressibility for calc Dr:
                                 Moderate
"Method for Friction Angle:
                                 Robertson & Campanella
"Vertical Flow Gradient, i (- up):
                                 +0.000
"CPT to SPT N60 Conversion:
                                 Robertson & Campanella
"Soil Behavior Type Zone Numbers
"For Rf Zone & Bq Zone Classification
"-----
"Zone #1=Sensitive fine grained
                             Zone #7 =Sand with some Silt
"Zone #2=Organic material
                             Zone #8 =Fine sand
                             Zone #9 =Sand
"Zone #3=Clay
"Zone #4=Silty clay
                             Zone #10=Gravelly sand
"Zone #5=Clayey silt
                             Zone #11=Very stiff fine grained *
"Zone #6=Silty sand
                             Zone #12=Sand to clayey sand *
" * Overconsolidated and/or cemented
"NOTE:
"For soil classification, Rf values > 8 are assumed to be 8.
"( Note: 9E9 means Out Of Range )
" Depth
         Qt(avg) Fs(avg) Rf
                                  FC
                                          Rf Zone Ic
                                                          Spt N
                                                                   Spt N1
                                                                                   Phi
                                                                                           Su
                                                                           Dr
                                                                                                   OCR
" (feet)
         (TSF)
                         (왕)
                                  (왕)
                                          (zone #) index
                                                          (blow/ft) (blow/ft) (%)
                                                                                   (degree) (psf)
                                                                                                   (ratio)
"------
   0.500
          13.633
                   0.292
                           2.139
                                   28.316
                                                    1.961
                                                                   11
                                                                            9E9
                                                                                    9E9
                                                                                           1814.249 400.851
   1.500
          8.083
                   0.133
                           1.649
                                  33.147
                                            5
                                                    2.075
                                                            4
                                                                   6
                                                                            9E9
                                                                                    9E9
                                                                                           1063.829
                                                                                                   52.096
   2.500
           8.700
                   0.315
                           3.621
                                   53.810
                                            3
                                                    2.562
                                                            8
                                                                  12
                                                                            9E9
                                                                                    9E9
                                                                                           1133.623
                                                                                                    29.784
   3.500
          11.767
                   0.285
                           2.422
                                   45.716
                                                    2.371
                                                            6
                                                                                    9E9
                                                                                           1536.838 28.610
```

0 18.933	0.638	3.371	50.413	5	2.482	9	14	9E9	9E9	2484.638	38.097	
0 18.783	0.828	4.410	58.046	3	2.662	18	27	9E9	9E9	2452.016	29.021	
0 13.533	0.433	3.202	56.530	4	2.626	9	14	9E9	9E9	1741.438	15.305	
0 9.617	0.252	2.617	58.418	4	2.670	6	9	9E9	9E9	1213.299	8.155	
0 9.000	0.280	3.111	63.937	4	2.801	6	9	9E9	9E9	1127.497	6.368	
0 9.850	0.310	3.147	64.223	4	2.807	6	9	9E9	9E9	1237.302	6.228	
0 13.200	0.379	2.868	60.053	5	2.709	6	9	9E9	9E9	1674.175	8.025	
0 11.817	0.345	2.920	62.994	4	2.778	8	11	9E9	9E9	1479.138	6.137	
0 9.617	0.230	2.392	63.393	4	2.788	6	7	9E9	9E9	1177.725	4.161	
0 11.400	0.172	1.506	53.945	5	2.565	5	6	9E9	9E9	1407.560	4.842	
0 14.867	0.343	2.309	58.463	5	2.672	7	8	9E9	9E9	1850.785	6.521	
0 21.050	0.530	2.518	55.747	5	2.607	10	11	9E9	9E9	2676.163	9.888	
0 10.583	0.310	2.929	68.119	4	2.899	7	8	9E9	9E9	1276.518	3.754	
0 8.950	0.378	4.227	77.570	3	3.122	9	10	9E9	9E9	1050.680	2.828	
0 18.817	0.677	3.596	64.991	4	2.825	12	13	9E9	9E9	2363.019	7.493	
0 19.383	0.708	3.654	65.235	4	2.831	12	12	9E9	9E9	2430.591	7.475	
0 19.857	0.901	4.540	69.528	3	2.932	19	19	9E9	9E9	2487.198	7.406	
0 13.250	0.523	3.950	72.396	3	3.000	13	13	9E9	9E9	1598.312	4.100	
0 23.900	0.808	3.382	62.389	5	2.764	11	10	9E9	9E9	3008.119	8.708	
0 51.667	1.580	3.058	52.125	6	2.522	20	19	40	37	9E9	9E9	
0 54.900	1.508	2.747	49.605	6	2.463	21	19	41	37	9E9	9E9	
0 99.300	1.028	1.036	24.160	8	1.863	24	21	64	41	9E9	9E9	
0 258.833	0.740	0.286	0.000	10	1.036	41	36	100		9E9	9E9	
0 474.333	2.937	0.619	0.212	10	1.298	76	65	123		9E9	9E9	
0 435.133	1.728	0.397	0.000	10	1.084	69	58	119	47	9E9	9E9	
0 542.800	2.715	0.500	0.000	10	1.173	87	71	9E9	9E9	9E9	9E9	
0 660.300	2.610	0.395	0.000	10	1.023	105	84	9E9	9E9	9E9	9E9	
	0 18.783 0 13.533 0 9.617 0 9.000 0 9.850 0 13.200 0 11.817 0 9.617 0 11.400 0 14.867 0 21.050 0 10.583 0 8.950 0 18.817 0 19.383 0 19.857 0 23.900 0 51.667 0 54.900 0 99.300 0 258.833 0 474.333 0 474.333 0 435.133	0 18.783 0.828 0 13.533 0.433 0 9.617 0.252 0 9.000 0.280 0 9.850 0.310 0 13.200 0.379 0 11.817 0.230 0 11.400 0.172 0 14.867 0.343 0 21.050 0.530 0 10.583 0.310 0 8.950 0.378 0 19.383 0.708 0 19.383 0.708 0 19.857 0.901 0 13.250 0.523 0 23.900 0.808 0 54.900 1.508 0 99.300 1.028 0 258.833 0.740 0 474.333 2.937 0 435.133 1.728 0 542.800 2.715	0 18.783 0.828 4.410 0 13.533 0.433 3.202 0 9.617 0.252 2.617 0 9.000 0.280 3.111 0 9.850 0.310 3.147 0 13.200 0.379 2.868 0 11.817 0.345 2.920 0 9.617 0.230 2.392 0 11.400 0.172 1.506 0 14.867 0.343 2.309 0 21.050 0.530 2.518 0 10.583 0.310 2.929 0 8.950 0.378 4.227 0 18.817 0.677 3.596 0 19.383 0.708 3.654 0 19.857 0.901 4.540 0 13.250 0.523 3.950 0 23.900 0.808 3.382 0 54.900 1.508 2.747 0 99.300 1.028 1.036 0 258	0 18.783 0.828 4.410 58.046 0 13.533 0.433 3.202 56.530 0 9.617 0.252 2.617 58.418 0 9.000 0.280 3.111 63.937 0 9.850 0.310 3.147 64.223 0 13.200 0.379 2.868 60.053 0 11.817 0.345 2.920 62.994 0 9.617 0.230 2.392 63.393 0 11.400 0.172 1.506 53.945 0 14.867 0.343 2.309 58.463 0 21.050 0.530 2.518 55.747 0 10.583 0.310 2.929 68.119 0 8.950 0.378 4.227 77.570 0 18.817 0.677 3.596 64.991 0 19.383 0.708 3.654 65.235 0 19.857 0.901 4.540 69.528 0 13.250 0.523 3.950 <td>0 18.783 0.828 4.410 58.046 3 0 13.533 0.433 3.202 56.530 4 0 9.617 0.252 2.617 58.418 4 0 9.000 0.280 3.111 63.937 4 0 9.850 0.310 3.147 64.223 4 0 13.200 0.379 2.868 60.053 5 0 11.817 0.345 2.920 62.994 4 0 9.617 0.230 2.392 63.393 4 0 11.400 0.172 1.506 53.945 5 0 14.867 0.343 2.309 58.463 5 0 21.050 0.530 2.518 55.747 5 0 10.583 0.310 2.929 68.119 4 0 8.950 0.378 4.227 77.570 3 0 18.817 0.677 3.596 64.991 4 0 19.383 0.708 3.654</td> <td>0 18.783 0.828 4.410 58.046 3 2.662 0 13.533 0.433 3.202 56.530 4 2.626 0 9.617 0.252 2.617 58.418 4 2.670 0 9.000 0.280 3.111 63.937 4 2.801 0 9.850 0.310 3.147 64.223 4 2.807 0 13.200 0.379 2.868 60.053 5 2.709 0 11.817 0.345 2.920 62.994 4 2.778 0 9.617 0.230 2.392 63.393 4 2.788 0 11.400 0.172 1.506 53.945 5 2.565 0 14.867 0.343 2.309 58.463 5 2.672 0 21.050 0.530 2.518 55.747 5 2.607 0 10.583 0.310 2.929 68.119 4 2.899 0 8.950 0.378 4.227 77.570 <</td> <td>0 18.783 0.828 4.410 58.046 3 2.662 18 0 13.533 0.433 3.202 56.530 4 2.626 9 0 9.617 0.252 2.617 58.418 4 2.670 6 0 9.000 0.280 3.111 63.937 4 2.807 6 0 9.850 0.310 3.147 64.223 4 2.807 6 0 13.200 0.379 2.868 60.053 5 2.709 6 0 11.817 0.345 2.920 62.994 4 2.778 8 0 9.617 0.230 2.392 63.393 4 2.788 6 0 11.400 0.172 1.506 53.945 5 2.565 5 0 14.867 0.343 2.309 58.463 5 2.672 7 0 21.050 0.530 2.518 55.747 5 2.607 10 10.583 0.310 2.929 68.119</td> <td>0 18.783 0.828 4.410 58.046 3 2.662 18 27 0 13.533 0.433 3.202 56.530 4 2.626 9 14 0 9.617 0.252 2.617 58.418 4 2.670 6 9 0 9.000 0.280 3.111 63.937 4 2.801 6 9 0 9.850 0.310 3.147 64.223 4 2.807 6 9 0 13.200 0.379 2.868 60.053 5 2.709 6 9 0 11.817 0.345 2.920 62.994 4 2.778 8 11 0 9.617 0.230 2.392 63.393 4 2.788 6 7 0 11.400 0.172 1.506 53.945 5 2.565 5 6 0 14.867 0.343 2.309 58.463 5 2.672 7 8 0 21.050 0.530 2.518</td> <td>0 18.783 0.828 4.410 58.046 3 2.662 18 27 9E9 0 13.533 0.433 3.202 56.530 4 2.6266 9 14 9E9 0 9.617 0.252 2.617 58.418 4 2.670 6 9 9E9 0 9.000 0.280 3.111 63.937 4 2.801 6 9 9E9 0 9.850 0.310 3.147 64.223 4 2.807 6 9 9E9 0 13.200 0.379 2.868 60.053 5 2.709 6 9 9E9 0 11.817 0.345 2.920 62.994 4 2.778 8 11 9E9 0 9.617 0.230 2.392 63.393 4 2.788 6 7 9E9 0 14.867 0.343 2.309 58.463 5 2.672 7 8 9E9 0 10.583 0.310 2.929 68.119</td> <td>0 18.783 0.828 4.410 58.046 3 2.662 18 27 9E9 9E9 0 13.533 0.433 3.202 56.530 4 2.626 9 14 9E9 9E9 0 9.617 0.252 2.617 58.418 4 2.670 6 9 9E9 9E9 0 9.000 0.280 3.111 63.937 4 2.801 6 9 9E9 9E9 0 9.850 0.310 3.147 64.223 4 2.807 6 9 9E9 9E9 0 13.200 0.379 2.868 60.053 5 2.709 6 9 9E9 9E9 0 11.817 0.345 2.920 62.994 4 2.778 8 11 9E9 9E9 0 11.400 0.172 1.506 53.945 5 2.565 5 6 9E9 9E9 0 14.867 0.343 2.309 58.463 5 2.672 7</td> <td>0 18.783</td> <td>0 18.783 0.828 4.410 58.046 3 2.662 18 27 9E9 9E9 2452.016 29.021 13.533 0.433 3.202 56.530 4 2.626 9 14 9E9 9E9 9E9 1741.438 15.305 0 9.617 0.252 2.617 58.418 4 2.670 6 9 9E9 9E9 1213.299 8.155 0 9.000 0.280 3.111 63.937 4 2.801 6 9 9E9 9E9 1237.302 6.288 0 13.200 0.379 2.868 60.053 5 2.709 6 9 9E9 9E9 1277.302 6.228 0 11.817 0.345 2.920 62.994 4 2.778 8 11 9E9 9E9 1479.138 6.137 0 9.617 0.230 2.392 63.393 4 2.788 6 7 9E9 9E9 1477.158 6.137 11.400 0.172 1.506 53.945<</td>	0 18.783 0.828 4.410 58.046 3 0 13.533 0.433 3.202 56.530 4 0 9.617 0.252 2.617 58.418 4 0 9.000 0.280 3.111 63.937 4 0 9.850 0.310 3.147 64.223 4 0 13.200 0.379 2.868 60.053 5 0 11.817 0.345 2.920 62.994 4 0 9.617 0.230 2.392 63.393 4 0 11.400 0.172 1.506 53.945 5 0 14.867 0.343 2.309 58.463 5 0 21.050 0.530 2.518 55.747 5 0 10.583 0.310 2.929 68.119 4 0 8.950 0.378 4.227 77.570 3 0 18.817 0.677 3.596 64.991 4 0 19.383 0.708 3.654	0 18.783 0.828 4.410 58.046 3 2.662 0 13.533 0.433 3.202 56.530 4 2.626 0 9.617 0.252 2.617 58.418 4 2.670 0 9.000 0.280 3.111 63.937 4 2.801 0 9.850 0.310 3.147 64.223 4 2.807 0 13.200 0.379 2.868 60.053 5 2.709 0 11.817 0.345 2.920 62.994 4 2.778 0 9.617 0.230 2.392 63.393 4 2.788 0 11.400 0.172 1.506 53.945 5 2.565 0 14.867 0.343 2.309 58.463 5 2.672 0 21.050 0.530 2.518 55.747 5 2.607 0 10.583 0.310 2.929 68.119 4 2.899 0 8.950 0.378 4.227 77.570 <	0 18.783 0.828 4.410 58.046 3 2.662 18 0 13.533 0.433 3.202 56.530 4 2.626 9 0 9.617 0.252 2.617 58.418 4 2.670 6 0 9.000 0.280 3.111 63.937 4 2.807 6 0 9.850 0.310 3.147 64.223 4 2.807 6 0 13.200 0.379 2.868 60.053 5 2.709 6 0 11.817 0.345 2.920 62.994 4 2.778 8 0 9.617 0.230 2.392 63.393 4 2.788 6 0 11.400 0.172 1.506 53.945 5 2.565 5 0 14.867 0.343 2.309 58.463 5 2.672 7 0 21.050 0.530 2.518 55.747 5 2.607 10 10.583 0.310 2.929 68.119	0 18.783 0.828 4.410 58.046 3 2.662 18 27 0 13.533 0.433 3.202 56.530 4 2.626 9 14 0 9.617 0.252 2.617 58.418 4 2.670 6 9 0 9.000 0.280 3.111 63.937 4 2.801 6 9 0 9.850 0.310 3.147 64.223 4 2.807 6 9 0 13.200 0.379 2.868 60.053 5 2.709 6 9 0 11.817 0.345 2.920 62.994 4 2.778 8 11 0 9.617 0.230 2.392 63.393 4 2.788 6 7 0 11.400 0.172 1.506 53.945 5 2.565 5 6 0 14.867 0.343 2.309 58.463 5 2.672 7 8 0 21.050 0.530 2.518	0 18.783 0.828 4.410 58.046 3 2.662 18 27 9E9 0 13.533 0.433 3.202 56.530 4 2.6266 9 14 9E9 0 9.617 0.252 2.617 58.418 4 2.670 6 9 9E9 0 9.000 0.280 3.111 63.937 4 2.801 6 9 9E9 0 9.850 0.310 3.147 64.223 4 2.807 6 9 9E9 0 13.200 0.379 2.868 60.053 5 2.709 6 9 9E9 0 11.817 0.345 2.920 62.994 4 2.778 8 11 9E9 0 9.617 0.230 2.392 63.393 4 2.788 6 7 9E9 0 14.867 0.343 2.309 58.463 5 2.672 7 8 9E9 0 10.583 0.310 2.929 68.119	0 18.783 0.828 4.410 58.046 3 2.662 18 27 9E9 9E9 0 13.533 0.433 3.202 56.530 4 2.626 9 14 9E9 9E9 0 9.617 0.252 2.617 58.418 4 2.670 6 9 9E9 9E9 0 9.000 0.280 3.111 63.937 4 2.801 6 9 9E9 9E9 0 9.850 0.310 3.147 64.223 4 2.807 6 9 9E9 9E9 0 13.200 0.379 2.868 60.053 5 2.709 6 9 9E9 9E9 0 11.817 0.345 2.920 62.994 4 2.778 8 11 9E9 9E9 0 11.400 0.172 1.506 53.945 5 2.565 5 6 9E9 9E9 0 14.867 0.343 2.309 58.463 5 2.672 7	0 18.783	0 18.783 0.828 4.410 58.046 3 2.662 18 27 9E9 9E9 2452.016 29.021 13.533 0.433 3.202 56.530 4 2.626 9 14 9E9 9E9 9E9 1741.438 15.305 0 9.617 0.252 2.617 58.418 4 2.670 6 9 9E9 9E9 1213.299 8.155 0 9.000 0.280 3.111 63.937 4 2.801 6 9 9E9 9E9 1237.302 6.288 0 13.200 0.379 2.868 60.053 5 2.709 6 9 9E9 9E9 1277.302 6.228 0 11.817 0.345 2.920 62.994 4 2.778 8 11 9E9 9E9 1479.138 6.137 0 9.617 0.230 2.392 63.393 4 2.788 6 7 9E9 9E9 1477.158 6.137 11.400 0.172 1.506 53.945<


```
"Output file from CPTINT - Version 5.2
"INPUT FILE: C:\CPTINT\C11.csv
"_____
"Developed by: UBC In-Situ Testing FREEWARE
     Program: Piezocone Interpretation
    Web Site: www.civil.ubc.ca/home/in-situ
"Interpreter Name: YL
"SUMMARY SHEET
"'a' for calculating Qt:
                                   0.830
"Value for Water Table (in m):
                                   1.520
"Valid Zone Classification based on:
                                   Rf
"Missing unit weight to start depth:
                                   18.860
"Method for calculating Su:
"Value of the constant Nk:
                                   15.000
"Method used to calculate OCR:
                                   Su/EOS
"(Su/EOS) for normal consolidation:
                                   0.250
"Define Zone 6 for Sand Parameters?
                                   YES
"Sand Compressibility for calc Dr:
                                   Moderate
"Method for Friction Angle:
                                   Robertson & Campanella
"Vertical Flow Gradient, i (- up):
                                   +0.000
"CPT to SPT N60 Conversion:
                                   Robertson & Campanella
"Soil Behavior Type Zone Numbers
"For Rf Zone & Bq Zone Classification
"-----
"Zone #1=Sensitive fine grained
                              Zone #7 =Sand with some Silt
"Zone #2=Organic material
                              Zone #8 =Fine sand
"Zone #3=Clay
                              Zone #9 =Sand
"Zone #4=Silty clay
                              Zone #10=Gravelly sand
"Zone #5=Clayey silt
                              Zone #11=Very stiff fine grained *
"Zone #6=Silty sand
                              Zone #12=Sand to clayey sand *
" * Overconsolidated and/or cemented
"NOTE:
"For soil classification, Rf values > 8 are assumed to be 8.
"( Note: 9E9 means Out Of Range )
"--- INPUT FILE: C:\CPTINT\C11.csv |------
" Depth
          Qt(avg) Fs(avg) Rf
                                    FC
                                            Rf Zone Ic
                                                              Spt N
                                                                                        Phi
                                                                      Spt N1
                                                                               Dr
                                                                                                 Su
                                                                                                         OCR
" (feet)
          (TSF)
                           (왕)
                                    (왕)
                                            (zone #) index
                                                              (blow/ft) (blow/ft) (%)
                                                                                        (degree) (psf)
                                                                                                         (ratio)
"------
   0.500
           28.133
                    0.607
                             2.156
                                     27.223
                                                       1.935
                                                              11
                                                                       17
                                                                                93
                                                                                         50
                                                                                                    9E9
                                                                                                             9E9
                                                                       21
   1.500
           22.117
                    0.873
                             3.949
                                     45.377
                                                       2.363
                                                                                9E9
                                                                                         9E9
                                                                                                 2937.148 176.133
                                              4
                                                              14
   2.500
          12.450
                    0.547
                             4.391
                                     54.928
                                              3
                                                       2.588
                                                               12
                                                                       18
                                                                                9E9
                                                                                         9E9
                                                                                                1639.584
                                                                                                         44.879
   3.500
          10.050
                    0.462
                             4.594
                                     60.676
                                                       2.724
                                                              10
                                                                       15
                                                                                         9E9
                                                                                                1311.329
                                                                                                         22.451
```

4.500	10.633	0.577	5.423	65.930	3	2.848	10	15	9E9	9E9	1385.401	17.635	
5.500	8.950	0.403	4.507	65.483	3	2.837	9	14	9E9	9E9	1150.503	11.584	
6.500	17.717	0.910	5.136	62.298	3	2.762	17	26	9E9	9E9	2309.302	24.773	
7.500	14.500	0.795	5.483	66.413	3	2.859	14	21	9E9	9E9	1871.962	17.140	
8.500	11.200	0.452	4.033	63.928	3	2.800	11	17	9E9	9E9	1421.286	11.018	
9.500	8.133	0.267	3.279	64.894	3	2.823	8	12	9E9	9E9	999.673	6.505	
10.500	6.500	0.224	3.451	69.850	3	2.940	6	9	9E9	9E9	772.882	4.362	
11.500	6.533	0.220	3.367	70.219	3	2.949	6	9	9E9	9E9	768.053	4.021	
12.500	9.483	0.295	3.111	64.392	4	2.811	6	9	9E9	9E9	1153.485	6.237	
13.500	9.367	0.250	2.669	62.520	4	2.767	6	9	9E9	9E9	1129.921	5.692	
14.500	7.333	0.162	2.205	63.564	4	2.792	5	7	9E9	9E9	850.736	3.750	
15.500	18.667	0.413	2.214	51.222	5	2.501	9	13	9E9	9E9	2354.236	12.612	
16.500	13.150	0.258	1.965	54.263	5	2.573	6	8	9E9	9E9	1608.262	7.400	
17.500	13.000	0.328	2.526	59.662	5	2.700	6	8	9E9	9E9	1578.030	6.845	
18.500	10.617	0.273	2.575	63.563	4	2.792	7	9	9E9	9E9	1254.389	4.877	
19.500	10.533	0.387	3.671	70.794	3	2.962	10	13	9E9	9E9	1235.103	4.541	
20.500	15.614	0.617	3.952	66.966	4	2.872	10	12	9E9	9E9	1917.587	7.485	
21.500	31.450	1.055	3.355	56.020	5	2.614	15	18	9E9	9E9	4026.157	18.029	
22.500	37.017	1.578	4.264	59.675	4	2.700	24	28	9E9	9E9	4755.788	21.157	
23.500	25.617	1.123	4.385	64.554	4	2.815	16	18	9E9	9E9	3231.498	12.460	
24.500	16.217	0.445	2.744	61.518	5	2.744	8	9	9E9	9E9	1962.998	6.401	
25.500	16.883	0.358	2.122	56.719	5	2.630	8	9	9E9	9E9	2048.352	6.487	
26.500	24.817	0.565	2.277	53.333	6	2.551	10	10	14	33	9E9	9E9	
27.500	42.583	0.532	1.249	35.775	7	2.137	14	14	35	37	9E9	9E9	
28.500	265.250	1.100	0.415	0.000	10	1.162	42	42	105	45	9E9	9E9	
29.500	475.600	1.490	0.313	0.000	10	0.913	76	74	127	47	9E9	9E9	


```
"Output file from CPTINT - Version 5.2
"INPUT FILE: C:\CPTINT\C12.csv
"_____
"Developed by: UBC In-Situ Testing FREEWARE
     Program: Piezocone Interpretation
    Web Site: www.civil.ubc.ca/home/in-situ
"Interpreter Name: YL
"SUMMARY SHEET
"'a' for calculating Qt:
                                   0.830
"Value for Water Table (in m):
                                   4.570
"Valid Zone Classification based on:
                                   Rf
"Missing unit weight to start depth:
                                   18.860
"Method for calculating Su:
"Value of the constant Nk:
                                   15.000
"Method used to calculate OCR:
                                   Su/EOS
"(Su/EOS) for normal consolidation:
                                   0.250
"Define Zone 6 for Sand Parameters?
                                   YES
"Sand Compressibility for calc Dr:
                                   Moderate
"Method for Friction Angle:
                                   Robertson & Campanella
"Vertical Flow Gradient, i (- up):
                                   +0.000
"CPT to SPT N60 Conversion:
                                   Robertson & Campanella
"Soil Behavior Type Zone Numbers
"For Rf Zone & Bq Zone Classification
"-----
"Zone #1=Sensitive fine grained
                              Zone #7 =Sand with some Silt
"Zone #2=Organic material
                              Zone #8 =Fine sand
"Zone #3=Clay
                              Zone #9 =Sand
"Zone #4=Silty clay
                              Zone #10=Gravelly sand
"Zone #5=Clayey silt
                              Zone #11=Very stiff fine grained *
"Zone #6=Silty sand
                              Zone #12=Sand to clayey sand *
" * Overconsolidated and/or cemented
"NOTE:
"For soil classification, Rf values > 8 are assumed to be 8.
"( Note: 9E9 means Out Of Range )
"--- INPUT FILE: C:\CPTINT\C12.csv |------
" Depth
          Qt(avg) Fs(avg) Rf
                                    FC
                                            Rf Zone Ic
                                                              Spt N
                                                                                        Phi
                                                                       Spt N1
                                                                               Dr
                                                                                                 Su
                                                                                                         OCR
" (feet)
          (TSF)
                           (왕)
                                    (왕)
                                            (zone #) index
                                                              (blow/ft) (blow/ft) (%)
                                                                                        (degree) (psf)
                                                                                                         (ratio)
"------
   0.500
           49.633
                    0.890
                             1.793
                                     23.320
                                                       1.843
                                                              16
                                                                       24
                                                                                116
                                                                                         50
                                                                                                  9E9
                                                                                                             9E9
   1.500
           23.033
                    0.777
                             3.372
                                     41.343
                                              5
                                                       2.268
                                                              11
                                                                       17
                                                                                9E9
                                                                                         9E9
                                                                                                 3066.405 192.296
                                                                       2.4
   2.500
           49.133
                    0.842
                             1.713
                                     24.510
                                              7
                                                       1.871
                                                               16
                                                                                80
                                                                                         45
                                                                                                 9E9
                                                                                                             9E9
   3.500
          69.333
                    0.573
                             0.827
                                     7.817
                                                       1.478
                                                              17
                                                                                         47
                                                                                                    9E9
```


4.500	44.700	0.533	1.193	20.922	7	1.786	14	21	64	43	9E9	9E9
5.500	37.383	0.373	0.999	20.645	7	1.780	12	18	53	41	9E9	9E9
6.500	41.750	0.320	0.766	15.962	7	1.670	13	20	53	41	9E9	9E9
7.500	6.917	0.157	2.265	59.637	4	2.699	4	6	9E9	9E9	863.984	5.298
8.500	8.767	0.367	4.183	69.529	3	2.932	8	12	9E9	9E9	1100.488	6.141
9.500	17.983	0.992	5.514	68.225	3	2.902	17	26	9E9	9E9	2325.970	13.598
10.500	14.500	0.711	4.906	69.301	3	2.927	14	20	9E9	9E9	1852.431	8.995
11.500	7.600	0.377	4.956	78.504	3	3.144	7	9	9E9	9E9	922.432	3.356
12.500	5.883	0.242	4.108	79.817	3	3.175	6	7	9E9	9E9	685.480	2.089
13.500	5.183	0.170	3.280	78.978	3	3.155	5	6	9E9	9E9	581.895	1.548
14.500	8.017	0.228	2.848	70.987	4	2.967	5	6	9E9	9E9	951.768	2.621
15.500	12.267	0.328	2.677	64.603	5	2.816	6	6	9E9	9E9	1510.578	4.392
16.500	9.083	0.250	2.752	69.860	4	2.940	6	6	9E9	9E9	1078.019	2.773
17.500	10.700	0.255	2.383	65.466	5	2.837	5	5	9E9	9E9	1285.626	3.329
18.500	9.167	0.158	1.727	62.926	5	2.777	4	4	9E9	9E9	1073.125	2.562
19.500	13.000	0.325	2.500	64.438	5	2.812	6	6	9E9	9E9	1576.365	4.000
20.500	12.357	0.463	3.746	72.874	3	3.011	12	11	9E9	9E9	1482.456	3.575
21.500	17.517	0.738	4.215	70.866	3	2.964	17	16	9E9	9E9	2162.233	5.527
22.500	20.667	0.660	3.194	63.887	5	2.799	10	9	9E9	9E9	2574.170	6.646
23.500	20.183	0.535	2.651	61.102	5	2.734	10	9	9E9	9E9	2501.705	6.215
24.500	21.767	0.683	3.139	63.613	5	2.793	10	9	9E9	9E9	2704.699	6.636
25.500	20.317	0.748	3.683	67.854	4	2.893	13	11	9E9	9E9	2498.698	5.826
26.500	22.400	0.688	3.073	63.529	5	2.791	11	9	9E9	9E9	2770.599	6.430
27.500	93.250	1.077	1.155	28.136	8	1.957	22	18	59	39	9E9	9E9
28.500	121.283	1.167	0.962	21.954	8	1.811	29	24	69	41	9E9	9E9
29.500	213.150	0.970	0.455	1.475	9	1.328	41	33	90	43	9E9	9E9
30.500	350.867	1.628	0.464	0.000	10	1.223	56	44	109	45	9E9	9E9
31.500	493.114	3.091	0.627	1.135	10	1.320	79	61	122	47	9E9	9E9
32.500	558.933	2.880	0.515	0.000	10	1.201	89	67	9E9	9E9	9E9	9E9
33.500	575.717	3.332	0.579	0.000	10	1.262	92	68	9E9	9E9	9E9	9E9
34.500	413.050	2.278	0.552	0.113	10	1.296	66	48	113	45	9E9	9E9
35.500	172.183	0.862	0.500	7.393	9	1.468	33	24	79	41	9E9	9E9
36.500	274.983	1.613	0.587	5.477	9	1.422	53	37	96	43	9E9	9E9
37.500	462.317	2.420	0.523	0.000	10	1.260	74	51	116	45	9E9	9E9
38.500	329.550	1.372	0.416	0.000	10	1.227	53	36	103	45	9E9	9E9
39.500	355.450	1.373	0.386	0.000	10	1.178	57	38	105	45	9E9	9E9
40.500	436.567	2.407	0.551	0.665	10	1.309	70	46	113	45	9E9	9E9
41.499	681.300	0.000	0.000	9E9	10	9E9	9E9	9E9	9E9	9E9	9E9	9E9


```
"Output file from CPTINT - Version 5.2
"INPUT FILE: C:\CPTINT\C13.csv
"_____
"Developed by: UBC In-Situ Testing FREEWARE
    Program: Piezocone Interpretation
   Web Site: www.civil.ubc.ca/home/in-situ
"Interpreter Name: YL
"SUMMARY SHEET
"'a' for calculating Qt:
                                 0.830
"Value for Water Table (in m):
                                 3.990
"Valid Zone Classification based on:
                                 Rf
"Missing unit weight to start depth:
                                 18.860
"Method for calculating Su:
"Value of the constant Nk:
                                 15.000
"Method used to calculate OCR:
                                 Su/EOS
"(Su/EOS) for normal consolidation:
                                 0.250
"Define Zone 6 for Sand Parameters?
                                 YES
"Sand Compressibility for calc Dr:
                                 Moderate
"Method for Friction Angle:
                                 Robertson & Campanella
"Vertical Flow Gradient, i (- up):
                                 +0.000
"CPT to SPT N60 Conversion:
                                 Robertson & Campanella
"Soil Behavior Type Zone Numbers
"For Rf Zone & Bq Zone Classification
"-----
"Zone #1=Sensitive fine grained
                             Zone #7 =Sand with some Silt
"Zone #2=Organic material
                             Zone #8 =Fine sand
"Zone #3=Clay
                             Zone #9 =Sand
"Zone #4=Silty clay
                             Zone #10=Gravelly sand
"Zone #5=Clayey silt
                             Zone #11=Very stiff fine grained *
"Zone #6=Silty sand
                             Zone #12=Sand to clayey sand *
" * Overconsolidated and/or cemented
"NOTE:
"For soil classification, Rf values > 8 are assumed to be 8.
"( Note: 9E9 means Out Of Range )
" Depth
         Qt(avg) Fs(avg) Rf
                                  FC
                                          Rf Zone Ic
                                                           Spt N
                                                                   Spt N1
                                                                                    Phi
                                                                           Dr
                                                                                            Su
                                                                                                    OCR
" (feet)
         (TSF)
                          (왕)
                                  (왕)
                                          (zone #) index
                                                           (blow/ft) (blow/ft) (%)
                                                                                    (degree) (psf)
                                                                                                    (ratio)
"______
   0.500
          28.950
                   0.465
                           1.606
                                   20.157
                                                    1.768
                                                           11
                                                                    17
                                                                            94
                                                                                    50
                                                                                               9E9
                                                                                                       9E9
   1.500
          51.267
                   0.313
                           0.611
                                    0.000
                                                    1.251
                                                           12
                                                                    18
                                                                            92
                                                                                    50
                                                                                               9E9
                                                                                                       9E9
                                            8
                                                                    29
   2.500
         100.750
                   0.468
                           0.465
                                    0.000
                                            9
                                                    1.085
                                                           19
                                                                            108
                                                                                    50
                                                                                               9E9
                                                                                                       9E9
   3.500
         120.300
                   0.618
                           0.514
                                    0.000
                                                    1.155
                                                            23
                                                                    35
                                                                            107
                                                                                    50
                                                                                               9E9
                                                                                                       9E9
```

4.500	66.717	0.490	0.734	7.406	8	1.468	16	24	79	45	9E9	9E9
5.500	22.083	0.225	1.019	27.070	6	1.931	8	12	32	39	9E9	9E9
6.500	8.150	0.103	1.268	45.647	5	2.369	4	6	9E9	9E9	1037.357	7.700
		0.642			4	2.690		17		9E9		16.380
7.500	16.800		3.819	59.257			11		9E9		2178.541	
8.500	18.450	0.690	3.740	59.053	4	2.685	12	18	9E9	9E9	2392.817	15.826
9.500	13.650	0.402	2.943	59.002	5	2.684	7	11	9E9	9E9	1746.869	9.329
10.500	8.400	0.279	3.316	68.512	3	2.908	8	11	9E9	9E9	1036.143	4.298
11.500	6.433	0.245	3.808	75.821	3	3.081	6	8	9E9	9E9	770.611	2.656
12.500	6.983	0.167	2.387	67.778	4	2.891	4	5	9E9	9E9	833.737	2.646
13.500	11.100	0.260	2.342	61.815	5	2.751	5	6	9E9	9E9	1374.765	4.588
14.500	12.317	0.292	2.368	61.162	5	2.735	6	7	9E9	9E9	1526.802	5.008
15.500	10.133	0.192	1.891	60.571	5	2.733	5	6	9E9	9E9	1225.389	3.648
16.500	9.133	0.145	1.588	59.732	5	2.701	4	4	9E9	9E9	1084.017	3.005
17.500	13.400	0.258	1.928	57.816	5	2.656	6	6	9E9	9E9	1645.050	4.865
18.500	16.750	0.210	1.254	47.666	6	2.417	6	6	0	31	9E9	9E9
19.500	12.200	0.307	2.514	64.567	5	2.815	6	6	9E9	9E9	1473.445	3.932
20.500	12.971	0.410	3.161	68.251	4	2.902	8	8	9E9	9E9	1571.500	4.111
21.500	14.033	0.520	3.705	70.465	4	2.954	9	9	9E9	9E9	1701.945	4.386
22.500	25.750	0.627	2.434	55.300	6	2.597	10	9	13	33	9E9	9E9
23.500	28.733	0.963	3.353	60.496	5	2.719	14	13	9E9	9E9	3643.722	10.574
24.500		0.745	3.457		5	2.713	10	9	9E9	9E9	2681.801	6.961
	21.550			64.934								
25.500	19.350	0.497	2.567	61.168	5	2.735	9	8	9E9	9E9	2373.551	5.784
26.500	36.033	0.875	2.428	52.547	6	2.532	14	12	24	35	9E9	9E9
27.500	56.900	0.523	0.920	29.156	8	1.981	14	12	41	37	9E9	9E9
28.500	123.217	0.928	0.753	16.514	9	1.683	24	20	70	41	9E9	9E9
29.500	476.617	2.545	0.534	0.000	10	1.227	76	62	122	47	9E9	9E9
30.500	544.300	2.400	0.441	0.000	10	1.109	87	70	9E9	9E9	9E9	9E9
31.500	495.043	2.441	0.493	0.000	10	1.187	79	62	122	47	9E9	9E9
32.500	342.783	0.997	0.291	0.000	10	1.010	55	43	108	45	9E9	9E9
33.500	422.533	1.965	0.465	0.000	10	1.194	67	51	115	45	9E9	9E9
34.500	342.050	2.107	0.616	3.770	10	1.382	55	41	107	45	9E9	9E9
35.500	366.267	1.410	0.385	0.000	10	1.142	58	43	109	45	9E9	9E9
36.500	596.017	3.613	0.606	0.000	10	1.286	95	69	9E9	9E9	9E9	9E9
37.500	694.000	5.195	0.749	3.843	10	1.384	111	79	9E9	9E9	9E9	9E9
38.500	588.150	3.872	0.658	1.907	10	1.338	94	66	9E9	9E9	9E9	9E9
39.500	422.483	1.405	0.333	0.000	10	1.059	67	46	112	45	9E9	9E9
40.500	384.950	1.293	0.336	0.000	10	1.091	61	41	108	45	9E9	9E9
41.499	349.957	2.536	0.725	8.307	10	1.489	56	37	104	45	9E9	9E9
42.499	389.300	2.012	0.517	0.418	10	1.303	62	41	108	45	9E9	9E9
43.499	451.333	2.390	0.530	0.000	10	1.288	72	46	113	45	9E9	9E9
44.499	435.117	1.865	0.429	0.000	10	1.196	69	44	111	45	9E9	9E9
45.499	425.650	2.373	0.558	1.722	10	1.334	68	43	110	45	9E9	9E9
46.499	375.283	2.798	0.746	9.137	10	1.509	60	37	105	45	9E9	9E9
47.499	421.017	2.830	0.672	6.096	10	1.437	67	41	109	45	9E9	9E9
48.499	408.483	2.953	0.723	8.060	10	1.483	65	39	107	45	9E9	9E9
49.499	445.617	2.748	0.617	4.080	10	1.389	71	42	110	45	9E9	9E9
50.499	328.550	2.393	0.728	10.501	10	1.541	52	30	98	43	9E9	9E9
51.499	363.183	2.535	0.698	8.829	10	1.501	58	34	102	43	9E9	9E9
52.499	422.443	3.299	0.781	9.995	10	1.529	67	38	107	45	9E9	9E9
53.499	399.950	3.493	0.781	12.988	9	1.529	77	43	107	43	9E9	9E9
54.499	365.117	4.028	1.103	18.887	9	1.739	70	39	101	43	9E9	9E9
55.499	387.100	3.942	1.018	16.800	9	1.689	74	41	103	43	9E9	9E9
56.499	506.817	3.418	0.674	5.840	10	1.431	81	44	113	45	9E9	9E9
57.499	557.467	3.375	0.605	2.859	10	1.361	89	48	9E9	9E9	9E9	9E9

58.499	456.067	4.260	0.934	13.968	9	1.623	87	46	108	45	9E9	9E9
59.499	383.917	4.970	1.295	22.535	9	1.825	74	39	101	43	9E9	9E9
60.499	388.700	4.428	1.139	19.788	9	1.760	74	39	101	43	9E9	9E9
61.499	414.283	4.793	1.157	19.708	9	1.758	79	41	104	43	9E9	9E9
62.499	404.871	3.467	0.856	13.598	10	1.614	65	33	102	43	9E9	9E9
63.499	412.000	3.610	0.876	14.047	9	1.624	79	40	103	43	9E9	9E9
64.499	378.267	4.025	1.064	19.026	9	1.742	72	36	99	43	9E9	9E9
65.499	382.017	3.667	0.960	16.878	9	1.691	73	37	99	43	9E9	9E9
66.499	410.350	3.568	0.870	14.269	9	1.630	79	40	102	43	9E9	9E9
67.499	465.733	3.060	0.657	7.372	10	1.467	74	37	107	43	9E9	9E9
68.499	505.817	3.763	0.744	9.341	10	1.513	81	41	109	43	9E9	9E9
69.499	489.550	4.990	1.019	16.460	9	1.681	94	47	108	43	9E9	9E9
70.499	522.567	5.288	1.012	15.876	9	1.668	100	50	9E9	9E9	9E9	9E9
71.499	558.617	5.635	1.009	15.377	9	1.656	107	54	9E9	9E9	9E9	9E9
72.499	554.057	5.651	1.020	15.777	9	1.665	106	53	9E9	9E9	9E9	9E9
73.499	451.583	5.958	1.319	23.089	9	1.838	87	44	104	43	9E9	9E9
74.499	436.300	5.272	1.208	21.574	9	1.802	84	42	102	43	9E9	9E9
75.499	504.567	4.177	0.828	12.368	10	1.585	81	41	108	43	9E9	9E9
76.499	488.267	4.577	0.937	15.395	9	1.656	94	47	106	43	9E9	9E9
77.499	536.883	4.765	0.888	13.508	10	1.612	86	43	9E9	9E9	9E9	9E9
78.499	574.017	5.352	0.932	14.107	10	1.626	92	46	9E9	9E9	9E9	9E9
79.499	563.133	4.550	0.808	11.303	10	1.560	90	45	9E9	9E9	9E9	9E9
80.499	543.900	0.000	0.000	9E9	10	9E9	9E9	9E9	9E9	9E9	9E9	9E9


```
"Output file from CPTINT - Version 5.2
"INPUT FILE: C:\CPTINT\C14.csv
"_____
"Developed by: UBC In-Situ Testing FREEWARE
     Program: Piezocone Interpretation
    Web Site: www.civil.ubc.ca/home/in-situ
"Interpreter Name: YL
"SUMMARY SHEET
"'a' for calculating Qt:
                                   0.830
"Value for Water Table (in m):
                                   2.290
"Valid Zone Classification based on:
                                   Rf
"Missing unit weight to start depth:
                                   18.860
"Method for calculating Su:
"Value of the constant Nk:
                                   15.000
"Method used to calculate OCR:
                                   Su/EOS
"(Su/EOS) for normal consolidation:
                                   0.250
"Define Zone 6 for Sand Parameters?
                                   YES
"Sand Compressibility for calc Dr:
                                   Moderate
"Method for Friction Angle:
                                   Robertson & Campanella
"Vertical Flow Gradient, i (- up):
                                   +0.000
"CPT to SPT N60 Conversion:
                                   Robertson & Campanella
"Soil Behavior Type Zone Numbers
"For Rf Zone & Bq Zone Classification
"-----
"Zone #1=Sensitive fine grained
                              Zone #7 =Sand with some Silt
"Zone #2=Organic material
                              Zone #8 =Fine sand
"Zone #3=Clay
                              Zone #9 =Sand
"Zone #4=Silty clay
                              Zone #10=Gravelly sand
"Zone #5=Clayey silt
                              Zone #11=Very stiff fine grained *
"Zone #6=Silty sand
                              Zone #12=Sand to clayey sand *
" * Overconsolidated and/or cemented
"NOTE:
"For soil classification, Rf values > 8 are assumed to be 8.
"( Note: 9E9 means Out Of Range )
"--- INPUT FILE: C:\CPTINT\C14.csv |------
" Depth
          Qt(avg) Fs(avg) Rf
                                    FC
                                            Rf Zone Ic
                                                              Spt N
                                                                                        Phi
                                                                      Spt N1
                                                                               Dr
                                                                                                Su
                                                                                                         OCR
" (feet)
          (TSF)
                           (왕)
                                    (왕)
                                            (zone #) index
                                                              (blow/ft) (blow/ft) (%)
                                                                                        (degree) (psf)
                                                                                                         (ratio)
"______
   0.500
           32.900
                    0.555
                             1.687
                                     21.321
                                              6
                                                       1.796
                                                              13
                                                                       20
                                                                                99
                                                                                        50
                                                                                                  9E9
                                                                                                            9E9
   1.500
           24.733
                    0.655
                             2.648
                                     35.572
                                              5
                                                       2.132
                                                              12
                                                                       18
                                                                                9E9
                                                                                        9E9
                                                                                                3288.350 202.842
   2.500
           20.133
                    0.427
                             2.119
                                     35.200
                                              6
                                                       2.123
                                                               8
                                                                       12
                                                                                45
                                                                                        43
                                                                                                 9E9
                                                                                                            9E9
   3.500
          15.350
                    0.247
                             1.607
                                    34.963
                                                       2.118
                                                               6
                                                                                        39
                                                                                                    9E9
```

4.500	12.667	0.285	2.250	46.197	5	2.382	6	9	9E9	9E9	1650.417	22.325
5.500	11.367	0.300	2.639	52.479	4	2.530	7	11	9E9	9E9	1475.703	15.167
6.500	9.667	0.497	5.138	69.029	3	2.921	9	14	9E9	9E9	1247.641	10.008
7.500	8.233	0.368	4.474	69.695	3	2.936	8	12	9E9	9E9	1048.477	6.748
8.500	7.200	0.153	2.130	58.506	4	2.673	5	8	9E9	9E9	902.659	5.177
9.500	9.100	0.173	1.905	54.357	5	2.575	4	6	9E9	9E9	1141.386	6.459
10.500	10.729	0.197	1.838	52.383	5	2.528	5	8	9E9	9E9	1351.851	7.454
11.500	20.517	0.380	1.852	45.063	6	2.356	8	12	18	37	9E9	9E9
12.500	46.233	0.290	0.627	15.857	7	1.667	15	22	48	39	9E9	9E9
13.500	42.833	0.413	0.965	25.280	7	1.889	14	20	44	39	9E9	9E9
14.500	13.083	0.310	2.369	56.970	5	2.636	6	8	9E9	9E9	1637.060	7.441
15.500	13.067	0.268	2.054	55.017	5	2.590	6	8	9E9	9E9	1629.057	7.010
16.500	13.167	0.282	2.139	56.276	5	2.620	6	8	9E9	9E9	1634.389	6.686
17.500	15.633	0.260	1.663	50.036	6	2.473	6	8	2	33	9E9	9E9
18.500	11.217	0.395	3.522	68.679	4	2.912	7	9	9E9	9E9	1353.868	4.796
19.500	13.817	0.448	3.245	64.888	4	2.823	9	11	9E9	9E9	1699.289	6.086
20.500	22.643	0.760	3.356	60.003	5	2.708	11	13	9E9	9E9	2866.344	11.173
21.500	19.333	0.652	3.371	62.396	5	2.764	9	10	9E9	9E9	2416.470	8.634
22.500	19.517	0.542	2.775	59.011	5	2.684	9	10	9E9	9E9	2432.917	8.357
23.500	71.133	1.055	1.483	32.446	7	2.058	23	25	56	39	9E9	9E9
24.500	284.050	3.983	1.402	20.344	9	1.773	54	56	109	45	9E9	9E9
25.500	221.167	1.605	0.726	7.612	9	1.473	42	43	98	45	9E9	9E9
26.500	347.783	1.462	0.420	0.000	10	1.114	56	55	115	47	9E9	9E9
27.500	372.133	1.317	0.354	0.000	10	1.020	59	57	117	47	9E9	9E9
28.500	553.417	1.463	0.264	0.000	10	0.805	88	83	9E9	9E9	9E9	9E9
29.500	843.200	0.000	0.000	9E9	10	9E9	9E9	9E9	9E9	9E9	9E9	9E9

APPENDIX B LABORATORY TESTS

APPENDIX B LABORATORY TESTING

B.1 General

Laboratory testing was performed to aid in the classification of soils encountered in the borings and to evaluate their physical properties and engineering characteristics. A description of the laboratory testing program is provided below. The laboratory testing is supplemented by the results of Standard Penetration Test (SPT) sampling conducted in the borings and the results of the CPT probes, which provide additional means to evaluate in situ soil properties such as density, shear strength and compressibility.

B.2 Soil Classification

The subsurface materials were classified visually in the field using the Unified Soil Classification System (USCS), in accordance with ASTM Test Methods D-2487 and D 2488. Soil classifications were modified as necessary based on further inspection and testing in the laboratory. The soil classifications are presented on the key for soil classification and on the boring logs in Appendix A.

B.3 Moisture Content and Dry Unit Weight

The in-situ moisture content of selected bulk, SPT, and Ring samples was determined by oven drying in general accordance with ASTM D 2216. Selected California Ring samples were trimmed flush in the metal rings and wet weight was measured. After drying, the dry weight of each sample was measured, volume and weight of the metal rings was measured, and moisture content and dry density were calculated in general accordance with ASTM D 2216 and D 2937. Results of these tests are presented on the boring logs in Appendix A and Table B-1.

B.4 Grain Size Distribution and Percent Passing No. 200 Sieve:

Representative samples were dried, weighed, soaked in water until individual soil particles were separated, and then washed on the No. 200 sieve. The percentage of fines (soil passing No. 200 sieve) was determined in accordance with ASTM D 1140. The washed material retained on No. 200 sieve was shaken through a standard stack of sieves in accordance with ASTM D 422 to determine the grain size distribution. The relative proportion (or percentage) by dry weight of gravel (retained on No. 4 sieve), sand (passing No. 4 and retained on No. 200 sieve), and fines (passing No. 200 sieve) are summarized in Table B-1.

B.5 Atterberg Limits

Soil plasticity was evaluated by measuring the Atterberg limits. This test includes Liquid Limit (LL) and Plastic Limit (PL) tests to determine the Plasticity Index (Pl) in accordance with ASTM D4318. Results of these tests are illustrated in the plasticity charts shown in Figure B-1 and summarized in Table B-1.

B.6 Consolidation

The consolidation characteristics of the foundation soils were determined by performing one-dimensional consolidation in general accordance with ASTM D2435, using a floating ring consolidometer and dead weight system. Results of these tests are presented in Figures B-2 through B-5.

B.7 Pocket Penetrometer

Undrained shear strengths (S_u) of cohesive samples were measured using a pocket penetrometer. The measured S_u values (in ksf) are presented in Table B-1 and the boring logs of Appendix A.

B.8 Miniature Vane Shear

Shear strength of selected cohesive samples was estimated in the laboratory in general accordance with ASTM D 4648 using a Geonor Inspection Vane Tester H-60 Miniature Vane Shear device with a 16 x 32 mm vane having an area ratio of 14%, respectively. The test consists of inserting the miniature shear vane into the soil sample, rotating the vane at a constant rate until the cylindrical surface surrounding the vane fails in shear, measuring the maximum torque exerted on the vane during testing, and calculating the unit shearing resistance on the cylindrical surface. Undrained shear strengths measured in the test are summarized in Table B-1.

B.9 Direct Shear

To determine the drained shear strength parameters of the on-site soils, direct shear tests were performed on selected in situ samples in accordance with ASTM D 3080. After the initial weight and volume measurements were made, the sample was placed in the shear machine, and a selected normal load was applied. The sample was saturated or kept at field moisture (to model worst case field conditions), allowed to consolidate under the selected normal load, and then sheared to failure. Shear rate was selected to maintain drained conditions. Shear stress and vertical/horizontal sample deformations were monitored throughout the test. The process was repeated on additional samples of the same soil material at two additional normal loads. The test results are presented in Figures B-6 through B-8.

B.10 Soil Expansion Index

A representative grab sample of existing soil was collected from the site and tested to determine the expansion index. Testing was performed according to ASTM D4829. The results of these tests are presented in Table B-1.

B.11 Soil Corrosivity

Tests were performed in order to determine corrosion potential of site soils on concrete and ferrous metals. Corrosivity testing included minimum electrical resistivity and soil pH (Caltrans method 643), water-soluble chlorides (Orion 170A+ Ion Probe), and water-soluble sulfates (ASTM D 516). The test results are summarized in Table B-1.

The following tables and figures are attached and complete this appendix:

LIST OF TABLES

Table B-1 Summary of Laboratory Test Results

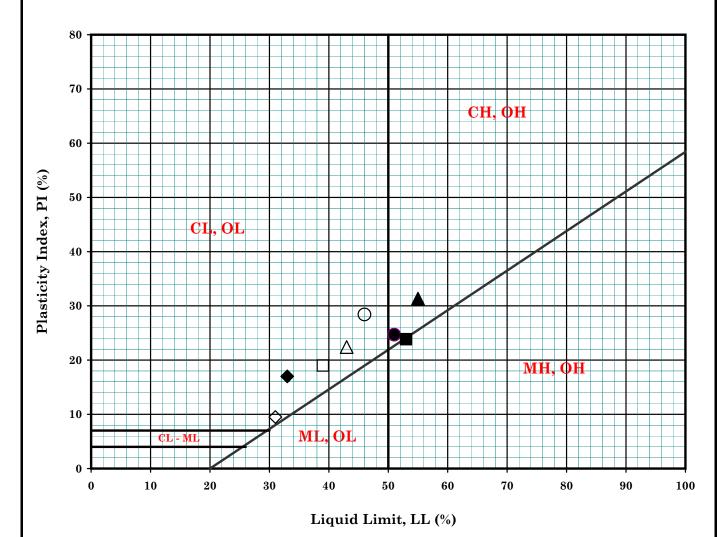

LIST OF FIGURES

Figure B-1 Atterberg Limits Tests
Figures B-2 to B-5 Consolidation Tests
Figures B-6 to B-8 Direct Shear Tests

	l	l		l		Undraine	d Shear		Т	Total	At	terberg Lin	nits	Grain Siz	e Distribut	ion (%) by			Corros	ivity	
Boring No.	Sample No.	Sample Depth (ft)	Sample Type ¹	USCS Group	SPT N	Pocket Penetro-	Mini Vane	Moisture Content	Dry Unit Weight	Unit Weight	LL	PL	PI	Gravel	Sand	Fines	Expansion Index	Minimum Resistivity	pН	Sulfate	Chloride
		F ()	1,700	Symbol	(blows/ft)	meter	Shear	(%)	(pcf)	(pcf)				Giuvei	Ound	Tines		(ohm-cm)	Pii	(ppm)	(ppm)
R-12-15	R-1	2.5	MC		14	1		24.3	99	123											
	R-2	5	MC		22	4		22.2	101	123											
	R-3	10	MC		22	3.5		19.1	110	131											
	R-4	15	MC		11	1.25		33.3	86	115	51	26	25								
	R-5 S-6	20 25	MC SPT		10 12	0.75		32.6 32.9	87	115	55	24	31								
	S-0	30	SPT		44			30.9						0	90	10					
	S-8	35	SPT		64			12.0						U	30	10					
	S-9	40	SPT		77			18.3													
	S-10	45	SPT		50/5"			15.6													
	S-11	50	SPT		50/5"			17.6													
R-12-16	S-1	5	SPT		7			25.9						0	58	42					
	R-2a	10	MC		20																
	R-2b	12	MC		29			7.5	125					19	65	16					
	S-3	15	SPT		2			25.5													
	R-4	20	MC		21			25.2	101					0	64	36					
	S-5	25 30	SPT		8 25			23.5			33	16	17								
	S-6 S-7	35	SPT SPT		43			22.7 15.2													
R-12-17	R-1	5	MC		19			19.9	102	122											\vdash
N-1Z-17	S-2	10	SPT		12			41.7	102	122											
	R-3	15	MC		19			20.0	107	129											
	R-4	20	MC		20	1		19.7	105	125											
	S-5	25	SPT		8	1.75		24.1													
	R-6	30	MC		51	2		16.8	113	132											
	S-7	35	SPT		58			16.1													
R-12-18	B-1	2	BULK															1562	8.62	9	0
	S-2	5	SPT		4			29.6						0	53	47					
	S-3	7.5	SPT		5			42.9			53	29	24								
	S-4 S-5	10 12.5	SPT SPT		10 8			28.6 25.9			46	18	28								
	S-5	15.5	SPT		4			36.6			40	10	20								
	S-7	17.5	SPT		8			25.9						1	48	51					
	S-8	20	SPT		6			33.8						1	40	31					
	S-9	22.5	SPT		10			29.7			43	21	22								
	S-10	25	SPT		9	1.75		28.8													
	S-11	27.5	SPT		15			21.5			31	22	9								
	S-12	30	SPT		31			26.6			_			0	89	11					
	S-13	32.5	SPT		41			13.9													
ļ	S-14	35	SPT		49			21.0													
	S-15	37.5	SPT		52			13.8						1							
	S-16	40	SPT		43			11.0													—
	S-17 S-18	42.5 45	SPT SPT		61 58			19.6 22.2													
	S-16	47.5	SPT		78			19.1													
l	S-20	50	SPT		54/6"			22.1						1							
R-12-19	R-1	2.5	MC		31			11.8	118	131											
	R-2	5	MC		40			3.4													
	R-3	10	MC		5	0		36.0	85	115											
	R-4a	15	MC		16																
	R-4b	16.5	MC		16	1		27.6	95	121											
	R-5	20	MC		12	0.75	1.1	18.7	104	124											
	R-6	25	MC		12	1	1.6	33.2	89	118			1								

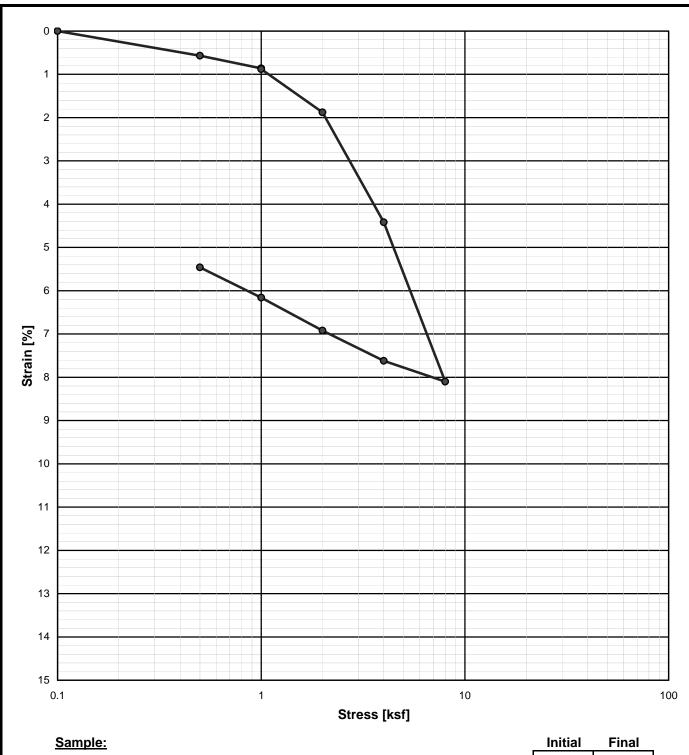
				USCS	SPT	Undraine	ed Shear	M - ! - t	D /1-14	Total	At	terberg Lin	nits	Grain Size	e Distributi	ion (%) by			Corros	ivity	
Boring No.	Sample No.	Sample Depth (ft)		Group	N (blows/ft)	Pocket Penetro- meter	Mini Vane Shear	Moisture Content (%)	Dry Unit Weight (pcf)	Unit Weight (pcf)	LL	PL	PI	Gravel	Sand	Fines	Expansion Index	Minimum Resistivity (ohm-cm)	pН	Sulfate (ppm)	Chloride (ppm)
	S-7	30	SPT		9			31.7													
	S-8	35	SPT		52			24.4													
R-12-20	B-1	1	BULK								39	20	19				53				
	R-2	5	MC		5			26.1	97	122											
	R-3	10	MC		7			46.7													
	R-4	15	MC		12																
	R-5	16.5	MC		11			26.2	96	121											
	R-6	20	MC		18			31.4	92	121											
	R-7	25	MC		20																
	S-8	30	SPT		45			15.6													
	S-9	35	SPT		48			9.2													
	S-10	40	SPT		63			12.6													
	S-11	45	SPT		55			10.6													
	S-12	50	SPT		62			13.6													

PLASTICITY CHART

Symbol	Boring	Sample	De	pth	MC	$\mathbf{L}\mathbf{L}$	\mathbf{PL}	PΙ	LI	Description
Symbol	No.	No.	(ft)	(m)		(9	%)		1/1	Description
	R-12-15	R4	15.0	4.6	33.3	51	26	25	0.3	Fat Clay (CH)
A	R-12-15	R5	20.0	6.1	32.6	55	24	31	0.3	Fat Clay (CH)
•	R-12-16	S5	25.0	7.6	23.4	33	16	17	0.4	Sandy Lean Clay (CL)
	R-12-18	S3	7.5	2.3	42.9	53	29	24	0.6	Fat Clay (CH) or Elastic Silt (MH)
0	R-12-18	S5	12.5	3.8	25.9	46	18	28	0.3	Lean Clay with Sand (CL)
Δ	R-12-18	S9	22.5	6.9	29.7	43	21	22	0.4	Lean Clay (CL)
\Diamond	R-12-18	S11	27.5	8.4	21.5	31	22	9	0.0	Sandy Clay (CL)
	R-12-20	B-1	2.0	0.6	-	39	20	19	-	Lean Clay (CL)

Remark:

Marina Del Rey - Parcel 44

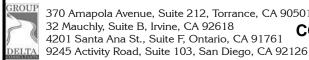

Project No.: LA-1049

Date: 03/21/12

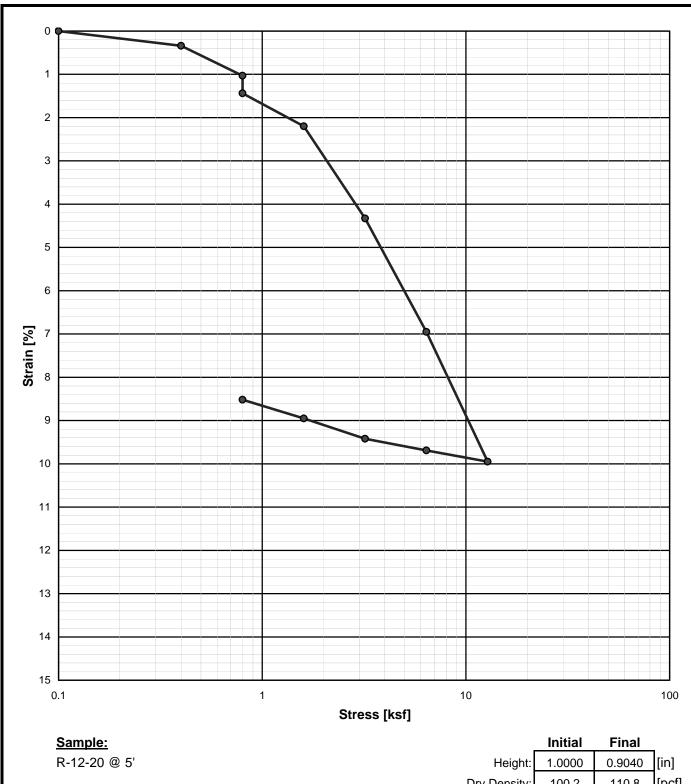
ATTERBERG LIMITS

(ASTM D-4318-84)

Figure No.: B-1


R-12-15 @ 20'

Description:


Fat Clay (CH) (Water Added at 1.0 ksf)

	Initial	Final	_
Height:	1.0000	0.9470	[in]
Dry Density:	88.1	93.1	[pcf]
Void Ratio (e):	0.98	0.87	
Water Content:	33.3	31.3	[%]
Saturation:	95	100	[%]

Note: To find the traditional compression (Cc) and swell (Cs) indices, the values in strain domain were multiply by 1.98 (or 1+e)

370 Amapola Avenue, Suite 212, Torrance, CA 90501 32 Mauchly, Suite B, Irvine, CA 92618 **CONSOLIDATION RESULTS** 4201 Santa Ana St., Suite F, Ontario, CA 91761

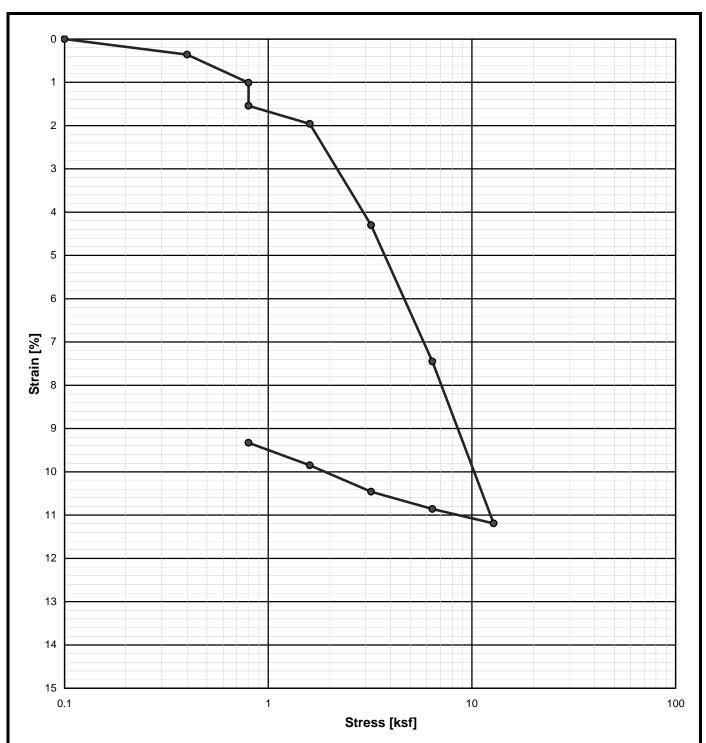
Description:

Silt (ML)

(Water Added at 0.8 ksf)

	Initial	Final	_
Height:	1.0000	0.9040	[in]
Dry Density:	100.2	110.8	[pcf]
Void Ratio (e):	0.68	0.52	
Water Content:	23.2	19.3	[%]
Saturation:	92	100	[%]

Note: To find the traditional compression (Cc) and swell (Cs) indices, the values in strain domain were multiply by 1.68 (or 1+e)


370 Amapola Avenue, Suite 212, Torrance, CA 90501
32 Mauchly, Suite B, Irvine, CA 92618
4201 Santa Ana St. Suite F Ontario CA 91761

CONSOLIDATION RESULTS

4201 Santa Ana St., Suite F, Ontario, CA 91761
9245 Activity Road, Suite 103, San Diego, CA 92126

Project No. LA-1049

FIGURE B-3

Sample:

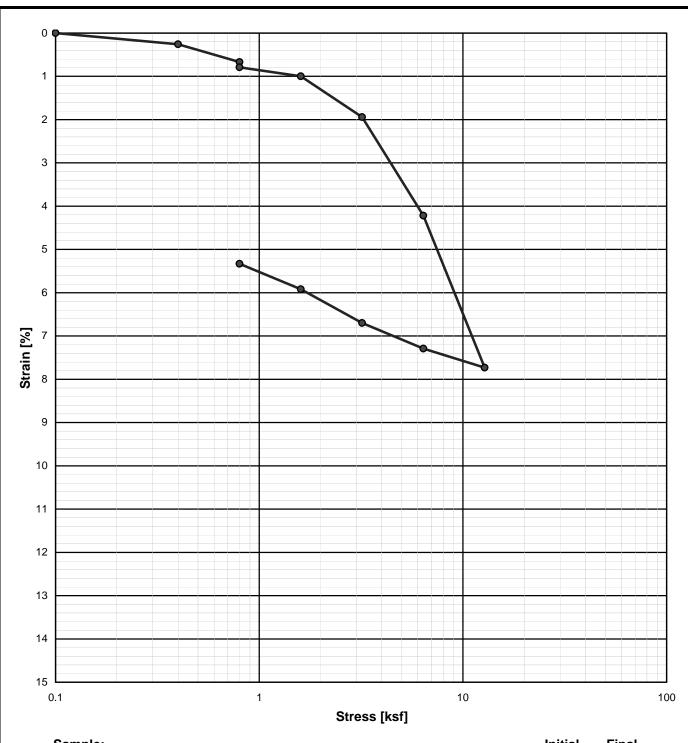
R-12-20 @ 16.5'

Description:

Fat Clay (CH) (Water Added at 0.8 ksf)

	Initial	Final	_
Height:	1.0000	0.8946	[in]
Dry Density:	88.5	98.9	[pcf]
Void Ratio (e):	1.00	0.79	
Water Content:	33.3	27.9	[%]
Saturation:	94	100	[%]

Note: To find the traditional compression (Cc) and swell (Cs) indices, the values in strain domain were multiply by 2 (or 1+e)



370 Amapola Avenue, Suite 212, Torrance, CA 90501 32 Mauchly, Suite B, Irvine, CA 92618

CONSOLIDATION RESULTS 4201 Santa Ana St., Suite F, Ontario, CA 91761 9245 Activity Road, Suite 103, San Diego, CA 92126

Project No. LA-1049

FIGURE B-4

Sample:

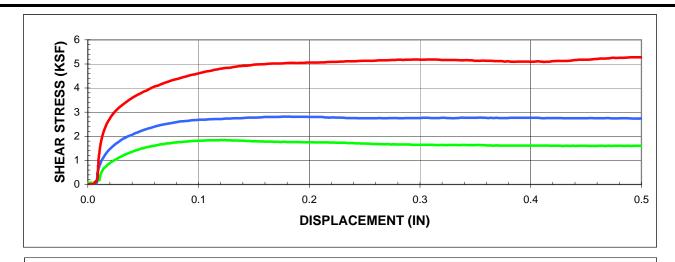
R-12-20 @ 25'

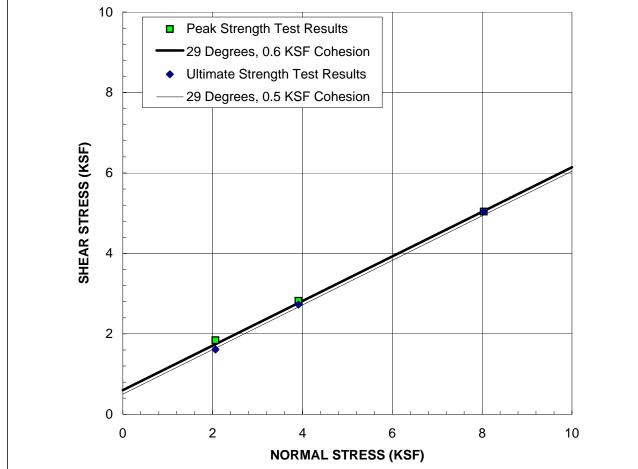
Description:

Fat Clay (CH) (Water Added at 0.8 ksf)

_	initiai	Finai	_
Height:	1.0000	0.9470	[in]
Dry Density:	87.6	92.6	[pcf]
Void Ratio (e):	1.01	0.90	
Water Content:	33.9	32.1	[%]
Saturation:	95	100	[%]

Note: To find the traditional compression (Cc) and swell (Cs) indices, the values in strain domain were multiply by 2.01 (or 1+e)




370 Amapola Avenue, Suite 212, Torrance, CA 90501
32 Mauchly, Suite B, Irvine, CA 92618
CONSOLIDATION RESULTS

4201 Santa Ana St., Suite F, Ontario, CA 91761
9245 Activity Road, Suite 103, San Diego, CA 92126

Project No. LA-1049

FIGURE B-5

SAMPLE: R-12-15 @ 2.5'

Description: Black Sandy Clay with

Traces of Gravel

STRAIN RATE: 0.0030 IN/MIN (Sample was consolidated and drained)

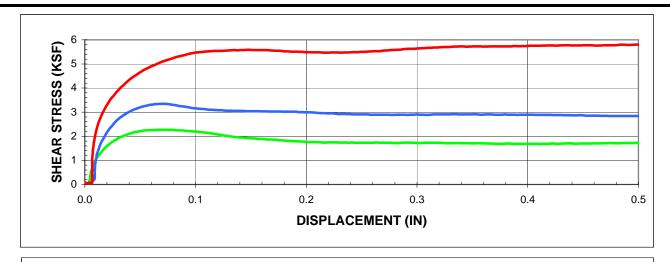
PEAK

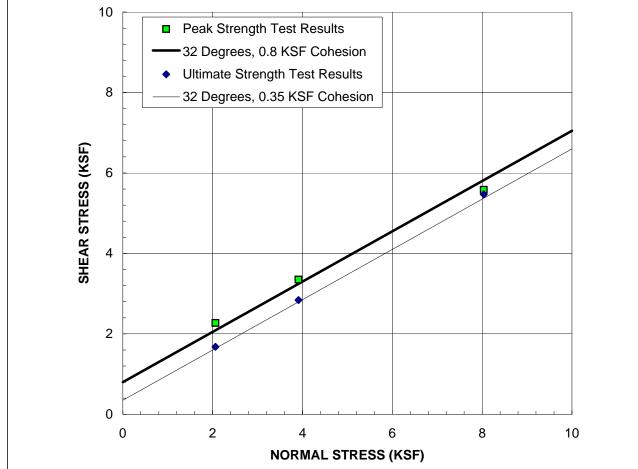
φ' 29 ° **c'** 0.60 KSF

IN-SITU

γ_{d}	PCF
W _c	%

ULTIMATE


29 ° 0.50 KSF


AS-TESTED

0.0 PCF 23.0 %

Project No.: LA-1049 FIGURE B-6

SAMPLE: R-12-15 @ 5.0'

Description: Very Dark Gray Sandy Clay

with Traces of Gravel

STRAIN RATE: 0.0030 IN/MIN (Sample was consolidated and drained)

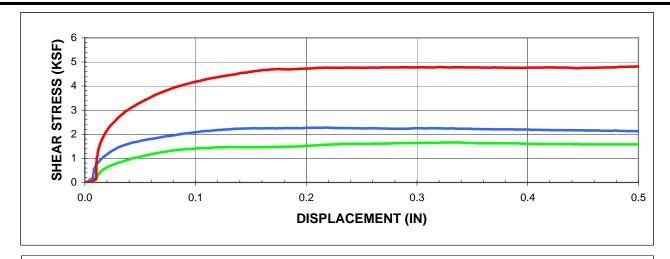
PEAK

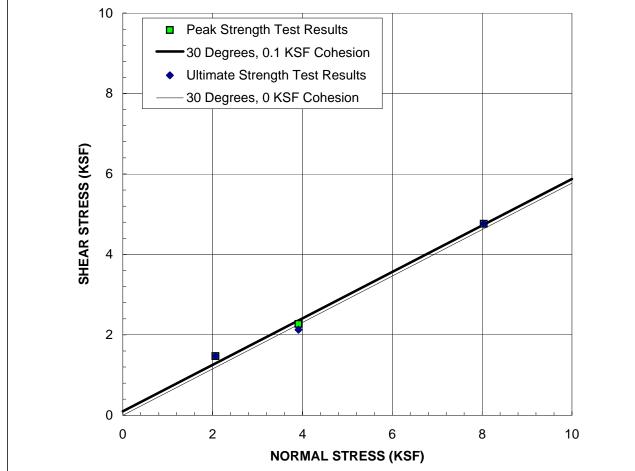
φ' 32 ° c' 0.80 KSF

IN-SITU

γd	PCF
W _c	%

ULTIMATE


32 ° 0.35 KSF


AS-TESTED

0.0 PCF 24.0 %

Project No.: LA1049 FIGURE B-7

SAMPLE: R-12-19 R3@10'

Olive Brown Clayey Silty Description:

Sand / Clayey Sandy Silt

0.0030 IN/MIN **STRAIN RATE:** (Sample was consolidated and drained) **PEAK**

30 ° 0.10 KSF

IN-SITU

γ_{d}	PCF
W _c	%

ULTIMATE

30 ° 0.00 KSF

AS-TESTED

0.0 PCF 32.3 %

Project No.: LA1049 FIGURE B-8

APPENDIX C LIQUEFACTION ANALYSIS

(Engineer: Curt Scheyhing)

Earthquake Magnitude, Meq

Required Factor of Safety

Peak Ground Acceleration, An

PROJECT INFORMATION		
Project Name	Marina Del Rey -Parcel 44	
Project No.	LA-1049	
Location	Marina Del Rey	
Exploration No.	CPT-12-01	
	<u></u>	
GENERAL INPUT DATA		
Ground Surf. Elev. During Test	12.00 ft	
GWT Elev. During Test	-7.00 ft	
GWT Elev. For Design	5.00 ft	
Total Soil Unit Weight, V.	120.00 pcf	

6.80

0.40 g

1.30

REFERENCES

Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and I.M. Idriss, 2001)

+ CSR = 0.65 $A_{max} (\sigma_v/\sigma_v') r_d$

++++FS = (CRF₄/CSR) MSF K_σ K_{σ→∞} where CRR₇₅ is evaluated from direct CPT data, K_σ =1.0 and MSF = 1.28

* Residual strength values of liquefied soils are evaluated from converted SPT blow counts using the median curve by Seed & Harder (1990)

** Ground settlements are evaluated from converted SPT blow counts using the method developed by Tokimatsu and Seed (1987).

Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change.

GWT Depth During Test, Zw = GWT Depth For Design, Zwd = 19.00 ft below ground surface 7.00 ft below ground surface

*** SUMMARY OF RESULTS ***

Total Thickness of Liquefiable Soils = 5.00 feet Earthquake-Induced Settlements:

- Liquefaction-Induced Settlement =

0.37 inches <--- Saturated Sands
0.00 inches <--- Dry or Unsaturated Sands

- Seismic Compaction Settlement =

Total:	0.38	inches

	INPUT SOIL	PROFILE (C	PT DATA)				SOIL LIQUER	FACTION	POTENTIAL A	NALYSIS (1	996 NCEE	R & 1998 NO	EER/NSF V	VORKSHO	OPS) +					RESID	UAL STRE	NGTH *		GROUND	SETTLEM	IENT **	
								m . 1	Effective	Effective	Soil			CT.		a "		Factor of			Fines		Fines				
Soil	Average	Average	Average		D-446			Total Vert.	Vert.	Vert.	Son Behavior	Fines	Corrected	Shear Stress	Correction for High		Cyclic	Safety Against		SPT Blow	Corrected	Residual	Corrected	Cyclic	i i	Layer	Cumulativ
Depth	Cone Tip	Sleeve	Friction		Bottom of Layer	Thin Layer	Equiv. SPT	Stress	Stress	Stress	Type	Correction			Overburder		Res.	Liqefaction	Liquef	Count	SPT Blow	Shear	SPT Blow	Shear	Vol.		e Settlement
During Test	Resistance	Friction	Ratio	Soil Behavior Type	Elevation	Correction Factor	Blow Count		(Design)	(Test)	Index	Factor	Resistance	Coeff.	Stress	++	Ratio	+++	y?	Correction	Count	Strength	Count	Strain	Strain	t	Profile
(ft)	$\mathbf{q}_{t\text{-avg}}\left(ts\mathbf{f}\right)$	f _{s-ave} (tsf)	R _{f-avg} (%)		(ft)	(Lunne, et al., 1997)	N_{60} (blows/ft)	σ _v (psf)	σ _{v'} (psf)	σ _{v'} (psf)	I _c	K _c	$\mathbf{q}_{\mathrm{c1Nes}}$	\mathbf{r}_{d}	K,	CSR	CRR _{7.5}	FS		N _{corr.}	$(N_1)_{60cs}$	$S_r(psf)$	$(N_1)_{60cs}$	γ _c (%)	& _v (%)	S _i (in.)	(in.)
0.50	82.70	0.92	1.11	sand to silty sand	11.0	1.00	21	60	60	60	1.49	1.00	477.47	0.999	N/A	0.260	N/A	N/A	NO	N/A	N/A	N/A	39.3	0.013	0.010	0.00	0.38
1.50	80.20	1.95	2.43	sandy silt to clayey silt	10.0	1.00	32	180	180	180	1.91	1.20	321.50	0.997	N/A	0.259	N/A	N/A	NO	N/A	N/A	N/A	70.4	N/A	N/A	N/A	0.38
2.50 3.50	74.32 99.98	0.91	1.23 0.92	sand to silty sand sand to silty sand	9.0 8.0	1.00	19 25	300 420	300 420	300 420	1.77	1.08	207.99 218.18	0.994	N/A N/A	0.258	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	35.6 47.0	0.030	0.026	0.00	0.37
4.50	55.88	0.92	1.64	silty sand to sandy silt	7.0	1.00	19	540	540	540	2.03	1.35	144.82	0.990	N/A	0.257	N/A	N/A	NO	N/A	N/A	N/A	43.0	0.038	0.000	0.00	0.37
5.50	31.42	0.58	1.83	sandy silt to clayey silt	6.0	1.66	21	660	660	660	1.97	1.27	114.67	0.987	N/A	0.257	N/A	N/A	NO	N/A	N/A	N/A	47.4	N/A	N/A	N/A	0.37
6.50 7.50	13.12 16.98	0.39	2.96 3.79	silty clay to clay silty clay to clay	5.0	1.00	9	780 900	780 869	780 900	2.66	N/A N/A	N/A N/A	0.985	N/A N/A	0.256	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.37
8.50	35.95	1.08	2.99	clayey silt to silty clay	3.0	1.00	18	1,020	926	1,020	2.44	2.48	130.95	0.980	1.000	0.281	0.289	1.322	NO	N/A	N/A	N/A	N/A	N/A	0.000	0.00	0.37
9.50	23.00	0.57	2.49	clayey silt to silty clay	2.0	1.00	12	1,140	984	1,140	2.54	3.00	98.24	0.978	1.000	0.295	0.168	0.733	YES	2.8	18.0	979	N/A	N/A	0.000	0.00	0.37
10.50 11.50	13.73 23.92	0.44	3.22 3.14	silty clay to clay clayey silt to silty clay	1.0 0.0	1.00	9	1,260	1,042	1,260	2.75	N/A 3.13	N/A 117.31	0.976	N/A 1.000	0.307	N/A 0.230	N/A 0.931	NO YES		N/A 17.2	N/A 893	N/A N/A	N/A N/A	N/A 0.000	N/A 0.00	0.37
12.50	43.82	1.37	3.14	clayey silt to silty clay	-1.0	1.00	22	1,500	1,157	1,500	2.43	2.42	139.45	0.973	1.000	0.318	0.332	1.304	NO	N/A	N/A	N/A	N/A	N/A	0.000	0.00	0.37
13.50	25.42	1.15	4.51	clay	-2.0	1.00	25	1,620	1,214	1,620	2.68	N/A	N/A	0.969	N/A	0.336	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.37
14.50 15.50	16.77 10.50	0.38	2.26 1.71	clayey silt to silty clay	-3.0 -4.0	1.00	8	1,740	1,272	1,740	2.64	N/A	N/A	0.966	N/A	0.344	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.37
15.50	10.50	0.18	2.31	clayey silt to silty clay clayey silt to silty clay	-4.0 -5.0	1.00	6	1,860 1,980	1,330 1,387	1,860 1,980	2.76	N/A N/A	N/A N/A	0.964	N/A N/A	0.351	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.37
17.50	13.90	0.40	2.83	clayey silt to silty clay	-6.0	1.00	7	2,100	1,445	2,100	2.80	N/A	N/A	0.959	N/A	0.362	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.37
18.50	16.47	0.67	4.03	silty clay to clay	-7.0	1.00	11	2,220	1,502	2,220	2.85	N/A	N/A	0.957	N/A	0.368	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.37
19.50 20.50	14.73 71.61	0.55	3.69 0.97	silty clay to clay sand to silty sand	-8.0 -9.0	1.00	10	2,340 2,460	1,560 1,618	2,309	2.87	N/A 1.28	N/A 101.83	0.955	N/A 1.000	0.372	N/A 0.178	N/A 0.608	NO YES	N/A	N/A 17.8	N/A 954	N/A 19.7	N/A N/A	N/A 1 429	N/A 0.17	0.37
21.50	72.32	0.75	1.03	sand to silty sand	-10.0	1.66	30	2,580	1,675	2,424		1.03	135.33	0.950	1.000	0.380	0.310	1.049	YES		28.5	1,200	31.0	N/A	0.080	0.01	0.19
22.50	14.52	0.35	2.38	clayey silt to silty clay	-11.0	1.00	7	2,700	1,733	2,482		N/A	N/A	0.948	N/A	0.384	N/A	N/A	NO		N/A	N/A	N/A	N/A	N/A	N/A	0.19
23.50 24.50	8.30 10.47	0.22	2.58	silty clay to clay silty clay to clay	-12.0 -13.0	1.00	6	2,820 2,940	1,790 1.848	2,539	3.05 2.97	N/A N/A	N/A N/A	0.945	N/A N/A	0.387	N/A N/A	N/A N/A	NO NO		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.19
25.50	12.42	0.43	3.44	silty clay to clay	-14.0	1.00	8	3,060	1,906	2,654	2.98	N/A	N/A	0.943	N/A	0.393	N/A	N/A	NO		N/A	N/A	N/A	N/A	N/A	N/A	0.19
26.50	12.37	0.38	3.04	silty clay to clay	-15.0	1.00	8	3,180	1,963	2,712	2.96	N/A	N/A	0.938	N/A	0.395	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.19
27.50 28.50	80.90 192.05	0.82 1.25	1.02 0.65	sand to silty sand	-16.0 -17.0	1.00	20	3,300 3,420	2,021	2,770 2,827	1.99	1.29	103.99 188.39	0.936 0.934	0.997	0.397	0.185	0.595 N/A	YES	1.3	18.5 N/A	1,030 N/A	20.5 32.3	N/A	1.403	0.17	0.02
29.50	201.48	0.98	0.63	sand sand	-17.0	1.00	38 40	3,540	2,078 2,136	2,885	1.38	1.00	194.96	0.934	0.983	0.399	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	33.6	N/A N/A	0.072	0.01	0.01
30.50	284.85	1.41	0.50	gravelly sand to sand	-19.0	1.00	47	3,660	2,194	2,942	1.38	1.00	271.99	0.926	0.964	0.402	N/A	N/A	NO	N/A	N/A	N/A	39.1	N/A	0.008	0.00	0.01
31.50	502.14	3.71	0.74	gravelly sand to sand	-20.0	1.00	84	3,780	2,251	3,000	1.35	1.00	473.30	0.918	0.954	0.401	N/A	N/A	NO	N/A	N/A	N/A	68.3	N/A	0.000	0.00	0.01
32.50 33.50	297.43 368.45	1.89 2.25	0.64	gravelly sand to sand gravelly sand to sand	-21.0 -22.0	1.00	50 61	3,900 4,020	2,309 2,366	3,058 3,115	1.45	1.00	276.83 338.73	0.909	0.944	0.399	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	40.1 49.2	N/A N/A	0.000	0.00	0.01
34.50	265.90	1.22	0.46	gravelly sand to sand	-23.0	1.00	44	4,140	2,424	3,173	1.40	1.00	241.53	0.893	0.926	0.397	N/A	N/A	NO	N/A	N/A	N/A	35.2	N/A	0.045	0.01	0.00
35.50	459.55	4.08	0.89	gravelly sand to sand	-24.0	1.00	77	4,260	2,482	3,230	1.45	1.00	412.56	0.885	0.917	0.395	N/A	N/A	NO	N/A	N/A	N/A	60.3	N/A	0.000	0.00	0.00
36.50 37.50	562.73 525.83	4.95 2.44	0.88	gravelly sand to sand gravelly sand to sand	-25.0 -26.0	1.00	94 88	4,380 4,500	2,539 2,597	3,288 3,346	1.40	1.00	499.42 461.47	0.877	0.909	0.393	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	73.1 67.8	N/A N/A	0.000	0.00	0.00
38.50	541.90	1.87	0.35	gravelly sand to sand	-27.0	1.00	90	4,620	2,654	3,403	1.10	1.00	470.38	0.861	0.893	0.389	N/A	N/A	NO	N/A	N/A	N/A	69.2	N/A	0.000	0.00	0.00
39.50	688.02	1.81	0.26	gravelly sand to sand	-28.0	1.00	115	4,740	2,712	3,461	0.95	1.00	590.84	0.852	0.885	0.387	N/A	N/A	NO	N/A	N/A	N/A	87.2	N/A	0.000	0.00	0.00
40.50 41.50	526.25 467.60	2.13	0.41	gravelly sand to sand gravelly sand to sand	-29.0 -30.0	1.00 1.00	88 78	4,860 4,980	2,770 2,827	3,518 3,576	1.17	1.00	447.20 393.29	0.844	0.878 0.871	0.385	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	66.1 58.3	N/A N/A	0.000	0.00	0.00
42.50	484.78	3.09	0.64	gravelly sand to sand	-31.0	1.00	81	5,100	2,885	3,634	1.34	1.00	403.65	0.828	0.864	0.381	N/A	N/A	NO	N/A	N/A	N/A	59.9	N/A	0.000	0.00	0.00
43.50	485.45	3.32	0.68	gravelly sand to sand	-32.0	1.00	81	5,220	2,942	3,691	1.37	1.00	400.23	0.820	0.857	0.378	N/A	N/A	NO	N/A	N/A	N/A	59.6	N/A	0.000	0.00	0.00
44.50 45.50	561.23 475.50	2.80	0.50	gravelly sand to sand gravelly sand to sand	-33.0 -34.0	1.00	94 79	5,340 5,460	3,000 3,058	3,749 3,806	1.23	1.00	458.25 384.57	0.812	0.850 0.844	0.376	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	68.3 57.4	N/A N/A	0.000	0.00	0.00
46.50	327.37	2.66	0.43	sand	-35.0	1.00	65	5,580	3,115	3,864	1.55	1.00	262.31	0.795	0.838	0.373	N/A	N/A	NO	N/A	N/A	N/A	47.1	N/A	0.000	0.00	0.00
47.50	450.90	3.10	0.69	gravelly sand to sand	-36.0	1.00	75	5,700	3,173	3,922	1.40	1.00	358.00	0.787	0.831	0.368	N/A	N/A	NO	N/A	N/A	N/A	53.7	N/A	0.000	0.00	0.00
48.50 49.50	561.48 480.37	3.38 4.52	0.60	gravelly sand to sand	-37.0 -38.0	1.00	94	5,820 5,940	3,230 3,288	3,979	1.30	1.00	441.80	0.779	0.825	0.365	N/A	N/A	NO		N/A N/A	N/A	66.3 67.6	N/A	0.000	0.00	0.00
49.50	480.37	4.32	0.94	sand	-38.0	1.00	96	3,940	3,288	4,037	1.49	1.00	374.65	0.771	0.820	0.362	N/A	N/A	NO	N/A	N/A	N/A	07.0	N/A	0.000	0.00	0.00
																											,
																			1							 ∓	
1				1				1		+	l				1				-							\vdash	
								l		1									t								
		-						 		1	-					-			-		—						
								1		1					1				 							\Box	
							1	L	1	1	l	1	l		1	1		1	L		max=	1,200					
																					min=	893					

1.011 avg=

> CPT-12-01 Liquefaction Analysis.XLS Output Sheet

(Engineer: Curt Scheyhing)

Peak Ground Acceleration, Amas

Page 1

Required Factor of Safety

PROJECT INFORMATION		
Project Name	Marina Del Mar - Parcel 44	
Project No.	LA-1049	
Location	Los Angeles	
Exploration No.	CPT-12-02	
GENERAL INPUT DATA		
GENERAL INPUT DATA Ground Surf. Elev. During Test	12.00 ft	
	12.00 ft 1.00 ft	
Ground Surf. Elev. During Test		
Ground Surf. Elev. During Test GWT Elev. During Test	1.00 ft	

0.40 g

REFERENCES

Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and I.M. Idriss, 2001)

+ CSR = 0.65 $A_{max} (\sigma_v/\sigma_v') r_d$

++++FS = (CRF₄/CSR) MSF K_σ K_{σ→∞} where CRR₇₅ is evaluated from direct CPT data, K_σ =1.0 and MSF = 1.28

* Residual strength values of liquefied soils are evaluated from converted SPT blow counts using the median curve by Seed & Harder (1990)

** Ground settlements are evaluated from converted SPT blow counts using the method developed by Tokimatsu and Seed (1987).

Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change.

GWT Depth During Test, Zw = GWT Depth For Design, Zwd = 11.00 ft below ground surface 7.00 ft below ground surface

*** SUMMARY OF RESULTS ***

Total Thickness of Liquefiable Soils = 15.00 feet Earthquake-Induced Settlements:

- Liquefaction-Induced Settlement = 1.23 inches <--- Saturated Sands

- Seismic Compaction Settlement = 0.00 inches <--- Dry or Unsaturated Sands

Total: 1.23 inches

	INPUT SOIL	PROFILE (C	PT DATA)				SOIL LIQUE	FACTION I	POTENTIAL A	NALYSIS (1	996 NCEE	R & 1998 NC	EER/NSF V	VORKSHO	OPS) +					RESID	UAL STREE	NGTH *		GROUND	SETTLEN	IENT **	
								T-4-1	T-60	T-60	Soil			C1		C		Factor of			F2		Fines				
	Average	Average	Average		D			Total Vert.	Effective Vert.	Effective Vert.	Soil Behavior	Fines	Corrected	Shear Stress	Correction for High		Cyclic	Safety Against		SPT Blow	Fines Corrected	Residual	Corrected	Cyclic		Layer	Cumulativ
Soil Depth	Cone Tip	Sleeve	Friction		Bottom of Layer	Thin Layer	Equiv. SPT	Stress	Stress	Stress	Type	Correction			Overburde			Liqefaction	Lionef	Count	SPT Blow	Shear	SPT Blow	Shear	Vol.	~	e Settlement
During Test	Resistance	Friction	Ratio	Soil Behavior Type	Elevation	Correction Factor	Blow Count		(Design)	(Test)	Index		Resistance		Stress	++	Ratio	+++	y?	Correction		Strength	Count	Strain	Strain	t	Profile
(ft)	q _{t-avg} (tsf)	f (tsf)	$R_{\text{f-avg}}$ (%)	(Robertson et al., 1983)	(ft)	(Lunne, et al., 1997)	N ₆₀ (blows/ft)	G. (nsf)	σ _{v'} (psf)	σ _{v'} (psf)	I.	K.	$\mathbf{q}_{\mathrm{c1Nes}}$	\mathbf{r}_{d}	K,	CSR	CRR,	FS	٠.	N	$(N_1)_{60cs}$	S _r (psf)	$(N_1)_{60m}$	γ _c (%)	E _v (%)	S _i (in.)	(in.)
5.50	16.85	0.36	2.14	clayey silt to silty clay	6.0	1.00	8	660	660	660	2.54	2.97	86.98	0.987	N/A	0.257	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.23
6.50	18.73	0.45	2.39	clayey silt to silty clay	5.0	1.00	9	780	780	780	2.56	3.09	92.81	0.985	N/A	0.256	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.23
7.50 8.50	29.08 21.27	0.81		sandy silt to clayey silt	4.0 3.0	1.00	12	900	869 926	900	2.47	2.64 3.20	116.59	0.983	1.000	0.265	0.227	1.104 0.793	YES YES	2.8	20.1 17.7	1,200 944	25.8 N/A	N/A	0.079	0.01	1.23
9.50	16.72	0.57	2.68	clayey silt to silty clay clayey silt to silty clay	2.0	1.00	11 8	1,020	926	1,020 1,140	2.58	3.11	100.06 88.39	0.980	1.000	0.281	0.173	0.793	YES		17.7	581	N/A N/A	N/A N/A	0.000	0.00	1.23
10.50	14.97	0.42	2.79	clayey silt to silty clay	1.0	1.00	7	1,260	1,042	1,260	2.68		N/A	0.976	N/A	0.307	N/A	N/A	NO		N/A	N/A	N/A	N/A	N/A	N/A	1.23
11.50	30.78	0.76	2.47	sandy silt to clayey silt	0.0	1.00	12	1,380	1,099	1,349			107.40	0.973	1.000	0.318	0.195	0.789	YES	2.8	17.8	954	23.0	N/A	0.305	0.04	1.19
12.50 13.50	46.73 14.47	0.48	2.05	silty sand to sandy silt clayey silt to silty clay	-1.0 -2.0	1.66 1.00	26	1,500 1,620	1,157 1,214	1,406 1,464	1.78 2.65	1.09 N/A	111.15 N/A	0.971	1.000 N/A	0.327	0.208 N/A	0.815 N/A	YES NO		33.6 N/A	1,200 N/A	41.9 N/A	N/A N/A	0.000 N/A	0.00 N/A	1.19
14.50	9.95	0.21	2.09	clayey silt to silty clay	-3.0	1.00	5	1,740	1,272	1,522	2.81	N/A	N/A	0.966	N/A	0.344	N/A	N/A	NO		N/A	N/A	N/A	N/A	N/A	N/A	1.19
15.50	14.48	0.34	2.36	clayey silt to silty clay	-4.0	1.00	7	1,860	1,330	1,579	2.71	N/A	N/A	0.964	N/A	0.351	N/A	N/A	NO		N/A	N/A	N/A	N/A	N/A	N/A	1.19
16.50	10.20	0.25	2.41	silty clay to clay	-5.0	1.00	7	1,980	1,387	1,637	2.86	N/A 3.14	N/A	0.962	N/A 1.000	0.357	N/A 0.150	N/A 0.533	NO YES		N/A 12.7	N/A	N/A	N/A	N/A 1.691	N/A 0.20	0.99
17.50 18.50	22.70 70.55	0.52	0.77	sandy silt to clayey silt	-6.0 -7.0	1.00	18	2,100 2,220	1,445 1,502	1,694	1.92	1.20	91.10 98.02	0.959	1.000	0.362	0.150	0.533	YES	2.8	20.2	1,200	16.8 22.2	N/A N/A	1.153	0.20	0.99
19.50	40.70	0.90	2.19		-8.0	1.00	16	2,340	1,560	1,810		2.30	105.92		1.000	0.372	0.191		YES		19.9	1,177	25.5	N/A	0.277	0.03	0.81
20.50	24.31	0.40	1.62	sandy silt to clayey silt	-9.0	1.66	16	2,460	1,618	1,867	2.19	1.65	73.94	0.952	1.000	0.376	0.118		YES	2.8	19.5	1,130	25.0	N/A	0.608	0.07	0.74
21.50 22.50	9.52 15.20	0.26 0.45	2.70	silty clay to clay	-10.0 -11.0	1.00	6 8	2,580 2,700	1,675 1,733	1,925 1,982	2.98	N/A N/A	N/A N/A	0.950	N/A	0.380	N/A N/A	N/A N/A	NO	N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.74
23.50	15.20	0.43	2.92 3.10	clayey silt to silty clay clayey silt to silty clay	-11.0	1.00	8	2,700	1,790	2.040	2.83	N/A N/A	N/A N/A	0.948	N/A N/A	0.384	N/A	N/A	NO NO	N/A N/A	N/A	N/A	N/A	N/A N/A	N/A	N/A	0.74
24.50	17.17	0.61	3.53	silty clay to clay	-13.0	1.00	11	2,940	1,848	2,098	2.86	N/A	N/A	0.943	N/A	0.390	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.74
25.50	16.30	0.47	2.87	clayey silt to silty clay	-14.0	1.00	8	3,060	1,906	2,155	2.83	N/A	N/A	0.941	N/A	0.393	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.74
26.50 27.50	20.70 37.23	0.52 0.52	2.48 1.39	clayey silt to silty clay silty sand to sandy silt	-15.0 -16.0	1.00 1.00	10 12	3,180 3,300	1,963 2,021	2,213 2,270	2.71	N/A 2.13	N/A 78.80	0.938	N/A 0.997	0.395	N/A 0.126	N/A 0.405	NO YES	N/A 2.8	N/A 14.4	N/A 631	N/A 19.0	N/A N/A	N/A 1.540	N/A 0.18	0.74
28.50	65.62	0.63	0.96	sand to silty sand	-17.0	1.00	16	3,420	2,078	2,328		1.38	89.09			0.399	0.146	0.464	YES		16.5	827	18.4	N/A	1.591	0.19	0.37
29.50	89.40	0.94	1.05	sand to silty sand	-18.0	1.00	22	3,540	2,136	2,386	1.98	1.27	110.09					0.639	YES	1.3	21.8	1,200	23.9	N/A	1.105	0.13	0.23
30.50	147.55	1.08	0.73	sand	-19.0	1.00	30	3,660	2,194		1.71	1.05	147.38	0.926	0.965	0.402	0.378	1.166	YES		26.7	1,200	26.7	N/A	0.432	0.05	0.18
31.50 32.50	170.69 200.92	0.99 1.24	0.58	sand sand	-20.0 -21.0	1.00	34 40	3,780 3,900	2,251 2,309	2,501 2,558	1.60	1.00	160.88 187.00	0.918	0.954 0.944	0.401	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	30.5 35.5	N/A N/A	0.090	0.01	0.17
33.50	276.43	0.97	0.02	gravelly sand to sand	-22.0	1.00	46	4,020	2,366	2,616	1.31	1.00	254.13	0.901	0.935	0.398	N/A	N/A	NO		N/A	N/A	40.3	N/A	0.000	0.00	0.17
34.50	218.78	1.20	0.55	sand	-23.0	1.00	44	4,140	2,424	2,674	1.52	1.00	198.73	0.893	0.926	0.397	N/A	N/A	NO	N/A	N/A	N/A	37.8	N/A	0.020	0.00	0.16
35.50	181.30	1.36	0.75	sand	-24.0	1.00	36	4,260	2,482	2,731	1.67	1.02	165.65	0.885	0.917	0.395	N/A	N/A	NO		N/A	N/A	31.0	N/A	0.083	0.01	0.15
36.50 37.50	138.50 119.47	0.97	0.80	sand sand to silty sand	-25.0 -26.0	1.00	28 30	4,380 4,500	2,539 2,597	2,789 2,846	1.78	1.09	134.59 119.39	0.877	0.917	0.393	0.307	0.919	YES YES	0.0	23.5 26.4	1,200	23.5 28.7	N/A N/A	0.114	0.14	0.02
38.50	220.48	1.16	0.52	sand	-27.0	1.00	44	4,620	2,654	2,904	1.52	1.00	191.38	0.861	0.893	0.389	N/A	N/A	NO	N/A	N/A	N/A	36.6	N/A	0.031	0.00	0.00
39.50	540.07	1.75	0.32	gravelly sand to sand	-28.0	1.00	90	4,740	2,712	2,962	1.09	1.00	463.79	0.852	0.885	0.387	N/A	N/A	NO	N/A	N/A	N/A	74.0	N/A	0.000	0.00	0.00
40.50 41.50	588.00 600.37	1.72	0.29	gravelly sand to sand gravelly sand to sand	-29.0 -30.0	1.00	98 100	4,860 4,980	2,770 2,827	3,019 3,077	1.03	1.00	499.67 504.96	0.844	0.878 0.871	0.385	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	79.8 80.7	N/A N/A	0.000	0.00	0.00
42.50	572.72	2.17	0.31	gravelly sand to sand	-31.0	1.00	95	5,100	2,885	3,134	1.13	1.00	476.87	0.828	0.864	0.383	N/A	N/A	NO	N/A	N/A	N/A	76.2	N/A	0.000	0.00	0.00
				#N/A																							
				#N/A																							
				#N/A #N/A																							
				#N/A																							
				#N/A																							
				#N/A #N/A																							
				#N/A																							
				#N/A																							
				#N/A #N/A																							
				#N/A #N/A																							
				#N/A																							
				#N/A		•		1																			
 				#N/A #N/A				1	-	1		1	 	 	1					 							
1				#N/A #N/A			1	 	1	1		1		-	1												
				#N/A																							
				#N/A		•		1																			
1		-		#N/A #N/A				 	1							1											
				#N/A				1	-	1		1			1												
																					max=	1,200					

1.008 avg=

Earthquake Magnitude, Mea

Peak Ground Acceleration, Am

Required Factor of Safety

PROJECT INFORMATION		
Project Name	Marina Del Mar - Parcel 44	
Project No.	LA-1049	
Location	Los Angeles	
Exploration No.	CPT-12-03	
GENERAL INPUT DATA		
Ground Surf. Elev. During Test	10.00 ft	
	10.00 ft 8.00 ft	
Ground Surf. Elev. During Test		
Ground Surf. Elev. During Test GWT Elev. During Test	8.00 ft	

6.80

0.40 g

1.30

REFERENCES

Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and I.M. Idriss, 2001)

+ CSR = 0.65 $A_{max} (\sigma_v/\sigma_v') r_d$

++++FS = (CRF₄/CSR) MSF K_σ K_{σ→∞} where CRR₇₅ is evaluated from direct CPT data, K_σ =1.0 and MSF = 1.28

* Residual strength values of liquefied soils are evaluated from converted SPT blow counts using the median curve by Seed & Harder (1990)

** Ground settlements are evaluated from converted SPT blow counts using the method developed by Tokimatsu and Seed (1987).

Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change.

GWT Depth During Test, Zw = GWT Depth For Design, Zwd = 2.00 ft below ground surface 5.00 ft below ground surface

*** SUMMARY OF RESULTS ***

Total Thickness of Liquefiable Soils = 11.00 feet

Earthquake-Induced Settlements: - Liquefaction-Induced Settlement =

0.31 inches <--- Saturated Sands s___<--- Dry or Unsaturated Sands

nic Compaction Settlement	=		0.00 inches	
		Total:	0.31 inches	

	INPUT SOIL I	PROFILE (C	PT DATA)				SOIL LIQUE	ACTION	POTENTIAL AN	NALYSIS (1	996 NCEE	R & 1998 NO	EER/NSF V	VORKSHO	OPS) +					RESID	UAL STRE	NGTH *		GROUNE	SETTLEM	IENT **	
																		Factor of									
	Average	Average	Average					Total Vert.	Effective Vert.	Effective Vert.	Soil Behavior	Fines	Corrected	Shear Stress	Correction for High	Cyclic Stress	C1:-	Safety Against	6	PT Blow	Fines Corrected	Residual	Fines Corrected	Cyclic		Layer	Cumulativ
Soil Depth	Cone Tip	Sleeve	Friction		Bottom of	Thin Layer	Equiv. SPT	Stress	Stress	Stress	Type	Correction			Overburden		Cyclic Res.	Liqefaction		Count	SPT Blow	Shear	SPT Blow	Shear	Vol.	Settlemen	e Settlement
During Test	Resistance	Friction	Ratio	Soil Behavior Type	Layer Elevation	Correction Factor	Blow Count	Stress	(Design)	(Test)	Index	Factor	Resistance		Stress	++	Ratio	+++	v? C	orrection		Strength	Count	Strain	Strain	t	Profile
(ft)	q _{t-avg} (tsf)	f _{s-avg} (tsf)	R _{f-avg} (%)		(ft)	(Lunne, et al., 1997)	N ₆₀ (blows/ft)	σ _v (psf)	σ _{v'} (psf)	σ _{v'} (psf)	I.	\mathbf{K}_{c}	\mathbf{q}_{c1Nes}	\mathbf{r}_{d}	K,	CSR	CRR,	FS		N _{corr.}	$(N_1)_{60cs}$	S _r (psf)	$(N_1)_{60cs}$	Y _c (%)	& _v (%)	S, (in.)	(in.)
0.50	33.47	0.48	1.43	silty sand to sandy silt	9.0	1.66	18	60	60	60	1.51	1.00	319.93	0.999	N/A	0.260	N/A	N/A	NO	N/A	N/A	N/A	42.7	0.013	0.000	0.00	0.31
1.50	16.05	0.45	2.80	clayey silt to silty clay	8.0	1.00	8	180	180	180	2.41	2.37	126.60	0.997	N/A	0.259	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.31
2.50	21.75	0.64	2.96	clayey silt to silty clay	7.0	1.00	11	300	300	269	2.41	2.37	133.21	0.994	N/A	0.258	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.31
3.50 4.50	25.03 24.42	0.62	2.46	sandy silt to clayey silt	5.0	1.00	10 12	420 540	420 540	326 384	2.37	2.19 2.49	119.72 117.05	0.992	N/A N/A	0.258	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	25.4 N/A	N/A N/A	N/A N/A	N/A N/A	0.31
5.50	19.48	0.63	2.52	clayey silt to silty clay clayey silt to silty clay	4.0	1.00	10	660	629	442	2.53	2.49	100.87	0.990	1.000	0.257	0.175	0.837	YES	2.8	19.4	1,118	N/A N/A	N/A N/A	0.000	0.00	0.31
6.50	27.47	0.60	2.17	sandy silt to clayey silt	3.0	1.00	11	780	686	499	2.38	2.25	105.38	0.985	1.000	0.291	0.189	0.834	YES	2.8	21.5	1,200	27.4	N/A	0.079	0.01	
7.50	40.65	0.90	2.22	sandy silt to clayey silt	2.0	1.00	16	900	744	557	2.28	1.87	124.87	0.983	1.000	0.309		1.085	YES	2.8	30.4	1,200	38.2	N/A	0.012	0.00	
8.50 9.50	98.27 91.37	0.81	0.82	sand to silty sand sand to silty sand	1.0	1.00 1.66	25 38	1,020 1,140	802 859	614 672	1.71	1.05	162.26 230.81	0.980 0.978	1.000	0.324	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	46.3 69.9	N/A N/A	0.000	0.00	0.30
10.50	18.09	0.50	2.72	clavev silt to silty clav	-1.0	1.66	15	1,140	917	730	2.33	2.05	90.51	0.976	1.000	0.349	0.149	0.549	YES	2.8	27.6	1.200	N/A	N/A	0.000	0.00	0.30
11.50	8.22	0.19	2.30	silty clay to clay	-2.0	1.00	5	1,380	974	787	2.83	N/A	N/A	0.973	N/A	0.358	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.30
12.50	7.10	0.18	2.44	silty clay to clay	-3.0	1.00	5	1,500	1,032	845	2.92	N/A	N/A	0.971	N/A	0.367	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.30
13.50 14.50	17.28 64.92	0.22	0.57	sandy silt to clayey silt sand to silty sand	-4.0 -5.0	1.00	7	1,620 1,740	1,090 1,147	902 960	2.50 1.82	2.76	64.56 96.37	0.969	1.000	0.374	0.105	0.360	YES	2.8	13.1 24.8	518 1,200	17.4 27.0	N/A N/A	1.658 0.157	0.20	0.10
15.50	45.30	0.59	1.29	silty sand to sandy silt	-6.0	1.00	15	1,860	1,205	1,018	2.17	1.59	92.99	0.964	1.000	0.387	0.165	0.514	YES	2.8	24.0	1,200	30.4	N/A	0.137	0.02	0.07
16.50	55.42	0.67	1.21	silty sand to sandy silt	-7.0	1.66	31	1,980	1,262	1,075	1.78	1.09	126.08	0.962	1.000	0.392	0.266	0.873	YES	2.8	44.5	1,200	55.1	N/A	0.000	0.00	0.07
17.50	16.58	0.48	2.85	clayey silt to silty clay	-8.0	1.00	8	2,100	1,320	1,133	2.72	N/A	N/A	0.959	N/A	0.397	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.07
18.50 19.50	16.17 18.02	0.33	2.03	clayey silt to silty clay	-9.0 -10.0	1.00	8	2,220 2,340	1,378 1,435	1,190 1,248	2.65	N/A N/A	N/A N/A	0.957 0.955	N/A N/A	0.401	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A	N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.07
20.50	23.31	0.50	3.09	clayey silt to silty clay clayey silt to silty clay	-10.0	1.00	12	2,340	1,433	1,248	2.65	N/A N/A	N/A N/A	0.953	N/A N/A	0.403	N/A N/A	N/A N/A	NO	N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A	N/A	0.07
21.50	23.30	0.93	3.97	silty clay to clay	-12.0	1.00	16	2,580	1,550	1,363	2.74	N/A	N/A	0.950	N/A	0.411	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.07
22.50	16.67	0.50	2.94	clayey silt to silty clay	-13.0	1.00	8	2,700	1,608	1,421	2.78	N/A	N/A	0.948	N/A	0.414	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.07
23.50 24.50	19.87 31.32	0.52	2.57 2.88	clayey silt to silty clay	-14.0 -15.0	1.00	10	2,820 2,940	1,666 1,723	1,478	2.69 2.58	N/A 3.22	N/A 108.71	0.945	N/A 1.000	0.416 0.418	N/A 0.199	N/A 0.613	NO	N/A 2.8	N/A 20.7	N/A 1,200	N/A N/A	N/A N/A	N/A 0.000	N/A 0.00	0.07
25.50	99.28	1.38	1.38	sand to silty sand	-16.0	1.00	25	3,060	1,781	1,594		1.29	135.71	0.941	1.000	0.420	0.312	0.955	YES	1.3	29.1	1,200	31.6	N/A	0.085	0.00	
26.50	191.17	1.13	0.59	sand	-17.0	1.00	38	3,180	1,838	1,651	1.54	1.00	199.39	0.938	1.000	0.422		N/A	NO	N/A	N/A	N/A	42.1	N/A	0.000	0.00	0.06
27.50	254.68	1.25	0.49	sand	-18.0	1.00	51	3,300	1,896	1,709	1.39	1.00	261.57	0.936	1.000	0.424	N/A	N/A	NO	N/A	N/A	N/A	55.1	N/A	0.000	0.00	0.06
28.50	340.82 390.80	1.45	0.43	gravelly sand to sand	-19.0	1.00	57	3,420 3,540	1,954	1,766	1.26	1.00	344.84	0.934	1.000 0.998	0.425	N/A	N/A	NO	N/A	N/A	N/A	60.4 68.2	N/A	0.000	0.00	0.06
29.50 30.50	371.22	2.63 1.70	0.67	gravelly sand to sand gravelly sand to sand	-20.0 -21.0	1.00	65	3,660	2,011	1,824	1.37	1.00	389.71 364.99	0.931	0.998	0.426	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	63.8	N/A N/A	0.000	0.00	0.06
31.50	282.26	0.91	0.32	gravelly sand to sand	-22.0	1.00	47	3,780	2,126	1,939	1.26	1.00	273.74	0.918	0.976	0.424	N/A	N/A	NO	N/A	N/A	N/A	47.8	N/A	0.000	0.00	0.06
32.50	304.52	1.36	0.45	gravelly sand to sand	-23.0	1.00	51	3,900	2,184	1,997	1.33	1.00	291.41	0.909	0.965	0.422	N/A	N/A	NO	N/A	N/A	N/A	50.8	N/A	0.000	0.00	0.06
33.50 34.50	162.30 118.78	1.75 0.87	1.08 0.73	sand sand	-24.0 -25.0	1.00 1.66	32 39	4,020 4,140	2,242 2,299	2,054 2,112	1.80	1.11	169.49 183.43	0.901	0.955 0.946	0.420	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	32.0 38.3	N/A N/A	0.081	0.01	0.05
35.50	58.62	1.08	1.84	silty sand to sandy silt	-26.0	1.00	20	4,260	2,357	2,170	2.30	1.94	104.53	0.885	0.948	0.416	0.186	0.545	YES	2.8	21.6	1,200	27.5	N/A	0.430	0.00	0.00
36.50	205.97	1.94	0.94	sand	-27.0	1.00	41	4,380	2,414	2,227	1.69	1.03	193.74	0.877	0.927	0.414	N/A	N/A	NO	N/A	N/A	N/A	39.0	N/A	0.009	0.00	0.00
37.50	476.20	1.56	0.33	gravelly sand to sand	-28.0	1.00	79	4,500	2,472	2,285	1.12	1.00	428.33	0.869	0.919	0.411	N/A	N/A	NO	N/A	N/A	N/A	74.3	N/A	0.000	0.00	0.00
38.50 39.50	498.68 535.92	1.74 2.03	0.35	gravelly sand to sand gravelly sand to sand	-29.0 -30.0	1.00	83 89	4,620 4,740	2,530 2,587	2,342	1.12	1.00	443.42 471.19	0.861 0.852	0.910 0.902	0.409	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	76.8 81.5	N/A N/A	0.000	0.00	0.00
40.50	508.52	1.95	0.38	gravelly sand to sand	-31.0	1.00	85	4,860	2,645	2,458	1.15	1.00	442.21	0.844	0.894	0.403	N/A	N/A	NO	N/A	N/A	N/A	76.5	N/A	0.000	0.00	0.00
41.50	492.79	1.48	0.30	gravelly sand to sand	-32.0	1.00	82	4,980	2,702	2,515	1.09	1.00	423.94	0.836	0.887	0.401	N/A	N/A	NO	N/A	N/A	N/A	73.2	N/A	0.000	0.00	0.00
42.50	741.82	1.03	0.14	gravelly sand to sand	-33.0	1.00	124	5,100	2,760	2,573	0.76	1.00	631.48	0.828	0.879	0.398	N/A	N/A	NO	N/A	N/A	N/A	109.0	N/A	0.000	0.00	0.00
				#N/A #N/A																							$\overline{}$
				#N/A																							
				#N/A																							
		-		#N/A #N/A	-			-		1		1	-	-	-	-		1			-						
				#N/A																							
				#N/A																							
				#N/A	-		1																				
1		1		#N/A #N/A	-		-			1		1			1												
		<u> </u>		#N/A											<u> </u>												
				#N/A																							
				#N/A	-		1																				
1		1		#N/A #N/A	-		-			1		1			1												
		<u> </u>		#N/A											<u> </u>												
				#N/A																							
		1						1	l	1		1	l	L							max=	1,200	1				
																					min=	518					

1.131 avg=

> CPT-12-03 Liquefaction Analysis.XLS Output Sheet

(Engineer: Curt Scheyhing)

Earthquake Magnitude, Mea

Peak Ground Acceleration, An

Required Factor of Safety

PROJECT INFORMATION		
Project Name	Marina Del Mar - Parcel 44	
Project No.	LA-1049	
Location	Los Angeles	
Exploration No.	CPT-12-04	
GENERAL INPUT DATA		
Ground Surf. Elev. During Test	14.00 ft	
GWT Elev. During Test	4.50 ft	
GWT Elev. For Design	5.00 ft	
Total Soil Unit Weight, Y,		
Total Soli Cilit Weight, 7t	120.00 pcf	

0.40 g

1.30

6.80

REFERENCES

Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and I.M. Idriss, 2001)

+ CSR = 0.65 $A_{max} (\sigma_v/\sigma_v') r_d$

++++FS = (CRF₄/CSR) MSF K_σ K_{σ→∞} where CRR₇₅ is evaluated from direct CPT data, K_σ =1.0 and MSF = 1.28

* Residual strength values of liquefied soils are evaluated from converted SPT blow counts using the median curve by Seed & Harder (1990)

** Ground settlements are evaluated from converted SPT blow counts using the method developed by Tokimatsu and Seed (1987).

Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change.

GWT Depth During Test, Zw = GWT Depth For Design, Zwd = 9.50 ft below ground surface 9.00 ft below ground surface

*** SUMMARY OF RESULTS ***

Total Thickness of Liquefiable Soils = 9.00 feet Earthquake-Induced Settlements:

- Liquefaction-Induced Settlement =

0.37 inches <--- Saturated Sands - Seismic Compaction Settlement = 0.01 inches <--- Dry or Unsaturated Sands

Total: 0.38 inches

	INPUT SOIL I	PROFILE (C	PT DATA)				SOIL LIQUEF	ACTION I	POTENTIAL AN	ALYSIS (19	96 NCEE	R & 1998 NO	EER/NSF W	VORKSHO	OPS) +					RESID	UAL STRE	NGTH *		GROUND	SETTLEM	IENT **	
											~					~		Factor of									
	Average	Average	Average					Total Vert.	Effective Vert.	Effective Vert.	Soil Behavior	Fines	Corrected	Shear Stress	Correction for High	Cyclic Stress	Cyclic	Safety Against	er	PT Blow	Fines Corrected	Residual	Fines Corrected	Cyclic		Laver	Cumulativ
Soil Depth	Cone Tip	Sleeve	Friction		Bottom of Layer	Thin Layer	Equiv. SPT	Stress	Stress	Stress	Type	Correction			Overburden		Res.	Liqefaction		Count	SPT Blow	Shear	SPT Blow	Shear	Vol.	Settlemen	e Settlement
During Test	Resistance	Friction	Ratio	Soil Behavior Type	Elevation	Correction Factor	Blow Count	012 100	(Design)	(Test)	Index	Factor	Resistance		Stress	++	Ratio	+++	v? Co	orrection		Strength	Count	Strain	Strain	t	Profile
(ft)	$q_{t\text{-avg}}(tsf)$	f _{s-avg} (tsf)	R _{f-avg} (%)		(ft)	(Lunne, et al., 1997)	N ₆₀ (blows/ft)	σ _v (psf)	σ _{v'} (psf)	σ _{v'} (psf)	I.	K.	\mathbf{q}_{c1Nes}	r,	K,	CSR	CRR,	FS	,.	$N_{\text{corr.}}$	$(N_1)_{60cs}$	S _r (psf)	$(N_1)_{60x}$	γ _c (%)	& _v (%)	S, (in.)	(in.)
0.50	103.77	0.53	0.51	sand	13.0	1.00	21	60	60	60	1.16	1.00	599.10	0.999	N/A	0.260	N/A	N/A	NO	N/A	N/A	N/A	35.3	0.014	0.012	0.00	0.38
1.50	85.25	0.97	1.14	sand to silty sand	12.0	1.00	21	180	180	180	1.63	1.00	284.17	0.997	N/A	0.259	N/A	N/A	NO	N/A	N/A	N/A	40.5	0.022	0.000	0.00	0.38
2.50	69.77	0.95	1.36	silty sand to sandy silt	11.0	1.00	23	300	300	300	1.82	1.12	202.06	0.994	N/A	0.258	N/A	N/A	NO	N/A	N/A	N/A	52.4	0.027	0.000	0.00	0.38
3.50 4.50	75.55 38.77	0.94 0.52	1.24	sand to silty sand silty sand to sandy silt	10.0	1.00	19 21	420 540	420 540	420 540	1.82	1.12	184.33 135.06	0.992	N/A N/A	0.258	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	36.2 48.6	0.035	0.030	0.00	0.38
5.50	15.07	0.44	2.89	clayey silt to silty clay	8.0	1.00	8	660	660	660	2.57	3.13	108.15	0.987	N/A	0.257	N/A	N/A		N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.38
6.50	26.22	0.70	2.65	sandy silt to clayey silt	7.0	1.00	10	780	780	780	2.48	2.65	111.37	0.985	N/A	0.256	N/A	N/A		N/A	N/A	N/A	25.2	N/A	N/A	N/A	0.38
7.50 8.50	18.08 14.42	0.49	2.69 3.28	clayey silt to silty clay	6.0 5.0	1.00	9	900 1.020	900 1.020	900 1.020	2.56	3.11 N/A	102.41	0.983	N/A	0.255	N/A N/A	N/A N/A		N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A	N/A N/A	0.38
9.50	16.20	0.47	2.99	silty clay to clay clayey silt to silty clay	4.0	1.00	8	1,140	1,020	1,140	2.73	N/A N/A	N/A N/A	0.980	N/A N/A	0.255	N/A N/A	N/A		N/A N/A	N/A N/A	N/A	N/A	N/A	N/A N/A	N/A	0.38
10.50	19.07	0.47	2.46	clayey silt to silty clay	3.0	1.00	10	1,260	1,166	1,198	2.59	3.26	93.10	0.976	1.000	0.274	0.155	0.727	YES	2.8	15.1	691	N/A	N/A	0.000	0.00	0.38
11.50	65.75	1.03	1.57	silty sand to sandy silt	2.0	1.00	22	1,380	1,224	1,255	2.10	1.45	122.16	0.973	1.000	0.285	0.250	1.124	YES	2.8	30.5	1,200	38.2	N/A	0.011	0.00	0.37
12.50 13.50	89.70 18.75	0.98	1.09 2.48	sand to silty sand clayey silt to silty clay	0.0	1.66 1.66	37 16	1,500 1,620	1,282 1,339	1,313 1,370	1.59 2.36	1.00 2.15	185.53 81.53	0.971	1.000	0.295	N/A 0.130	N/A 0.550	NO YES	N/A 2.8	N/A 21.6	N/A 1,200	50.5 N/A	N/A N/A	0.000	0.00	0.37
14.50	8.22	0.19	2.26	silty clay to clay	-1.0	1.00	5	1,740	1,397	1,428	2.93	N/A	N/A	0.966	N/A	0.313	N/A	N/A		N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.37
15.50	8.70	0.21	2.39	silty clay to clay	-2.0	1.00	6	1,860	1,454	1,486	2.93	N/A	N/A	0.964	N/A	0.320	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.37
16.50	38.43	0.24	0.62	silty sand to sandy silt	-3.0	1.00	13	1,980	1,512	1,543	2.09	1.44	63.66	0.962	1.000	0.327	0.104	0.408	YES	2.8	17.4	912	22.5	N/A	0.624	0.07	0.30
17.50 18.50	103.13 93.72	0.48	0.47 0.81	sand sand to silty sand	-4.0 -5.0	1.00	21 39	2,100 2,220	1,570 1,627	1,601 1.658	1.66	1.00	116.42 172.03	0.959	1.000	0.334	0.227 N/A	0.873 N/A	YES NO	0.0 N/A	23.1 N/A	1,200 N/A	23.1 47.1	N/A N/A	0.482	0.06	
19.50	36.90	0.75	1.49	silty sand to sandy silt	-6.0	1.66	20	2,340	1,685	1,716	2.03	1.34	89.13	0.955	1.000	0.345	0.146	0.544	YES	2.8	24.8	1,200	31.4	N/A	0.066	0.00	0.23
20.50	11.44	0.15	1.34	clayey silt to silty clay	-7.0	1.00	6	2,460	1,742	1,774	2.75	N/A	N/A	0.952	N/A	0.350	N/A	N/A		N/A	N/A	N/A	N/A	N/A	N/A	N/A	
21.50	16.25 27.62	0.24	1.49 2.39	sandy silt to clayey silt sandy silt to clayey silt	-8.0 -9.0	1.00	7	2,580 2,700	1,800 1,858	1,831	2.65	N/A 3.23	N/A 92.67	0.950	N/A 1.000	0.354	N/A	N/A 0.553	NO VEC	N/A 2.8	N/A 14.2	N/A 606	N/A 18.6	N/A N/A	N/A 1.494	N/A 0.18	
23.50	33.55	1.55	4.59	silty clay to clay	-10.0	1.00	22	2,820	1,915	1,946	2.71	N/A	92.07 N/A	0.945	N/A	0.362	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
24.50	19.15	0.82	4.28	clay	-11.0	1.00	19	2,940	1,973	2,004	2.89	N/A	N/A	0.943	N/A	0.365	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.06
25.50	15.55	0.52	3.34	silty clay to clay	-12.0	1.00	10	3,060	2,030	2,062	2.90	N/A	N/A	0.941	N/A	0.369	N/A	N/A		N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.06
26.50 27.50	43.78 22.85	0.91	2.08 2.85	sandy silt to clayey silt clayey silt to silty clay	-13.0 -14.0	1.00	18	3,180 3,300	2,088 2,146	2,119 2,177	2.41	2.34 N/A	100.45 N/A	0.938	0.987 N/A	0.372	0.174 N/A	0.595 N/A	YES NO	2.8 N/A	19.8 N/A	1,166 N/A	25.4 N/A	N/A N/A	0.319 N/A	0.04 N/A	0.02
28.50	21.82	0.74	3.38	clayey silt to silty clay	-15.0	1.00	11	3,420	2,203	2,234	2.80	N/A	N/A	0.934	N/A	0.374	N/A	N/A		N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.02
29.50	34.53	1.20	3.47	clayey silt to silty clay	-16.0	1.00	17	3,540	2,261	2,292	2.66	N/A	N/A	0.931	N/A	0.379	N/A	N/A		N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.02
30.50	73.55	1.57	2.13	silty sand to sandy silt	-17.0	1.00	25	3,660	2,318	2,350	2.26	1.83	124.94	0.926	0.949	0.380	0.261	0.838	YES	2.8	25.4	1,200	32.1	N/A	0.069	0.01	0.01
31.50 32.50	232.09 206.53	0.90	0.39	sand sand	-18.0 -19.0	1.00	46 41	3,780 3,900	2,376 2,434	2,407 2,465	1.40	1.00	212.93 187.23	0.918	0.933	0.380	N/A N/A	N/A N/A		N/A N/A	N/A N/A	N/A N/A	42.3 37.2	N/A N/A	0.000	0.00	0.01
33.50	202.22	1.57	0.77	sand	-20.0	1.00	40	4,020	2,491	2,522	1.65	1.00	181.25	0.901	0.916	0.378	N/A	N/A	NO	N/A	N/A	N/A	36.0	N/A	0.035	0.00	0.00
34.50	390.65	1.86	0.48	gravelly sand to sand	-21.0	1.00	65	4,140	2,549	2,580	1.29	1.00	346.05	0.893	0.908	0.377	N/A	N/A	NO	N/A	N/A	N/A	57.3	N/A	0.000	0.00	0.00
35.50 36.50	554.55 532.48	4.29 1.72	0.77	gravelly sand to sand gravelly sand to sand	-22.0 -23.0	1.00	92 89	4,260 4,380	2,606 2,664	2,638 2,695	1.36	1.00	485.78 461.37	0.885 0.877	0.899 0.892	0.376	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	80.5 76.4	N/A N/A	0.000	0.00	0.00
37.50	332.48 488.42	1.72	0.32	gravelly sand to sand	-23.0	1.00	81	4,500	2,722	2,093	1.09	1.00	401.57	0.869	0.892	0.373	N/A N/A	N/A N/A	NO	N/A	N/A N/A	N/A	69.4	N/A	0.000	0.00	0.00
38.50	405.65	0.83	0.21	gravelly sand to sand	-25.0	1.00	68	4,620	2,779	2,810	1.08	1.00	344.12	0.861	0.877	0.372	N/A	N/A		N/A	N/A	N/A	57.0	N/A	0.000	0.00	0.00
39.50	468.97	1.09	0.23	gravelly sand to sand	-26.0	1.00	78	4,740	2,837	2,868	1.05	1.00	393.77	0.852	0.870	0.370	N/A	N/A		N/A	N/A	N/A	65.3	N/A	0.000	0.00	0.00
40.50 41.50	516.57 526.49	2.06 1.66	0.40	gravelly sand to sand gravelly sand to sand	-27.0 -28.0	1.00	86 88	4,860 4,980	2,894 2,952	2,926 2,983	1.17	1.00	429.40 433.36	0.844	0.863 0.856	0.369	N/A N/A	N/A N/A		N/A N/A	N/A N/A	N/A N/A	71.2 71.8	N/A N/A	0.000	0.00	0.00
42.50	578.73	1.98	0.34	gravelly sand to sand	-29.0	1.00	96	5,100	3,010	3,041	1.10	1.00	471.78	0.828	0.849	0.365	N/A	N/A	NO	N/A	N/A	N/A	78.2	N/A	0.000	0.00	0.00
43.50	596.97	2.56	0.43	gravelly sand to sand	-30.0	1.00	99	5,220	3,067	3,098	1.16	1.00	482.06	0.820	0.843	0.363	N/A	N/A	NO	N/A	N/A	N/A	79.9	N/A	0.000	0.00	0.00
44.50 45.50	685.75 545.87	2.03	0.30	gravelly sand to sand gravelly sand to sand	-31.0 -32.0	1.00	114 91	5,340 5,460	3,125 3,182	3,156 3,214	1.01	1.00	548.62 432.74	0.812	0.837 0.830	0.361	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	91.0 71.8	N/A N/A	0.000	0.00	0.00
45.50 46.50	545.87	1.72	0.32	gravelly sand to sand gravelly sand to sand	-32.0	1.00	84	5,460	3,182 3,240	3,214	1.10	1.00	397.87	0.804	0.830	0.358	N/A N/A	N/A N/A	NO NO	N/A	N/A N/A	N/A N/A	66.0	N/A N/A	0.000	0.00	0.00
47.50	664.88	2.00	0.30	gravelly sand to sand	-34.0	1.00	111	5,700	3,298	3,329	1.03	1.00	517.80	0.787	0.819	0.354	N/A	N/A	NO	N/A	N/A	N/A	85.9	N/A	0.000	0.00	0.00
48.50	587.92	2.39	0.41	gravelly sand to sand	-35.0	1.00	98	5,820	3,355	3,386	1.16	1.00	453.92	0.779	0.813	0.351	N/A	N/A	NO	N/A	N/A	N/A	75.3	N/A	0.000	0.00	0.00
49.50	709.97	1.65	0.23	gravelly sand to sand #N/A	-36.0	1.00	118	5,940	3,413	3,444	0.94	1.00	543.50	0.771	0.808	0.349	N/A	N/A	NO	N/A	N/A	N/A	90.2	N/A	0.000	0.00	0.00
				#N/A																							
				#N/A																							
		1		#N/A			1					1		-													\vdash
		1		#N/A #N/A										l													\vdash
				#N/A																							
				#N/A																							
		1	-	#N/A #N/A				-				1			1	-							-				
				#N/A #N/A																							
																					max= min=	1,200 606					

1.042 avg=

> CPT-12-04 Liquefaction Analysis.XLS Output Sheet

(Engineer: Curt Scheyhing)

Earthquake Magnitude, Meq

Peak Ground Acceleration, An

Page 1

Required Factor of Safety

PROJECT INFORMATION		
Project Name	Marina Del Mar - Parcel 44	
Project No.	LA-1049	
Location	Los Angeles	
Exploration No.	CPT-12-05	
GENERAL INPUT DATA		
Ground Surf. Elev. During Test	14.00 ft	
Ground Surf. Elev. During Test GWT Elev. During Test	14.00 ft 3.00 ft	
GWT Elev. During Test	3.00 ft	

6.80

0.40 g

1.30

REFERENCES

Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and I.M. Idriss, 2001)

+ CSR = 0.65 $A_{max} (\sigma_v/\sigma_v') r_d$

++++FS = (CRF₄/CSR) MSF K_σ K_{σ→∞} where CRR₇₅ is evaluated from direct CPT data, K_σ =1.0 and MSF = 1.28

* Residual strength values of liquefied soils are evaluated from converted SPT blow counts using the median curve by Seed & Harder (1990)

** Ground settlements are evaluated from converted SPT blow counts using the method developed by Tokimatsu and Seed (1987).

Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change.

GWT Depth During Test, Zw = GWT Depth For Design, Zwd = 11.00 ft below ground surface 9.00 ft below ground surface

*** SUMMARY OF RESULTS ***

Total Thickness of Liquefiable Soils = 11.00 feet

Earthquake-Induced Settlements: - Liquefaction-Induced Settlement =

0.68 inches <--- Saturated Sands - Seismic Compaction Settlement = 0.00 inches <--- Dry or Unsaturated Sands

Total: 0.68 inches

	INPUT SOIL	PROFILE (CI	PT DATA)				SOIL LIQUEF	ACTION I	OTENTIAL AN	NALYSIS (1	996 NCEEF	R & 1998 NC	EER/NSF W	ORKSHO	PS) +					RESID	UAL STRE	NGTH *		GROUND	SETTLEM	ENT **	
								Total	Effective	Effective	Soil			Shear	Correction	Cyclic		Factor of Safety			Fines		Fines				
Soil	Average	Average	Average		Bottom of			Vert.	Vert.	Vert.	Behavior	Fines	Corrected	Stress	for High	Stress	Cyclic	Against		SPT Blow	Corrected	Residual	Corrected	Cyclic		Layer	Cumulativ
Depth	Cone Tip	Sleeve	Friction		Layer	Thin Layer	Equiv. SPT	Stress	Stress	Stress	Type	Correction		Reduction			Res.		Liquef		SPT Blow	Shear	SPT Blow	Shear	Vol.		Settlement
During Test	Resistance	Friction	Ratio	Soil Behavior Type	Elevation	Correction Factor	Blow Count		(Design)	(Test)	Index	Factor	Resistance	Coeff.	Stress	++	Ratio	+++	y ?	Correction		Strength	Count	Strain	Strain	t	Profile
(ft)	$\mathbf{q}_{t\text{-avg}}\left(t\mathbf{s}\mathbf{f}\right)$	f _{s-avg} (tsf)			(ft)	(Lunne, et al., 1997)	N_{60} (blows/ft)	σ _v (psf)	σ _{v'} (psf)	$\sigma_{v'}$ (psf)	I _c	K _c	$\mathbf{q}_{\mathrm{c1Nes}}$	$\mathbf{r}_{\scriptscriptstyle \mathrm{d}}$	K,	CSR	CRR _{7.5}	FS		N _{corr.}	$(N_1)_{60cs}$	$S_r(psf)$	$(N_1)_{60cs}$	γ _c (%)	દ _v (%)	S _i (in.)	(in.)
0.50 1.50	33.58 74.03	0.15	0.45 1.12	silty sand to sandy silt sand to silty sand	13.0 12.0	1.00	11 19	60 180	60 180	60 180	1.47	1.00	193.89 250.34	0.999	N/A N/A	0.260	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	27.8 35.5	0.015	0.017	0.00	0.68
2.50	88.45	1.39	1.57	silty sand to sandy silt	11.0	1.00	29	300	300	300	1.80	1.11	252.96	0.994	N/A	0.258	N/A	N/A	NO	N/A	N/A	N/A	65.1	0.024	0.000	0.00	0.68
3.50	91.72	1.12	1.22	sand to silty sand	10.0	1.00	23	420	420	420	1.75	1.07	215.08	0.992	N/A	0.258	N/A	N/A	NO	N/A	N/A	N/A	43.4	0.033	0.000	0.00	0.68
4.50 5.50	56.58 44.13	0.71	0.99	silty sand to sandy silt silty sand to sandy silt	9.0 8.0	1.00	19 24	540 660	540 660	540 660	1.95	1.24	134.61 131.21	0.990	N/A N/A	0.257	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	43.5 54.7	0.038	0.000	0.00	0.68
6.50	12.35	0.23	1.89	clayey silt to silty clay	7.0	1.00	6	780	780	780	2.56	3.11	77.81	0.985	N/A	0.256	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.68
7.50	24.78	0.67	2.71	clayey silt to silty clay	6.0	1.00	12	900	900	900	2.52	2.90 3.17	107.02	0.983	N/A	0.255	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.68
8.50 9.50	23.97	0.69	2.87 3.14	clayey silt to silty clay clayey silt to silty clay	5.0	1.00	12 10	1,020 1,140	1,020	1,020	2.57	3.17 N/A	106.40 N/A	0.980	N/A N/A	0.255	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.68
10.50	18.59	0.47	2.51	clayey silt to silty clay	3.0	1.00	9	1,260	1,166	1,260	2.60	N/A	N/A	0.976	N/A	0.274	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.68
11.50 12.50	20.98 35.20	0.46	2.20	sandy silt to clayey silt sandy silt to clayey silt	2.0	1.00	8	1,380 1,500	1,224 1,282	1,349	2.58	3.21 2.50	85.98 110.15	0.973	1.000	0.285	0.139	0.626	YES	2.8	13.0	512 1.143	17.3 25.1	N/A N/A	0.095	0.17	0.51
13.50	51.87	0.97	1.86	silty sand to sandy silt	0.0	1.66	29	1,500	1,339	1,464	1.93	1.22	127.87	0.969	1.000	0.295	0.204	1.157	YES	2.8	36.3	1,200	45.2	N/A N/A	0.095	0.00	0.50
14.50	11.78	0.30	2.54	clayey silt to silty clay	-1.0	1.00	6	1,740	1,397	1,522	2.82	N/A	N/A	0.966	N/A	0.313	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.50
15.50 16.50	9.55 12.17	0.18	1.84 3.12	clayey silt to silty clay silty clay to clay	-2.0 -3.0	1.00	5 8	1,860 1,980	1,454 1,512	1,579	2.84	N/A N/A	N/A N/A	0.964	N/A N/A	0.320	N/A N/A	N/A N/A	NO NO		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.50
17.50	31.68	0.51	1.61	sandy silt to clayey silt	-4.0	1.00	13	2,100	1,570	1,694	2.40	2.31	82.57	0.962	1.000	0.327	0.132	0.510	YES	2.8	16.6	830	21.5	N/A N/A	1.095	0.13	0.37
18.50	56.67	0.73	1.28	silty sand to sandy silt	-5.0	1.00	19	2,220	1,627	1,752		1.53	96.23	0.957	1.000	0.339	0.163	0.616	YES		23.0	1,200	29.2	N/A	0.081	0.01	0.36
19.50 20.50	75.93 38.90	0.61	0.80	sand to silty sand silty sand to sandy silt	-6.0 -7.0	1.00	19 21	2,340	1,685 1,742	1,810 1,867		1.21	99.94 94.60	0.955	1.000	0.345	0.173	0.644	YES		21.3	1,200	23.4 31.7	N/A N/A	0.584	0.07 0.01	0.29
21.50	13.35	0.34	2.53	clayey silt to silty clay	-8.0	1.00	7	2,580	1,800	1,925	2.85	N/A	N/A	0.950	N/A	0.354		N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.28
22.50 23.50	21.45 25.98	0.80	3.75 3.41	silty clay to clay	-9.0 -10.0	1.00 1.00	14	2,700 2,820	1,858 1,915	1,982 2,040	2.79 2.71	N/A N/A	N/A N/A	0.948	N/A N/A	0.358	N/A N/A	N/A N/A	NO		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.28
24.50	27.83	0.89	2.18	clayey silt to silty clay sandy silt to clayey silt	-10.0	1.00	11	2,820	1,913	2,040	2.71	3.13	N/A 87.98	0.943	1.000	0.362	0.143	0.504	NO YES	2.8	13.7	564	18.0	N/A N/A	1.572	0.19	0.28
25.50	25.98	0.73	2.80	clayey silt to silty clay	-12.0	1.00	13	3,060	2,030	2,155	2.67	N/A	N/A	0.941	N/A	0.369	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.09
26.50 27.50	20.57 46.97	0.69	3.34	clayey silt to silty clay sandy silt to clayey silt	-13.0 -14.0	1.00	10	3,180	2,088	2,213	2.81	N/A 2.50	N/A 113.18	0.938	N/A 0.978	0.372	N/A 0.215	N/A 0.721	NO YES		N/A 20.4	N/A 1,200	N/A 26.2	N/A N/A	N/A 0.184	N/A 0.02	0.09
28.50	84.93	1.18	1.85	silty sand to sandy silt	-15.0	1.00	28	3,420	2,146	2,328	2.44	1.58	127.95	0.934	0.978	0.374	0.215	0.721	YES	2.8	29.0	1,200	36.5	N/A N/A	0.184	0.02	0.07
29.50	139.82	1.20	0.85	sand	-16.0	1.00	28	3,540	2,261	2,386	1.78	1.09	143.56	0.931	0.955	0.379	0.355	1.149	YES	0.0	25.6	1,200	25.6	N/A	0.329	0.04	0.02
30.50 31.50	145.62 221.80	1.52	1.05 0.86	sand sand	-17.0 -18.0	1.00	29 44	3,660 3,780	2,318 2,376	2,443	1.83	1.13	152.52 202.78	0.926	0.945	0.380	0.410 N/A	1.309 N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	26.3 39.7	N/A N/A	0.181	0.02	0.00
32.50	380.27	0.94	0.25	gravelly sand to sand	-19.0	1.00	63	3,900	2,434	2,558	1.12	1.00	344.73	0.909	0.925	0.379	N/A	N/A	NO	N/A	N/A	N/A	56.0	N/A	0.000	0.00	0.00
33.50 34.50	474.85 652.08	2.20	0.46	gravelly sand to sand	-20.0 -21.0	1.00	79 109	4,020	2,491	2,616	1.22	1.00	425.47 577.63	0.901	0.916	0.378	N/A	N/A	NO	N/A	N/A	N/A	69.2	N/A	0.000	0.00	0.00
34.50	520.00	5.73 2.92	0.88	gravelly sand to sand gravelly sand to sand	-21.0	1.00	143	4,140 4,260	2,549 2,606	2,674 2,731	1.36 0.96	1.00	754.21	0.893	0.908	0.377	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	94.0 122.8	N/A N/A	0.000	0.00	0.00
36.50	247.58	1.47	0.59	sand	-23.0	1.00	50	4,380	2,664	2,789	1.51	1.00	214.52	0.877	0.892	0.375	N/A	N/A	NO	N/A	N/A	N/A	41.9	N/A	0.000	0.00	0.00
37.50 38.50	362.73 393.37	1.50	0.41	gravelly sand to sand gravelly sand to sand	-24.0 -25.0	1.00	60 66	4,500 4,620	2,722	2,846 2,904	1.29	1.00	310.95 333.70	0.869	0.884	0.373	N/A N/A	N/A N/A	NO NO		N/A N/A	N/A N/A	50.7 54.4	N/A N/A	0.000	0.00	0.00
39.50	431.93	1.10	0.26	gravelly sand to sand	-26.0	1.00	72	4,740	2,837	2,962	1.11	1.00	362.67	0.852	0.870	0.370	N/A	N/A	NO		N/A	N/A	59.2	N/A	0.000	0.00	0.00
40.50	450.02	1.24	0.28	gravelly sand to sand	-27.0	1.00	75	4,860	2,894	3,019	1.12	1.00	374.08	0.844	0.863	0.369	N/A	N/A	NO	N/A	N/A	N/A	61.0	N/A	0.000	0.00	0.00
41.50 42.50	478.06 555.95	1.65 1.96	0.35	gravelly sand to sand gravelly sand to sand	-28.0 -29.0	1.00	80 93	4,980 5,100	2,952 3,010	3,077 3,134	1.16	1.00	393.50 453.21	0.836	0.856 0.849	0.367	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	64.2 74.0	N/A N/A	0.000	0.00	0.00
43.50	637.50	3.09	0.49	gravelly sand to sand	-30.0	1.00	106	5,220	3,067	3,192	1.18	1.00	514.79	0.820	0.843	0.363	N/A	N/A	NO	N/A	N/A	N/A	84.1	N/A	0.000	0.00	0.00
44.50 45.50	586.12 645.50	2.58 2.16	0.44	gravelly sand to sand gravelly sand to sand	-31.0 -32.0	1.00	98 108	5,340 5,460	3,125 3,182	3,250 3,307	1.18	1.00	468.91 511.73	0.812	0.837 0.830	0.361	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	76.6 83.7	N/A N/A	0.000	0.00	0.00
45.50	500.82	1.61	0.33	gravelly sand to sand	-32.0	1.00	83	5,580	3,182	3,365	1.14	1.00	393.48	0.804	0.830	0.356	N/A	N/A N/A	NO	N/A N/A	N/A	N/A N/A	64.4	N/A	0.000	0.00	0.00
47.50	520.17	1.47	0.28	gravelly sand to sand	-34.0	1.00	87	5,700	3,298	3,422	1.09	1.00	405.10	0.787	0.819	0.354	N/A	N/A	NO	N/A	N/A	N/A	66.3	N/A	0.000	0.00	0.00
48.50 49.50	545.60 569.57	2.22 1.44	0.41	gravelly sand to sand gravelly sand to sand	-35.0 -36.0	1.00	91 95	5,820 5,940	3,355 3,413	3,480 3,538	1.19	1.00	421.24 436.02	0.779	0.813	0.351	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	68.9 71.4	N/A N/A	0.000	0.00	0.00
47.50	307.31	1.77	0.23	#N/A	-30.0	1.00	/3	3,740	5,415	3,336	1.04	1.00	430.02	0.771	0.000	0.547	11/21	IVA	110	10/14	IVA	11/21	/1.4	10/74	0.000	0.00	0.00
				#N/A																							
				#N/A #N/A			-									\vdash											
				#N/A																							
				#N/A																							
 				#N/A #N/A			1			1						1				-							
				#N/A																							
	· · · · · · · · · · · · · · · · · · ·			#N/A #N/A		· · · · · · · · · · · · · · · · · · ·										\vdash											
				#N/A																							$\overline{}$
							•	•		•										•	max=	1,200					

1.041 avg=

(Engineer: Curt Scheyhing)

Earthquake Magnitude, Meq

Peak Ground Acceleration, Am

Required Factor of Safety

PROJECT INFORMATION		
Project Name	Marina Del Mar - Parcel 44	
Project No.	LA-1049	
Location	Los Angeles	
Exploration No.	CPT-12-06	
GENERAL INPUT DATA		
Ground Surf. Elev. During Test	14.00 ft	
	-6.30 ft	
GWT Elev. During Test	-6.30 II	
GWT Elev. For Design	5.00 ft	
Total Soil Unit Weight, γ _t	120.00 pcf	
	- 00	

6.80

0.40 g

1.30

REFERENCES

Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and I.M. Idriss, 2001)

+ CSR = 0.65 $A_{max} (\sigma_v/\sigma_v') r_d$

++++FS = (CRF₄/CSR) MSF K_σ K_{σ→∞} where CRR₇₅ is evaluated from direct CPT data, K_σ =1.0 and MSF = 1.28

* Residual strength values of liquefied soils are evaluated from converted SPT blow counts using the median curve by Seed & Harder (1990)

** Ground settlements are evaluated from converted SPT blow counts using the method developed by Tokimatsu and Seed (1987).

Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change.

GWT Depth During Test, Zw = GWT Depth For Design, Zwd = 20.30 ft below ground surface 9.00 ft below ground surface

*** SUMMARY OF RESULTS ***

Total Thickness of Liquefiable Soils = 4.00 feet

Earthquake-Induced Settlements: - Liquefaction-Induced Settlement =

0.36 inches <--- Saturated Sands
0.00 inches <--- Dry or Unsaturated Sands

- Seismic Compaction Settlement =

-	0.00	menes
Total:	0.36	inches

	INPUT SOIL	DOFILE (C	DT DATA)				SOIL LIQUE	ACTION	POTENTIAL AN	JAT VCTC (1)	006 NCEE	D 6. 1000 N/	TED/NCE U	ODECHO	NDC) .				DEC	DUAL STRI	NCTH *		CROUND	SETTLEN	TENT **	
	INFOT SOIL	KOFILE (C	II DAIA)				SOIL LIQUE					K & 1990 IV	EEK/NSF V	OKKSHO				Factor of	KESI		MOTH.		GROUND	SETTLES	IENI ··	
	Average	Average	Average		_			Total Vert.	Effective Vert.	Effective Vert.	Soil	F22	C	Shear	Correction		C11-	Safety	SPT Blo	Fines	D i d 1	Fines	Cyclic		T	Cumulativ
Soil Depth	Cone Tip	Sleeve	Friction		Bottom of Layer	Thin Layer	Equiv. SPT	Stress	Stress	Stress	Behavior Type	Fines Correction	Corrected Tip	Stress Reduction	for High Overburden	Stress Ratio	Cyclic Res.	Against Liqefaction Liqu		W Corrected SPT Blow		Corrected SPT Blow	Shear	Vol.	Layer Settlemen	e Cottlement
During Test	Resistance	Friction	Ratio	Soil Behavior Type	Elevation	Correction Factor	Blow Count		(Design)	(Test)	Index	Factor	Resistance		Stress	++	Ratio	+++ v	Correction		Strength	Count	Strain	Strain	t	Profile
(ft)	q _{t-avg} (tsf)	f _{s-avg} (tsf)	R _{f-avg} (%)	(Robertson et al., 1983)	(ft)	(Lunne, et al., 1997)	N_{60} (blows/ft)	σ _v (psf)	σ _{v'} (psf)	σ _{v'} (psf)	I,	K _c	$\mathbf{q}_{\mathrm{c1Nes}}$	$\mathbf{r}_{\scriptscriptstyle d}$	K,	CSR	CRR _{7.5}	FS	N _{corr.}	$(N_1)_{60cs}$	$S_r(psf)$	$(N_1)_{60cs}$	γ _c (%)	E _v (%)	S_i (in.)	(in.)
5.50	9.45	0.13	1.36	clayey silt to silty clay	8.0	1.00	5	660	660	660	2.53	2.95	63.94	0.987	N/A	0.257	N/A	N/A NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.36
6.50 7.50	11.00 27.13	0.42	3.82 2.82	clay clayey silt to silty clay	7.0	1.00	11	780 900	780 900	780 900	2.79	N/A 2.80	N/A 113.41	0.985	N/A N/A	0.256	N/A N/A	N/A NO		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.36
8.50	23.83	0.57	2.38	sandy silt to clayey silt	5.0	1.00	10	1,020	1,020	1,020	2.52	2.89	96.44	0.980	N/A	0.255	N/A	N/A NO	N/A	N/A	N/A	21.0	N/A	N/A	N/A	0.36
9.50 10.50	51.47 44.56	0.76	1.48	silty sand to sandy silt silty sand to sandy silt	4.0	1.00 1.66	17 25	1,140 1,260	1,109 1,166	1,140 1,260	2.15 1.91	1.54 1.19	106.79 115.43	0.978	1.000	0.261	0.193	0.950 YE 1.046 YE	S 2.8 S 2.8	25.5 33.8	1,200 1,200	32.3 42.2	N/A	0.043	0.01	0.36
11.50	44.56 15.75	0.69	2.64	clayey silt to silty clay	2.0	1.00	8	1,380	1,166	1,380	2.69	1.19 N/A	N/A	0.976	1.000 N/A	0.274	0.223 N/A	N/A NO		33.8 N/A	1,200 N/A	42.2 N/A	N/A N/A	0.000 N/A	0.00 N/A	0.36
12.50	17.02	0.46	2.67	clayey silt to silty clay	1.0	1.00	9	1,500	1,282	1,500	2.68	N/A	N/A	0.971	N/A	0.295	N/A	N/A NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.36
13.50 14.50	21.45 17.37	0.43	2.02 1.93	sandy silt to clayey silt clayey silt to silty clay	0.0 -1.0	1.00 1.00	9	1,620 1,740	1,339 1,397	1,620 1,740	2.57	3.13 N/A	81.95 N/A	0.969	1.000 N/A	0.305	0.131 N/A	0.553 YE N/A NO	S 2.8 N/A	12.3 N/A	460 N/A	16.4 N/A	N/A N/A	1.638 N/A	0.20 N/A	0.16
15.50	8.75	0.24	2.79	silty clay to clay	-2.0	1.00	6	1,860	1,454	1,860	2.97	N/A	N/A	0.964	N/A	0.320	N/A	N/A NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.16
16.50 17.50	8.83 16.38	0.21	2.34 3.09	silty clay to clay	-3.0 -4.0	1.00	6	1,980 2,100	1,512 1,570	1,980 2,100	2.93	N/A N/A	N/A N/A	0.962	N/A N/A	0.327	N/A N/A	N/A NO		N/A N/A	N/A	N/A N/A	N/A	N/A N/A	N/A N/A	0.16
18.50	35.25	0.59	1.69	clayey silt to silty clay sandy silt to clayey silt	-5.0	1.00	14	2,100	1,627	2,100	2.79	2.23	87.05	0.959	1.000	0.334	0.141	0.535 YE	S 2.8	16.2	N/A 792	N/A 21.1	N/A N/A	1.171	0.14	0.16
19.50	22.12	0.56	2.53	clayey silt to silty clay	-6.0	1.00	11	2,340	1,685	2,340	2.64	N/A	N/A	0.955	N/A	0.345	N/A	N/A NO		N/A	N/A	N/A	N/A	N/A	N/A	0.02
20.50 21.50	13.40 11.22	0.33	2.44	clayey silt to silty clay silty clay to clay	-7.0 -8.0	1.00	7	2,460 2,580	1,742 1,800	2,448 2,505	2.83	N/A N/A	N/A N/A	0.952	N/A N/A	0.350	N/A N/A	N/A NO		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.02
22.50	18.20	0.60	3.30	clayey silt to silty clay	-9.0	1.00	9	2,700	1,858	2,563	2.81	N/A	N/A	0.948	N/A	0.358	N/A	N/A NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.02
23.50 24.50	33.10 21.28	1.10 0.78	3.33 3.65	clayey silt to silty clay silty clay to clay	-10.0 -11.0	1.00 1.00	17 14	2,820 2,940	1,915 1,973	2,620 2,678	2.62	N/A N/A	N/A N/A	0.945	N/A N/A	0.362	N/A N/A	N/A NO		N/A N/A	N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.02
25.50	23.75	1.04	4.38	silty clay to clay	-12.0	1.00	16	3,060	2,030	2,736	2.82	N/A	N/A N/A	0.941	N/A	0.369	N/A N/A	N/A NO	N/A	N/A N/A	N/A N/A	N/A	N/A	N/A N/A	N/A N/A	0.02
26.50	20.97	0.87	4.13	silty clay to clay	-13.0	1.00	14	3,180	2,088	2,793	2.86	N/A	N/A	0.938	N/A	0.372	N/A	N/A NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.02
27.50 28.50	19.47 162.58	0.77 1.62	3.94 1.00	silty clay to clay sand	-14.0 -15.0	1.00 1.00	13 33	3,300 3,420	2,146 2,203	2,851 2,908	2.88 1.77	N/A 1.09	N/A 168.10	0.936	N/A 0.963	0.374	N/A N/A	N/A NO N/A NO		N/A N/A	N/A N/A	N/A 27.0	N/A N/A	N/A 0.156	N/A 0.02	0.02
29.50	559.58	3.22	0.58	gravelly sand to sand	-16.0	1.00	93	3,540	2,261	2,966	1.23	1.00	526.32	0.931	0.952	0.379	N/A	N/A NO	N/A	N/A	N/A	76.6	N/A	0.000	0.00	0.00
30.50 31.50	708.05 686.50	5.51 2.89	0.78	gravelly sand to sand gravelly sand to sand	-17.0 -18.0	1.00	118 114	3,660 3,780	2,318 2,376	3,024	1.29	1.00	657.63 629.84	0.926	0.943	0.380	N/A N/A	N/A NO		N/A N/A	N/A N/A	96.0 92.2	N/A N/A	0.000	0.00	0.00
31.30	080.30	2.89	0.42	#N/A	-18.0	1.00	114	3,780	2,376	3,081	1.08	1.00	029.84	0.918	0.933	0.380	N/A	N/A NO) N/A	N/A	N/A	92.2	N/A	0.000	0.00	0.00
				#N/A																						
				#N/A #N/A																						
				#N/A																						
				#N/A #N/A																						
				#N/A #N/A																						
				#N/A																						
				#N/A #N/A																						
				#N/A																						
				#N/A #N/A																						
				#N/A																						
				#N/A																						
				#N/A #N/A	 					1									-							
				#N/A																						
1		1		#N/A #N/A	 					1		1								1						
				#N/A																						
				#N/A #N/A																						
				#N/A																						
				#N/A		-	1			1													_			
				#N/A #N/A	 					1									-							
				#N/A																						
		1		#N/A #N/A	-		-			1		1			1		l			1						
				#N/A																						
				#N/A #N/A																						
				#IN/A	 					1									-							
																		•		max= min=	1,200 460					

913 avg=

> CPT-12-06 Liquefaction Analysis.XLS Output Sheet

(Engineer: Curt Scheyhing)

Earthquake Magnitude, Mea

Peak Ground Acceleration, An

Page 1

Required Factor of Safety

PROJECT INFORMATION		
Project Name	Marina Del Mar - Parcel 44	
Project No.	LA-1049	
Location	Los Angeles	
Exploration No.	CPT-12-07	
GENERAL INPUT DATA		
Ground Surf. Elev. During Test	14.00 ft	
GWT Elev. During Test	2.00 ft	
GWT Elev. For Design	5.00 ft	
Total Soil Unit Weight, Y,	120.00 pcf	

0.40 g

1.30

6.80

REFERENCES

Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and I.M. Idriss, 2001)

+ CSR = 0.65 $A_{max} (\sigma_v/\sigma_v') r_d$

++++FS = (CRF₄/CSR) MSF K_σ K_{σ→∞} where CRR₇₅ is evaluated from direct CPT data, K_σ =1.0 and MSF = 1.28

* Residual strength values of liquefied soils are evaluated from converted SPT blow counts using the median curve by Seed & Harder (1990)

** Ground settlements are evaluated from converted SPT blow counts using the method developed by Tokimatsu and Seed (1987).

Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change.

GWT Depth During Test, Zw = GWT Depth For Design, Zwd = 12.00 ft below ground surface 9.00 ft below ground surface

*** SUMMARY OF RESULTS ***

Total Thickness of Liquefiable Soils = 5.00 feet Earthquake-Induced Settlements:

- Liquefaction-Induced Settlement = 0.23 inches <--- Saturated Sands - Seismic Compaction Settlement = 0.00 inches <--- Dry or Unsaturated Sands

Total: 0.23 inches

	INPUT SOIL I	PROFILE (CPT DATA)				SOIL LIQUE	FACTION	POTENTIAL A	NALYSIS (1	996 NCEE	R & 1998 NO	EER/NSF W	ORKSHO	PS) +				RESII	OUAL STRE	NGTH *		GROUNE	SETTLEN	IENT **	
								Total	Effective	Effective	Soil			Shear	Correction	Cvelie		Factor of Safety		Fines		Fines				~
Soil	Average	Average	Average		Bottom of			Vert.	Vert.	Vert.	Behavior	Fines	Corrected	Stress	for High	Stress	Cyclic	Against	SPT Blow	Corrected	Residual	Corrected	Cyclic		Layer	Cumulativ
Depth	Cone Tip	Sleeve	Friction		Layer	Thin Layer	Equiv. SPT	Stress	Stress	Stress	Type	Correction			Overburden	Ratio	Res.	Liquation Liqu		SPT Blow	Shear	SPT Blow	Shear	Vol.	Settlemen	octucinent
During Test (ft)	Resistance	Friction	Ratio	Soil Behavior Type	Elevation (ft)	Correction Factor	Blow Count		(Design)	(Test)	Index	Factor K.	Resistance	Coeff.	Stress	CSR	Ratio CRR _{7.5}	FS y	Correction		Strength	Count	Strain	Strain	t Cax	Profile
5.50	q _{t-avg} (tsf) 17.67	0.30	R _{f-avg} (%)	(Robertson et al., 1983) sandy silt to clayey silt	8.0	(Lunne, et al., 1997)	N ₆₀ (blows/ft)	σ _v (psf)	σ _{v'} (psf) 660	σ _{v'} (psf) 660	1 _c 2.15	1.55	q _{c1Nes} 79.14	0.987	K₀ N/A	0.257	N/A	N/A NO	corr.	(N ₁) _{60cs} N/A	S _r (psf)	(N ₁) _{60es}	γ _c (%) N/A	E _v (%) N/A	S _i (in.)	(in.) 0.23
6.50	6.67	0.14	2.08	silty clay to clay	7.0	1.00	4	780	780	780	2.81	N/A	N/A	0.985	N/A	0.256	N/A	N/A NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.23
7.50 8.50	17.48 28.23	0.71	4.07 2.81	silty clay to clay clavev silt to silty clay	6.0 5.0	1.00	12 14	900 1.020	900 1.020	900 1.020	2.69	N/A 2.84	N/A 112.15	0.983	N/A N/A	0.255	N/A N/A	N/A NO		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.23
9.50	23.02	0.54	2.33	sandy silt to clayey silt	4.0	1.00	9	1,140	1,109	1,140	2.54	3.00	92.73	0.978	1.000	0.261	0.154	0.758 YE	2.8	15.0	680	19.6	N/A	0.258	0.03	0.20
10.50 11.50	16.00 11.00	0.40	2.49 3.08	clayey silt to silty clay silty clay to clay	3.0	1.00	8	1,260 1,380	1,166 1,224	1,260 1,380	2.65 2.86	N/A N/A	N/A N/A	0.976	N/A N/A	0.274	N/A N/A	N/A NO		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.20
12.50	11.00	0.34	2.03	clayey silt to silty clay	1.0	1.00	6	1,500	1,224	1,380	2.76	N/A	N/A N/A	0.973	N/A N/A	0.285	N/A N/A	N/A NO		N/A	N/A N/A	N/A N/A	N/A	N/A	N/A N/A	0.20
13.50 14.50	15.42 18.57	0.33	2.16	clayey silt to silty clay	0.0	1.00	8	1,620	1,339 1,397	1,526 1,584	2.67	N/A 1.93	N/A 70.96	0.969	N/A 1.000	0.305	N/A 0.113	N/A NO 0.465 YE	N/A 2.8	N/A	N/A 835	N/A 21.6	N/A	N/A 0.783	N/A 0.09	0.20
15.50	8.82	0.34	1.84	sandy silt to clayey silt clayey silt to silty clay	-1.0	1.66 1.00	12 4	1,740	1,397	1,584	2.29	1.93 N/A	/0.96 N/A	0.966	1.000 N/A	0.313	0.113 N/A	N/A NO		16.6 N/A	835 N/A	21.6 N/A	N/A N/A	0.783 N/A	0.09 N/A	0.10
16.50	9.37 13.27	0.16	1.67	clayey silt to silty clay	-3.0 -4.0	1.00	5	1,980	1,512	1,699	2.83	N/A	N/A	0.962	N/A	0.327	N/A	N/A NO		N/A	N/A	N/A	N/A	N/A	N/A	0.10
17.50 18.50	40.65	0.22	1.66 0.69	clayey silt to silty clay silty sand to sandy silt	-4.0 -5.0	1.00	22	2,100	1,570 1,627	1,757 1,814	1.81	N/A 1.00	N/A 74.62	0.959	N/A 1.000	0.334	N/A 0.119	N/A NO 0.449 YE	N/A 2.8	N/A 26.4	N/A 1,200	N/A 33.3	N/A N/A	N/A 0.051	N/A 0.01	0.10
19.50	17.78	0.43	2.41	clayey silt to silty clay	-6.0	1.00	9	2,340	1,685	1,872	2.71	N/A	N/A	0.955	N/A	0.345	N/A	N/A NO		N/A	N/A	N/A	N/A	N/A	N/A	0.10
20.50 21.50	13.77 12.77	0.49	3.60	silty clay to clay silty clay to clay	-7.0 -8.0	1.00	9	2,460 2,580	1,742 1,800	1,930 1,987	2.92	N/A N/A	N/A N/A	0.952	N/A N/A	0.350	N/A N/A	N/A NO		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.10
22.50	14.80	0.54	3.66	silty clay to clay	-9.0	1.00	10	2,700	1,858	2,045	2.91	N/A	N/A	0.948	N/A	0.358	N/A	N/A NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.10
23.50 24.50	41.10 22.93	0.85	2.08 3.81	sandy silt to clayey silt silty clay to clay	-10.0 -11.0	1.00 1.00	16 15	2,820 2,940	1,915 1,973	2,102	2.41	2.36 N/A	99.29 N/A	0.945	1.000 N/A	0.362	0.171 N/A	0.607 YE N/A NO	2.8 N/A	18.8 N/A	1,063 N/A	24.2 N/A	N/A N/A	0.609 N/A	0.07 N/A	0.03
25.50	13.23	0.49	3.71	silty clay to clay	-12.0	1.00	9	3,060	2,030	2,218	2.99	N/A	N/A	0.941	N/A	0.369	N/A	N/A NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.03
26.50 27.50	20.05 73.20	0.92 1.35	4.57 1.85	clay silty sand to sandy silt	-13.0 -14.0	1.00	20	3,180 3,300	2,088 2,146	2,275 2,333	2.90 2.21	N/A 1.68	N/A 118.82	0.938	N/A 0.975	0.372	N/A 0.236	N/A NO 0.790 YE	N/A 2.8	N/A 25.4	N/A 1,200	N/A 32.1	N/A N/A	N/A 0.068	N/A 0.01	0.03
28.50	154.32	1.11	0.72	sand	-15.0	1.00	31	3,420	2,203	2,390	1.69	1.03	151.99	0.934	0.962	0.377	0.407	1.334 NO	N/A	N/A	N/A	28.2	N/A	0.110	0.01	0.00
29.50 30.50	201.75 295.42	1.13	0.56	sand gravelly sand to sand	-16.0 -17.0	1.00 1.00	40 49	3,540 3,660	2,261 2,318	2,448 2,506	1.54	1.00	189.76 274.38	0.931	0.952 0.943	0.379	N/A N/A	N/A NO		N/A N/A	N/A N/A	36.5 44.0	N/A N/A	0.031	0.00	0.00
31.50	276.09	1.61	0.58	sand	-18.0	1.00	55	3,780	2,376	2,563	1.45	1.00	253.30	0.918	0.933	0.380	N/A	N/A NO	N/A	N/A	N/A	48.8	N/A	0.000	0.00	0.00
32.50 33.50	292.65 317.98	1.33	0.45	gravelly sand to sand gravelly sand to sand	-19.0 -20.0	1.00	49 53	3,900 4.020	2,434 2,491	2,621	1.37	1.00	265.30 284.91	0.909	0.925	0.379	N/A N/A	N/A NO		N/A N/A	N/A N/A	42.6 45.8	N/A N/A	0.000	0.00	0.00
34.50	366.65	1.41	0.38	gravelly sand to sand	-21.0	1.00	61	4,140	2,549	2,736	1.25	1.00	324.79	0.893	0.908	0.377	N/A	N/A NO		N/A	N/A	52.2	N/A	0.000	0.00	0.00
35.50 36.50	416.12 544.02	1.80 3.30	0.43	gravelly sand to sand gravelly sand to sand	-22.0 -23.0	1.00 1.00	69 91	4,260 4,380	2,606 2,664	2,794 2,851	1.25	1.00	364.51 471.37	0.885	0.899 0.892	0.376	N/A N/A	N/A NO N/A NO		N/A N/A	N/A N/A	58.7 75.9	N/A N/A	0.000	0.00	0.00
37.50	622.00	3.04	0.61	gravelly sand to sand	-23.0	1.00	104	4,500	2,722	2,831	1.18	1.00	533.20	0.869	0.892	0.373	N/A N/A	N/A NO		N/A	N/A N/A	86.0	N/A	0.000	0.00	0.00
38.50 39.50	642.33 563.43	5.78 3.05	0.90	gravelly sand to sand	-25.0 -26.0	1.00 1.00	107 94	4,620 4,740	2,779 2.837	2,966 3,024	1.39	1.00	544.90 473.09	0.861 0.852	0.877	0.372	N/A N/A	N/A NO N/A NO		N/A N/A	N/A N/A	87.9 76.4	N/A N/A	0.000	0.00	0.00
40.50	459.15	1.59	0.34	gravelly sand to sand gravelly sand to sand	-27.0	1.00	77	4,740	2,894	3,024	1.17	1.00	381.67	0.832	0.863	0.369	N/A N/A	N/A NO		N/A	N/A N/A	61.6	N/A	0.000	0.00	0.00
41.50 42.50	390.20 610.42	2.24 4.63	0.57	gravelly sand to sand	-28.0 -29.0	1.00 1.00	65 102	4,980 5,100	2,952 3,010	3,139	1.38	1.00	321.18	0.836 0.828	0.856	0.367	N/A	N/A NO		N/A	N/A	51.9	N/A	0.000	0.00	0.00
43.50	536.42	2.50	0.76	gravelly sand to sand gravelly sand to sand	-30.0	1.00	89	5,220	3,067	3,197 3,254	1.35	1.00	497.61 433.16	0.820	0.849	0.363	N/A N/A	N/A NO		N/A N/A	N/A N/A	80.5 70.1	N/A N/A	0.000	0.00	0.00
44.50 45.50	465.87	2.45	0.53	gravelly sand to sand	-31.0	1.00	78	5,340	3,125	3,312	1.30	1.00	372.71	0.812	0.837	0.361	N/A	N/A NO		N/A	N/A	60.3	N/A	0.000	0.00	0.00
45.50	469.73 641.13	3.37 3.10	0.72	gravelly sand to sand gravelly sand to sand	-32.0 -33.0	1.00 1.00	78 107	5,460 5,580	3,182 3,240	3,370 3,427	1.40	1.00	372.39 503.73	0.804	0.830 0.825	0.358	N/A N/A	N/A NO		N/A N/A	N/A N/A	60.3 81.6	N/A N/A	0.000	0.00	0.00
47.50 48.50	653.83	3.45	0.53	gravelly sand to sand	-34.0 -35.0	1.00	109 87	5,700 5,820	3,298 3,355	3,485	1.21	1.00	509.20	0.787	0.819	0.354	N/A	N/A NO		N/A	N/A	82.6 65.7	N/A	0.000	0.00	0.00
48.50 49.50	524.28 551.02	4.28 4.84	0.82 0.88	gravelly sand to sand gravelly sand to sand	-35.0	1.00	92	5,820	3,355	3,542 3,600	1.42	1.00	404.79 421.82	0.779	0.813	0.351	N/A N/A	N/A NO		N/A N/A	N/A N/A	68.5	N/A N/A	0.000	0.00	0.00
50.50	604.58	3.46	0.57	gravelly sand to sand	-37.0	1.00	101	6,060	3,470	3,658	1.27	1.00	458.97	0.763	0.802	0.346	N/A	N/A NO	N/A	N/A	N/A	74.5	N/A	0.000	0.00	0.00
51.50 52.50	675.42 520.21	4.87 6.02	0.72 1.16	gravelly sand to sand sand	-38.0 -39.0	1.00 1.00	113 104	6,180	3,528 3,586	3,715 3,773	1.32	1.00	508.54 388.53	0.755	0.797 0.792	0.344	N/A N/A	N/A NO		N/A N/A	N/A N/A	82.6 75.8	N/A N/A	0.000	0.00	0.00
53.50	608.55	4.25	0.70	gravelly sand to sand	-40.0	1.00	101	6,420	3,643	3,830	1.34	1.00	450.89	0.739	0.787	0.338	N/A	N/A NO	N/A	N/A	N/A	73.3	N/A	0.000	0.00	0.00
54.50 55.50	528.70 682.62	5.28 4.38	1.00 0.64	sand gravelly sand to sand	-41.0 -42.0	1.00	106 114	6,540	3,701 3,758	3,888 3,946	1.51	1.00	388.67 497.96	0.730	0.782	0.336	N/A N/A	N/A NO		N/A N/A	N/A N/A	75.8 81.0	N/A N/A	0.000	0.00	0.00
56.50	605.00	3.28	0.54	gravelly sand to sand	-43.0	1.00	101	6,780	3,816	4,003	1.27	1.00	438.00	0.714	0.772	0.330	N/A	N/A NO	N/A	N/A	N/A	71.3	N/A	0.000	0.00	0.00
57.50 58.50	479.98 421.85	3.79 5.01	0.79 1.19	gravelly sand to sand sand	-44.0 -45.0	1.00	80 84	6,900 7,020	3,874 3,931	4,061 4,118	1.46	1.00	344.89 300.89	0.706	0.768	0.327	N/A N/A	N/A NO		N/A N/A	N/A N/A	56.1 58.8	N/A N/A	0.000	0.00	0.00
59.50	411.82	3.85	0.94	sand	-46.0	1.00	82	7,140	3,989	4,176	1.56	1.00	291.61	0.690	0.759	0.321	N/A	N/A NO	N/A	N/A	N/A	57.0	N/A	0.000	0.00	0.00
60.50 61.50	468.05 488.12	3.21 4.05	0.69	gravelly sand to sand gravelly sand to sand	-47.0 -48.0	1.00	78 81	7,260 7,380	4,046 4,104	4,234 4,291	1.43	1.00	329.06 340.75	0.682	0.754 0.750	0.318	N/A N/A	N/A NO		N/A N/A	N/A N/A	53.6 55.5	N/A N/A	0.000	0.00	0.00
62.50	511.93	4.13	0.81	gravelly sand to sand	-49.0	1.00	85	7,500	4,162	4,349	1.46	1.00	354.89	0.665	0.746	0.312	N/A	N/A NO	N/A	N/A	N/A	57.9	N/A	0.000	0.00	0.00
63.50 64.50	427.88 490.93	4.10 5.00	0.96	sand sand	-50.0 -51.0	1.00	86 98	7,620 7,740	4,219 4,277	4,406 4,464	1.57	1.00	294.60 335.72	0.657	0.742 0.738	0.309	N/A N/A	N/A NO		N/A N/A	N/A N/A	57.7 65.7	N/A N/A	0.000	0.00	0.00
65.50	564.30	4.75	0.84	gravelly sand to sand	-52.0	1.00	94	7,860	4,334	4,522	1.45	1.00	383.32	0.641	0.734	0.302	N/A	N/A NO		N/A	N/A	62.6	N/A	0.000	0.00	0.00
				#N/A															1	max=	1,200					
																				min=	680					

avg= 995

CPT-12-07 Liquefaction Analysis.XLS Output Sheet

(Engineer: Curt Scheyhing)

PROJECT INFORMATION		
Project Name	Marina Del Mar - Parcel 44	
Project No.	LA-1049	
Location	Los Angeles	
Exploration No.	CPT-12-08	

GENERAL INPUT DATA	
Ground Surf. Elev. During Test	14.00 ft
GWT Elev. During Test	8.00 ft
GWT Elev. For Design	5.00 ft
Total Soil Unit Weight, γ _t	120.00 pcf
Earthquake Magnitude, Meq	6.80
Peak Ground Acceleration, Amax	0.40 g
Required Factor of Safety	1.30

REFERENCES

Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and I.M. Idriss, 2001)

+ CSR = 0.65 $A_{max} (\sigma_v/\sigma_v') r_d$

++++FS = (CRF₄/CSR) MSF K_σ K_{σ→∞} where CRR₇₅ is evaluated from direct CPT data, K_σ =1.0 and MSF = 1.28

* Residual strength values of liquefied soils are evaluated from converted SPT blow counts using the median curve by Seed & Harder (1990)

** Ground settlements are evaluated from converted SPT blow counts using the method developed by Tokimatsu and Seed (1987).

Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change.

GWT Depth During Test, Zw = GWT Depth For Design, Zwd = 6.00 ft below ground surface 9.00 ft below ground surface

*** SUMMARY OF RESULTS ***

Total Thickness of Liquefiable Soils = 3.00 feet

Earthquake-Induced Settlements: - Liquefaction-Induced Settlement =

0.22 inches <--- Saturated Sands - Seismic Compaction Settlement = 0.00 inches <--- Dry or Unsaturated Sands

Total: 0.22 inches

	INPUT SOIL PROFILE (CPT DATA)						SOIL LIQUEI	FACTION P	OTENTIAL AN	NALYSIS (1	996 NCEE	R & 1998 NO	EER/NSF W	ORKSHO	PS) +					RESID	UAL STREE	NGTH *		GROUND	SETTLEM	MENT **	
								Total	Effective	Effective	Soil			Shear	Correction	Cyclic		Factor of Safety			Fines		Fines				Cumulativ
Soil	Average	Average	Average		Bottom of			Vert.	Vert.	Vert.	Behavior		Corrected	Stress	for High	Stress	Cyclic	Against		SPT Blow	Corrected	Residual	Corrected	Cyclic		Layer	e
Depth Depth	Cone Tip Resistance	Sleeve Friction	Friction Ratio	C-il D-bi T	Layer	Thin Layer	Equiv. SPT Blow Count	Stress	Stress (Design)	Stress (Test)	Type Index	Correction Factor	Tip Resistance	Coeff.	Overburden Stress	Ratio ++	Res. Ratio	Liqefaction I		Count Correction	SPT Blow Count	Shear Strength	SPT Blow Count	Shear Strain	Vol. Strain	Settlemen t	Settiement
During Test (ft)	q _{t-avg} (tsf)	f _{s-avg} (tsf)		Soil Behavior Type (Robertson et al., 1983)	Elevation (ft)	Correction Factor (Lunne, et al., 1997)	N ₆₀ (blows/ft)	σ _v (psf)	σ _{v'} (psf)	σ _{v'} (psf)	I	K.	q _{c1Nes}	r _d	K,	CSR	CRR,	FS	y ? .	N _{corr}	(N ₁) _{60cs}	Sr (psf)	(N ₁) _{60cs}	γ _c (%)	& _v (%)	S _i (in.)	Profile (in.)
0.50	100.55	0.84	0.84	sand to silty sand	13.0	1.00	25	60	60	60	1.34	1.00	580.53	0.999	N/A	0.260	N/A		NO	N/A	N/A	N/A	47.3	0.012	0.000	0.00	0.22
1.50	127.15	1.12	0.88	sand to silty sand	12.0	1.00	32	180	180	180	1.44	1.00	423.83	0.997	N/A	0.259	N/A	N/A	NO	N/A	N/A	N/A	59.1	0.020	0.000	0.00	0.22
2.50 3.50	96.10 50.65	0.90	0.94 1.21	sand to silty sand silty sand to sandy silt	11.0	1.00	24 28	300 420	300 420	300 420	1.60	1.00	248.13 183.00	0.994	N/A N/A	0.258	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	45.3 62.0	0.028	0.000	0.00	0.22
4.50	23.32	0.24	1.04	sandy silt to clayey silt	9.0	1.00	9	540	540	540	2.20	1.67	74.94	0.990	N/A	0.257	N/A	N/A	NO	N/A	N/A	N/A	24.0	N/A	N/A	N/A	0.22
5.50 6.50	18.83 9.42	0.18	0.97 3.19	sandy silt to clayey silt silty clay to clay	8.0 7.0	1.00	8	660 780	660 780	660 749	2.30	1.95 N/A	63.90 N/A	0.987	N/A N/A	0.257	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	20.4 N/A	N/A N/A	N/A N/A	N/A N/A	0.22
7.50	21.03	0.87	4.13	silty clay to clay	6.0	1.00	14	900	900	806	2.64	N/A	N/A	0.983	N/A	0.255	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.22
8.50 9.50	21.23 13.28	0.52	2.44	clayey silt to silty clay	5.0	1.00	11	1,020 1,140	1,020	864 922	2.57	3.15 N/A	93.59 N/A	0.980	N/A	0.255	N/A		NO NO	N/A	N/A N/A	N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.22 0.22
10.50	14.10	0.29	2.21	clayey silt to silty clay clayey silt to silty clay	3.0	1.00	7	1,140	1,166	979	2.07	N/A	N/A N/A	0.976	N/A N/A	0.201	N/A N/A		NO	N/A N/A	N/A	N/A N/A	N/A N/A	N/A	N/A N/A	N/A	0.22
11.50	11.97	0.37	3.07	silty clay to clay	2.0	1.00	8	1,380	1,224	1,037	2.83	N/A	N/A	0.973	N/A	0.285	N/A		NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.22
12.50 13.50	9.47 11.03	0.27	2.83 2.23	silty clay to clay clayey silt to silty clay	1.0	1.00	6	1,500 1,620	1,282 1,339	1,094	2.90	N/A N/A	N/A N/A	0.971	N/A N/A	0.295	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.22 0.22
14.50	10.48	0.21	1.98	clayey silt to silty clay	-1.0	1.00	5	1,740	1,397	1,210	2.80	N/A	N/A	0.966	N/A	0.313	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.22
15.50 16.50	9.72 10.58	0.19	1.92	clayey silt to silty clay	-2.0 -3.0	1.00	5	1,860	1,454 1,512	1,267	2.84	N/A	N/A	0.964	N/A N/A	0.320	N/A	N/A	NO NO	N/A	N/A	N/A	N/A N/A	N/A	N/A	N/A N/A	0.22
17.50	22.05	0.21	2.74	clayey silt to silty clay clayey silt to silty clay	-3.0	1.00	11	2,100	1,570	1,323	2.65	N/A N/A	N/A N/A	0.962	N/A	0.327	N/A N/A	N/A N/A	NO	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.22
18.50	20.73	0.39	1.87	sandy silt to clayey silt	-5.0	1.66	14	2,220	1,627	1,440	2.28	1.90	72.32	0.957	1.000	0.339	0.115	0.436	YES	2.8	19.0	1,079	24.4	N/A	0.266	0.03	0.18
19.50 20.50	10.17 11.79	0.29	2.91 3.33	silty clay to clay silty clay to clay	-6.0 -7.0	1.00	7 8	2,340 2,460	1,685 1,742	1,498 1,555	2.97 2.96	N/A N/A	N/A N/A	0.955 0.952	N/A N/A	0.345	N/A N/A		NO NO	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.18 0.18
21.50	23.73	0.68	2.88	clayey silt to silty clay	-8.0	1.00	12	2,580	1,800	1,613	2.67	N/A	N/A	0.950	N/A	0.354	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.18
22.50 23.50	20.55 14.70	0.76	3.74 4.56	silty clay to clay clay	-9.0 -10.0	1.00 1.00	14	2,700 2,820	1,858 1,915	1,670 1,728	2.80 2.99	N/A N/A	N/A N/A	0.948	N/A N/A	0.358	N/A N/A		NO NO	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.18 0.18
24.50	13.03	0.38	2.94	silty clay to clay	-10.0	1.00	9	2,940	1,973	1,726	2.92	N/A	N/A	0.943	N/A	0.365	N/A		NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.18
25.50	30.22	0.76	2.51	sandy silt to clayey silt	-12.0	1.00	12	3,060	2,030	1,843	2.58	3.22	96.57	0.941	0.996	0.369	0.164	0.569	YES	2.8	15.4	716	20.1	N/A	1.371	0.16	0.02
26.50 27.50	59.30 157.37	0.97	1.64 0.48	silty sand to sandy silt sand	-13.0 -14.0	1.00	20	3,180	2,088	1,901	2.24	1.76	102.30 151.93	0.938	0.986	0.372	0.180		YES NO	2.8 N/A	23.1 N/A	1,200 N/A	29.3 31.8	N/A N/A	0.091	0.01	0.01
28.50	259.50	0.75	0.29	gravelly sand to sand	-15.0	1.00	43	3,420	2,203	2,016	1.27	1.00	247.24	0.934	0.962	0.377	N/A	N/A	NO	N/A	N/A	N/A	43.1	N/A	0.000	0.00	0.00
29.50 30.50	380.13 456.05	3.52 3.58	0.93	sand	-16.0 -17.0	1.00	76 76	3,540 3,660	2,261 2,318	2,074 2,131	1.50	1.00	357.54 423.58	0.931	0.952	0.379	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	74.7 73.6	N/A N/A	0.000	0.00	0.00
31.50	479.36	1.62	0.79	gravelly sand to sand gravelly sand to sand	-17.0	1.00	80	3,780	2,376	2,131	1.12	1.00	423.38	0.926	0.943	0.380	N/A N/A	N/A N/A	NO	N/A	N/A	N/A	76.4	N/A	0.000	0.00	0.00
32.50	475.63	2.21	0.46	gravelly sand to sand	-19.0	1.00	79	3,900	2,434	2,246	1.22	1.00	431.18	0.909	0.925	0.379	N/A	N/A	NO	N/A	N/A	N/A	74.8	N/A	0.000	0.00	0.00
33.50	578.03	2.17	0.38	gravelly sand to sand #N/A	-20.0	1.00	96	4,020	2,491	2,304	1.10	1.00	517.92	0.901	0.916	0.378	N/A	N/A	NO	N/A	N/A	N/A	89.8	N/A	0.000	0.00	0.00
				#N/A																							
				#N/A #N/A																						+	
				#N/A																							
				#N/A #N/A																							
				#N/A #N/A																							
				#N/A																						<u> </u>	
		1		#N/A #N/A			-	1 1				1						1	-+								
				#N/A																							
				#N/A #N/A				1				-							\dashv								
				#N/A																							
				#N/A																						-	
				#N/A #N/A				1		1		 															$\overline{}$
				#N/A																						$\overline{}$	
		1		#N/A #N/A				1				-						-	-								$\overline{}$
				#N/A																							
				#N/A																						-	
				#N/A #N/A												-											$\overline{}$
				#N/A																						$\overline{}$	
		1		#N/A #N/A				1				-						-	-								
					L																max=	1,200					

avg= 998

> CPT-12-08 Liquefaction Analysis.XLS Output Sheet

(Engineer: Curt Scheyhing)

Earthquake Magnitude, Mea

Peak Ground Acceleration, An

Required Factor of Safety

PROJECT INFORMATION	
Project Name	Marina Del Mar - Parcel 44
Project No.	LA-1049
Location	Los Angeles
Exploration No.	CPT-12-09
GENERAL INPUT DATA	
Ground Surf. Elev. During Test	16.00 ft
GWT Elev. During Test	2.00 ft
GWT Elev. For Design	5.00 ft
Total Soil Unit Weight, γ _t	120.00 pcf

6.80

0.40 g

1.30

REFERENCES

Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and I.M. Idriss, 2001)

+ CSR = $0.65 A_{max} (\sigma_v/\sigma_v') r_d$

++++FS = (CRF₂/CSR) MSF K₀ K_{0→∞} where CRR_{7,5} is evaluated from direct CPT data, K₀ = 1.0 and MSF = 1.28

* Residual strength values of liquefied soils are evaluated from converted SPT blow counts using the median curve by Seed & Harder (1990)

** Ground settlements are evaluated from converted SPT blow counts using the method developed by Tokimatsu and Seed (1987).

Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change.

GWT Depth During Test, Zw = GWT Depth For Design, Zwd = 14.00 ft below ground surface 11.00 ft below ground surface

*** SUMMARY OF RESULTS ***

Total Thickness of Liquefiable Soils = 1.00 feet

Earthquake-Induced Settlements: - Liquefaction-Induced Settlement =

0.01 inches <--- Saturated Sands - Seismic Compaction Settlement = 0.00 inches <--- Dry or Unsaturated Sands

Total: 0.02 inches

Section Contract		INPUT SOIL	PROFILE (C	PT DATA)				SOIL LIQUEFA	ACTION I	POTENTIAL AN	ALYSIS (1	996 NCEE	R & 1998 NO	CEER/NSF V	WORKSHO	OPS) +					RESID	UAL STRE	NGTH *		GROUN	SETTLE	MENT **	-
According Acco									T-4-1	T-0045	Titte ations	C-21			Ch		Courtie					Tim		F2				
Section Personal	Coll	Average	Average	Average		Pottom of							Fines	Corrected				Cyclic			SPT Blow		Residual		Cyclic		Laver	Cumulativ e
Design D				Friction			Thin Laver	Equiv. SPT												Liquef						Vol.		
100 100		Resistance	Friction	Ratio	Soil Behavior Type			Blow Count		(Design)	(Test)				Coeff.	Stress	++	Ratio	+++		Correction	Count	Strength	Count	Strain	Strain	t	Profile
1.00		q _{t-avg} (tsf)	f _{s-avg} (tsf)	R _{f-avg} (%)	(Robertson et al., 1983)	(ft)	(Lunne, et al., 1997)	N_{60} (blows/ft)	σ_{v} (psf)	$\sigma_{v'}$ (psf)		I _c	K _c	$\mathbf{q}_{\mathrm{c1Nes}}$	$\mathbf{r}_{\scriptscriptstyle \mathrm{d}}$	K,		CRR _{7.5}	FS		N _{corr.}	$(N_1)_{60cs}$		$(N_1)_{60cs}$		E _v (%)	S _i (in.)	(in.)
1.58		104.10	0.68	0.65	sand to silty sand																							0.02
11 10																												0.02
Hi 12 12 13 13 14 15 15 15 15 16 17 12 12 12 12 12 12 12																												0.01
11-00 1547																												0.01
11-90																												0.01
11.10	12.50	11.10	0.46	4.09		3.0	1.00		1,500	1,406	1,500	2.97	N/A	N/A		N/A	0.269	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.01
11-12																			N/A									0.01
12.50																												0.01
1.50	16.50	12.85	0.43	3.35		-1.0	1.00		1,980	1,637	1,824	2.91	N/A	N/A	0.962	N/A	0.302	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.01
P.50								7																				0.01
20.90 12.19								5																				0.01
22.50	20.50	12.19	0.28	2.31	clayey silt to silty clay	-5.0	1.00	6	2,460	1,867	2,054	2.87	N/A	N/A	0.952	N/A	0.326	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.01
25.50 1073 0.47 4.54 clay 4.56 day 410 aligned clay -0.90 1.00 12 2.360 2.225 2.78 N.A. N.A. 0.345 N.A. 0.344 N.A.	21.50																											0.01
24.50 23.30 (8.2) 3.33 (shays alto side day 1.00 (10.0) (1																												0.01
25.50 19.82 0.70 3.51 sily clay to clay 11.0 13 3,180 2,213 2,400 2.85 N/A N/A 0.988 N/A 0.331 N/A					clayey silt to silty clay						2,285											N/A		N/A		N/A		0.01
27.50 16.92 0.64 3.79 willy clay to clay -12.0 1.00 11 3.500 2.270 2.488 2.91 NA NA 0.936 NA 0.354 NA 0.354 NA NA NA NA NA NA NA N																												0.01
9.95 18.82 0.54 2.28 clayey after shiry city 4.40 1.00 9 3.560 2.38 2.26 2.25 2.84 N.A N.A 0.95 N.A 0.31 N.A 0.35 N.A N.	27.50	16.92		3.79					3,300	2,270	2,458	2.93		N/A	0.936	N/A			N/A	NO			N/A	N/A				0.01
30.50 18.58 0.52 2.82 claysy site only city 15.0 1.00 9 3.660 2.43 2.85 NA NA NA 0.95 NA 0.95 NA 0.96 NA NA NA NA NA NA NA N																												0.01
31.50 18.59 0.40 2.18 ckeys yell to slip ckly 1.60 1.00 9 3.780 2.501 2.888 2.79 N.A N.A 0.918 N.A 0.918 N.A 0.918 N.A																												0.01
45.20 18.9	31.50	18.39	0.40	2.18	clayey silt to silty clay	-16.0	1.00		3,780	2,501	2,688	2.79	N/A	N/A	0.918	N/A	0.361	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.01
34.50 454.32 1.94 0.43 gravelly sand to sand 2.00 1.00 76 4.140 2.674 2.861 1.22 1.00 392.94 0.893 0.890 0.360 NA NA NA NA NA NA NA S.5 NA 0.000 0.00											2,746																	0.00
\$5.50 \$50.65 \$3.49 \$0.69 gravely sand to sand \$7.50 \$50.95 \$3.15 \$0.63 \$gravely sand to sand \$7.20 \$1.00 \$84 \$4.580 \$2.789 \$2.976 \$1.35 \$1.00 \$4.735 \$0.877 \$0.875 \$0.358 \$N.A \$N.A \$N.A \$N.A \$N.A \$N.A \$N.A \$0.00 \$0.00 \$0.00 \$38.50 \$88.70 \$6.56 \$0.81 \$gravely sand to sand \$7.20 \$1.00 \$84 \$4.500 \$2.846 \$3.034 \$1.33 \$1.00 \$4.024 \$0.869 \$0.868 \$0.357 \$N.A \$N	34.50	454.32	1.94	0.43		-19.0	1.00	76	4,140	2,674	2,861	1.22	1.00	392.94	0.893	0.890		N/A	N/A	NO	N/A	N/A		63.3	N/A	0.000		0.00
37.50 50.93 3.15 0.63 gravelly sand to sand 38.50 80.870 6.56 0.81 gravelly sand to sand 4 4.900 2.846 3.054 1.33 1.00 420.74 0.869 0.368 0.357 N/A																												0.00
38.50 808.70 6.56 0.81 gravely sand to sand																												0.00
No.	38.50	808.70	6.56	0.81	gravelly sand to sand		1.00	135	4,620	2,904	3,091	1.30	1.00	671.13	0.861	0.861	0.356		N/A	NO	N/A		N/A	108.4		0.000	0.00	0.00
SNA																				-							-	
SNA					#N/A																							+
#N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A																												
#N/A # #N/A # # # # # # # # # # # # # # # # # # #																				+								+
#N/A #N/A # #N/A ##########					#N/A																							
#N/A #N/A #N/A # #N/A ##N/A																				-							-	
#N/A #N/A #N/A # #N/A ##########					#N/A					1	l		1						l									
#N/A # #N/A # # # # # # # # # # # # # # # # # # #																												1
#N/A #N/A #N/A # #N/A ##N/A	1		+	-		\vdash		1		1	1	 	1	1	1	1	1	 	1	1		-	-	1				+
#N/A #N/A # #N/A # # # # # # # # # # # # # # # # # # #					#N/A																							
#N/A #N/A #N/A # #N/A ##N/A ##			+			\vdash		1		-	1	l	1	1	1		1	-	1	1		-	-	1				+
#N/A #N/A # #N/A # # # # # # # # # # # # # # # # # # #																												
#N/A #N/A																												1
#N/A	1		+	-		\vdash		1		1	1	 	1	1	1	1	1	 	1	1		-	-	1				+
					#N/A																							
			_		#N/A			1						1			1											+
#N/A #N/A	1		+	-		\vdash		1		1	1	 	1	1	1	1	1	 	1	1		-	-	1				+
#N/A					#N/A																							
#N/A #N/A							·													\perp								
#N/A # # # # # # # # # #			+					1						1					1									+
max= 1.200 mi= 1.200	•				•																							

1,200 1,200 avg=

(Engineer: Curt Scheyhing)

PROJECT INFORMATION		
Project Name	Marina Del Mar - Parcel 44	
Project No.	LA-1049	
Location	Los Angeles	
Exploration No.	CPT-12-10	
GENERAL INPUT DATA		

GENERAL INPUT DATA		
Ground Surf. Elev. During Test	9.00 ft	
GWT Elev. During Test	-4.00 ft	
GWT Elev. For Design	5.00 ft	
Total Soil Unit Weight, γ _t	120.00 pcf	
Earthquake Magnitude, M _{eq}	6.80	
Peak Ground Acceleration, A _{max}	0.40 g	
Required Factor of Safety	1.30	
	•	

REFERENCES

Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and I.M. Idriss, 2001)

+ CSR = 0.65 $A_{max} (\sigma_v/\sigma_v') r_d$

++++FS = (CRF₄/CSR) MSF K_σ K_{σ→∞} where CRR₇₅ is evaluated from direct CPT data, K_σ =1.0 and MSF = 1.28

* Residual strength values of liquefied soils are evaluated from converted SPT blow counts using the median curve by Seed & Harder (1990)

** Ground settlements are evaluated from converted SPT blow counts using the method developed by Tokimatsu and Seed (1987).

Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change.

GWT Depth During Test, Zw = GWT Depth For Design, Zwd = 13.00 ft below ground surface 4.00 ft below ground surface

*** SUMMARY OF RESULTS ***

Total Thickness of Liquefiable Soils = 4.00 feet

Earthquake-Induced Settlements: - Liquefaction-Induced Settlement =

0.14 inches <--- Saturated Sands - Seismic Compaction Settlement = 0.00 inches <--- Dry or Unsaturated Sands

Total: 0.14 inches

		MOTILE (C	PT DATA)				SOIL LIQUE	ACTION P	OTENTIAL AN	NALYSIS (19	996 NCEEI	R & 1998 NC	EER/NSF W	VORKSHO	OPS) +					RESID	UAL STRE	NGTH *		GROUND	SETTLEM	IENT **	
								Total	Effective	Effective	Soil			Shear	Correction	Cyclic		Factor of Safety			Fines		Fines				
Soil	Average	Average	Average		Bottom of			Vert.	Vert.	Vert.	Behavior	Fines	Corrected		for High	Stress	Cyclic	Against		SPT Blow	Corrected	Residual	Corrected	Cyclic		Layer	Cumulativ
Depth	Cone Tip	Sleeve	Friction		Layer	Thin Layer	Equiv. SPT	Stress	Stress	Stress	Type	Correction	Tip	Reduction	Overburden	Ratio	Res.	Liqefaction	Liquef	Count	SPT Blow	Shear	SPT Blow	Shear		Settlemen	
During Test	Resistance	Friction	Ratio	Soil Behavior Type	Elevation	Correction Factor	Blow Count		(Design)	(Test)	Index	Factor	Resistance	Coeff.	Stress	++	Ratio	+++	y ?	Correction		Strength	Count	Strain	Strain	t	Profile
(ft)	$\mathbf{q}_{t\text{-avg}}\left(t\mathbf{s}\mathbf{f}\right)$	f _{s-avg} (tsf)	$R_{\text{f-avg}}$ (%)		(ft)	(Lunne, et al., 1997)	N ₆₀ (blows/ft)		$\sigma_{v'}$ (psf)	$\sigma_{v'} \ (psf)$	I _c	K _c	\mathbf{q}_{c1Nes}	$\mathbf{r}_{\scriptscriptstyle \mathrm{d}}$	Kσ	CSR	CRR _{7.5}	FS		N _{corr.}	$(N_1)_{60cs}$	$S_r(psf)$	$(N_1)_{60cs}$	γ _c (%)	E _v (%)	S _i (in.)	(in.)
5.50 6.50	18.78 13.53	0.83	4.43 3.22	clay silty clay to clay	3.0 2.0	1.00	19	660 780	566 624	660 780	2.59 2.62	3.25 N/A	157.09 N/A	0.987 0.985	1.000 N/A	0.299	0.441 N/A	1.892 N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.000 N/A	0.00 N/A	0.14
7.50	9.62	0.43	2.64	silty clay to clay	1.0	1.00	6	900	682	900	2.70	N/A	N/A	0.983	N/A	0.320	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.14
8.50	9.00	0.28	3.12	silty clay to clay	0.0	1.00	6	1,020	739	1,020	2.80	N/A	N/A	0.980	N/A	0.352	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.14
9.50 10.50	9.85 13.20	0.31	3.15 2.87	silty clay to clay clayey silt to silty clay	-1.0 -2.0	1.00	7	1,140 1,260	797 854	1,140 1,260	2.79	N/A N/A	N/A N/A	0.978	N/A N/A	0.364	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.14
11.50	11.82	0.35	2.93	silty clay to clay	-3.0	1.00	8	1,380	912	1,380	2.74	N/A	N/A	0.973	N/A	0.383	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.14
12.50	9.62	0.23	2.40	silty clay to clay	-4.0	1.00	6	1,500	970	1,500	2.78	N/A	N/A	0.971	N/A	0.391	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.14
13.50 14.50	11.40 14.87	0.17	1.51 2.33	clayey silt to silty clay clayey silt to silty clay	-5.0 -6.0	1.00	7	1,620 1,740	1,027 1,085	1,589 1,646	2.62	N/A N/A	N/A N/A	0.969	N/A N/A	0.397	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.14
15.50	21.05	0.53	2.52	clayey silt to silty clay	-7.0	1.00	11	1,860	1,142	1,704	2.56	3.09	98.90	0.964	1.000	0.408	0.170	0.535	YES	2.8	14.2	609	N/A	N/A	0.000	0.00	0.14
16.50 17.50	10.58 8.95	0.31	2.93 4.24	silty clay to clay	-8.0 -9.0	1.00	7 9	1,980 2,100	1,200 1,258	1,762 1,819	2.86 3.04	N/A	N/A	0.962	N/A N/A	0.412	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A	N/A	N/A N/A	N/A	N/A	N/A N/A	0.14
18.50	18.82	0.58	3.59	clay silty clay to clay	-10.0	1.00	13	2,100	1,238	1,819	2.74	N/A N/A	N/A N/A	0.959	N/A N/A	0.410	N/A N/A	N/A N/A	NO	N/A	N/A N/A	N/A N/A	N/A	N/A N/A	N/A N/A	N/A N/A	0.14
19.50	19.38	0.71	3.65	silty clay to clay	-11.0	1.00	13	2,340	1,373	1,934	2.74	N/A	N/A	0.955	N/A	0.423	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.14
20.50 21.50	19.86 13.25	0.90	4.53 3.94	clay	-12.0 -13.0	1.00	20	2,460 2,580	1,430	1,992 2,050	2.81	N/A N/A	N/A N/A	0.952	N/A N/A	0.426	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.14
22.50	23.90	0.32	3.38	clayey silt to silty clay	-13.0	1.00	12	2,700	1,546	2,030	2.68	N/A N/A	N/A N/A	0.930	N/A N/A	0.428	N/A	N/A N/A	NO	N/A	N/A	N/A N/A	N/A	N/A	N/A N/A	N/A	0.14
23.50	51.67	1.58	3.05	sandy silt to clayey silt	-15.0	1.00	21	2,820	1,603	2,165	2.42	2.41	138.93	0.945	1.000	0.432	0.329	0.979	YES	2.8	22.7	1,200	28.8	N/A	0.275	0.03	0.11
24.50 25.50	54.90 99.30	1.51	2.74	sandy silt to clayey silt sand to silty sand	-16.0 -17.0	1.00	22 25	2,940 3,060	1,661 1,718	2,222 2,280	2.38 1.90	2.22 1.19	133.66 127.52	0.943 0.941	1.000	0.434	0.302	0.894 0.805	YES	2.8	23.6 24.6	1,200 1,200	30.0 26.9	N/A N/A	0.151	0.02	
26.50	258.83	0.74	0.29	gravelly sand to sand	-18.0	1.00	43	3,180	1,776	2,338	1.23	1.00	274.67		1.000	0.437	N/A	N/A	NO	N/A	N/A	N/A	39.9	N/A	0.001	0.00	
27.50	474.33	2.94	0.62	gravelly sand to sand	-19.0	1.00	79	3,300	1,834	2,395	1.28	1.00	495.39	0.936	1.000	0.438	N/A	N/A	NO	N/A	N/A	N/A	72.2	N/A	0.000	0.00	0.00
28.50 29.50	435.13 542.80	1.73 2.72	0.40	gravelly sand to sand gravelly sand to sand	-20.0 -21.0	1.00 1.00	73 90	3,420 3,540	1,891 1,949	2,453 2,510	1.16	1.00	447.47 549.88	0.934	1.000	0.439	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	65.5 80.7	N/A N/A	0.000	0.00	0.00
30.50	660.30	2.61	0.40	gravelly sand to sand	-22.0	1.00	110	3,660	2,006	2,568	1.05	1.00	659.25	0.926	0.999	0.439	N/A	N/A	NO	N/A	N/A	N/A	97.1	N/A	0.000	0.00	0.00
				#N/A																							
-				#N/A #N/A																							
				#N/A																							
				#N/A																							
				#N/A #N/A																							
				#N/A																							
				#N/A #N/A																							1
				#N/A #N/A																							
				#N/A																							
				#N/A #N/A																							
				#N/A																							
				#N/A																							
				#N/A #N/A																							
				#N/A																							
				#N/A #N/A																							1
				#N/A #N/A																							
				#N/A																							
				#N/A #N/A																							
				#N/A				1																			
				#N/A																							
				#N/A #N/A																							\vdash
				#N/A				1																			
				#N/A																							
				#N/A #N/A																							\vdash
				#N/A				1																			
		1		#N/A																							
		1	1	#N/A				11		1		l			1	1		l	ll		max=	1,200			l		

1.052 avg=

> CPT-12-10 Liquefaction Analysis.XLS Output Sheet

(Engineer: Curt Scheyhing)

PROJECT INFORMATION		
Project Name	Marina Del Mar - Parcel 44	
Project No.	LA-1049	
Location	Los Angeles	
Exploration No.	CPT-12-11	
GENERAL INPUT DATA		
Ground Surf Floy During Test	12.00 ft	

GENERAL INPUT DATA		
Ground Surf. Elev. During Test	12.00 ft	
GWT Elev. During Test	7.00 ft	
GWT Elev. For Design	5.00 ft	
Total Soil Unit Weight, γ _t	120.00 pcf	
Earthquake Magnitude, Meq	6.80	
Peak Ground Acceleration, Amax	0.40 g	
Required Factor of Safety	1.30	

REFERENCES

Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and I.M. Idriss, 2001)

+ CSR = 0.65 $A_{max} (\sigma_v/\sigma_v') r_d$

++++F = CRF₃/CSR MSF K₀ K₀→∞ where CRR_{7,5} is evaluated from direct CPT data, K₀ = 1.0 and MSF = 1.28

Residual strength values of liquefied soils are evaluated from converted SPT blow counts using the median curve by Seed & Harder (1990)

Ground settlements are evaluated from converted SPT blow counts using the method developed by Tokimatsu and Seed (1987).

Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change.

GWT Depth During Test, Zw = GWT Depth For Design, Zwd = 5.00 ft below ground surface 7.00 ft below ground surface

*** SUMMARY OF RESULTS ***

1.00 feet Total Thickness of Liquefiable Soils =

Earthquake-Induced Settlements:

- Liquefaction-Induced Settlement = 0.15 inches <--- Saturated Sands - Seismic Compaction Settlement = 0.00 inches <--- Dry or Unsaturated Sands

Total: 0.15 inches

	INPUT SOIL	PROFILE (C	PT DATA)				SOIL LIQUE	FACTION P	OTENTIAL A	NALYSIS (1	996 NCEE	R & 1998 NO	CEER/NSF V	VORKSHO	OPS) +				1	RESIDU	UAL STRE	NGTH *		GROUNE	SETTLEN	IENT **	
								Total	Effective	Effective	Soil			Shear	Correction	Cyclic		Factor of Safety			Fines		Fines				~
Soil	Average	Average	Average		Bottom of			Vert.	Vert.	Vert.	Behavior	Fines	Corrected	Stress	for High	Stress	Cyclic	Against		Blow	Corrected	Residual	Corrected	Cyclic		Layer	Cumulativ
Depth	Cone Tip	Sleeve	Friction		Layer	Thin Layer	Equiv. SPT	Stress	Stress	Stress	Type	Correction			Overburden		Res.	Liqefaction Li			SPT Blow	Shear	SPT Blow	Shear		Settlemen	octucinent
During Test	Resistance	Friction	Ratio	Soil Behavior Type	Elevation	Correction Factor	Blow Count		(Design)	(Test)	Index	Factor	Resistance	Coeff.	Stress	CSR	Ratio			rection		Strength	Count	Strain	Strain	t C	Profile
(ft) 0.50	q _{t-avg} (tsf) 28.13	f _{s-avg} (tsf)	R _{f-avg} (%)	(Robertson et al., 1983) sandy silt to clayey silt	(ft) 11.0	(Lunne, et al., 1997) 1.00	N ₆₀ (blows/ft)	σ _v (psf)	σ _{v'} (psf)	σ _{v'} (psf)	1 _c	1.30	q _{c1Nes} 211.27	0.999	K₀ N/A	0.260	CRR _{7.5}	FS N/A		N _{corr.}	(N ₁) _{60cs} N/A	S _r (psf)	(N ₁) _{60es} 28.0	γ _c (%) N/A	& _v (%) N/A	S _i (in.) N/A	(in.) 0.15
1.50	22.12	0.87	3.95	silty clay to clay	10.0	1.00	15	180	180	180	2.42	2.41	177.71	0.997	N/A	0.259	N/A			N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.15
2.50	12.45	0.55	4.39	clay	9.0	1.00	12	300	300	300	2.56	3.12	160.95	0.994	N/A	0.258	N/A			I/A	N/A	N/A	N/A	N/A	N/A	N/A	0.15
3.50 4.50	10.05 10.63	0.46	4.59 5.41	clay clay	8.0 7.0	1.00	10 11	420 540	420 540	420 540	2.72	N/A N/A	N/A N/A	0.992	N/A N/A	0.258	N/A N/A			N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.15 0.15
5.50	8.95	0.40	4.50	clay	6.0	1.00	9	660	660	629	2.87	N/A	N/A	0.987	N/A	0.257	N/A	N/A I	NO N	i/A	N/A	N/A	N/A	N/A	N/A	N/A	0.15
6.50 7.50	17.72 14.50	0.91	5.14	clay clay	5.0 4.0	1.00	18 15	780 900	780 869	686 744	2.73 2.84	N/A N/A	N/A N/A	0.985	N/A N/A	0.256	N/A N/A			N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.15 0.15
8.50	11.20	0.45	4.04	clay	3.0	1.00	11	1,020	926	802	2.85	N/A	N/A	0.980	N/A	0.281	N/A	N/A	NO N	i/A	N/A	N/A	N/A	N/A	N/A	N/A	0.15
9.50 10.50	8.13 6.50	0.27	3.30 3.48	clay clay	2.0	1.00	8	1,140 1,260	984 1.042	859 917	2.92 3.04	N/A N/A	N/A N/A	0.978	N/A N/A	0.295	N/A N/A			N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.15 0.15
11.50	6.53	0.22	3.40	clay	0.0	1.00	7	1,380	1,099	974	3.05	N/A	N/A	0.973	N/A	0.307	N/A			N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.15
12.50	9.48 9.37	0.30	3.13	silty clay to clay	-1.0	1.00	6	1,500	1,157	1,032	2.90	N/A	N/A	0.971	N/A	0.327	N/A			N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.15
13.50 14.50	7.33	0.25	2.69	silty clay to clay silty clay to clay	-2.0 -3.0	1.00 1.00	5	1,620 1,740	1,214 1,272	1,090 1,147	2.88 2.94	N/A N/A	N/A N/A	0.969	N/A N/A	0.336	N/A N/A			N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.15 0.15
15.50	18.67	0.41	2.22	clayey silt to silty clay	-4.0	1.00	9	1,860	1,330	1,205	2.61	N/A	N/A	0.964	N/A	0.351	N/A			N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.15
16.50 17.50	13.15	0.26	1.98 2.55	clayey silt to silty clay clayey silt to silty clay	-5.0 -6.0	1.00	7	1,980 2,100	1,387 1,445	1,262 1,320	2.72 2.80	N/A N/A	N/A N/A	0.962	N/A N/A	0.357	N/A N/A			N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.15
18.50	10.62	0.27	2.60	silty clay to clay	-7.0	1.00	7	2,220	1,502	1,378	2.89	N/A	N/A	0.957	N/A	0.368	N/A	N/A	NO N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.15
19.50 20.50	10.53 15.61	0.39	3.70 3.95	clay silty clay to clay	-8.0 -9.0	1.00	11 10	2,340 2,460	1,560 1,618	1,435 1,493	3.00 2.88	N/A N/A	N/A N/A	0.955 0.952	N/A N/A	0.372	N/A N/A			N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.15 0.15
21.50	31.45	1.06	3.35	clayey silt to silty clay	-10.0	1.00	16	2,580	1,675	1,550	2.60	N/A	N/A	0.950	N/A	0.380	N/A			N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.15
22.50 23.50	37.02 25.62	1.58	4.26	silty clay to clay	-11.0 -12.0	1.00 1.00	25	2,700 2,820	1,733 1,790	1,608	2.63 2.77	N/A	N/A	0.948	N/A N/A	0.384	N/A N/A			N/A	N/A	N/A	N/A N/A	N/A N/A	N/A	N/A	0.15 0.15
24.50	16.22	1.12 0.45	4.38 2.74	silty clay to clay clayey silt to silty clay	-12.0	1.00	17 8	2,820	1,790	1,666 1,723	2.77	N/A N/A	N/A N/A	0.943	N/A N/A	0.387	N/A N/A			N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A	N/A N/A	N/A N/A	0.15
25.50	16.88	0.36	2.12	clayey silt to silty clay	-14.0	1.00	8	3,060	1,906	1,781	2.73	N/A	N/A	0.941	N/A	0.393	N/A	N/A	NO N	V/A	N/A	N/A	N/A	N/A	N/A	N/A	0.15
26.50 27.50	24.82 42.58	0.57	2.28 1.25	sandy silt to clayey silt silty sand to sandy silt	-15.0 -16.0	1.00	10	3,180	1,963	1,838	2.62	N/A 1.87	N/A 79.27	0.938	N/A 0.997	0.395	N/A 0.126			N/A	N/A 17.4	N/A 912	N/A 22.5	N/A N/A	N/A 1.225	N/A 0.15	0.15
28.50	265.25	1.10	0.42	gravelly sand to sand	-17.0	1.00	44	3,420	2,078	1,954	1.35	1.00	260.20	0.934	0.985	0.399	N/A	N/A I		N/A	N/A	N/A	44.7	N/A	0.000	0.00	0.00
29.50	475.60	1.49	0.31	gravelly sand to sand #N/A	-18.0	1.00	79	3,540	2,136	2,011	1.08	1.00	460.21	0.931	0.974	0.401	N/A	N/A I	NO N	N/A	N/A	N/A	79.0	N/A	0.000	0.00	0.00
				#N/A																							
				#N/A #N/A																							
				#N/A #N/A																							
				#N/A																							
				#N/A #N/A																							
				#N/A																							
				#N/A #N/A																						—	
				#N/A																							
				#N/A #N/A																							
				#N/A																							
				#N/A #N/A																							
				#N/A #N/A																							
				#N/A																							
				#N/A #N/A																							
				#N/A																						<u> </u>	
				#N/A #N/A			-	1																			
				#N/A																							
				#N/A #N/A																							
				#N/A #N/A																							
				#N/A																						<u> </u>	
				#N/A #N/A						1		-				1											
				#N/A																							
																					max=	912					

912 avg=

> CPT-12-11 Liquefaction Analysis.XLS Output Sheet

(Engineer: Curt Scheyhing)

PROJECT INFORMATION		
Project Name	Marina Del Mar - Parcel 44	
Project No.	LA-1049	
Location	Los Angeles	
Exploration No.	CPT-12-12	
GENERAL INPUT DATA		
Ground Surf Eley During Test	14 00 ft	

GENERAL INPUT DATA		
Ground Surf. Elev. During Test	14.00 ft	
GWT Elev. During Test	-1.00 ft	
GWT Elev. For Design	5.00 ft	
Total Soil Unit Weight, γ _t	120.00 pcf	
Earthquake Magnitude, Meq	6.80	
Peak Ground Acceleration, Amax	0.40 g	
Required Factor of Safety	1.30	

REFERENCES

Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and I.M. Idriss, 2001)

+ CSR = 0.65 $A_{max} (\sigma_v/\sigma_v') r_d$

++++FS = (CRF₄/CSR) MSF K_σ K_{σ→∞} where CRR₇₅ is evaluated from direct CPT data, K_σ =1.0 and MSF = 1.28

* Residual strength values of liquefied soils are evaluated from converted SPT blow counts using the median curve by Seed & Harder (1990)

** Ground settlements are evaluated from converted SPT blow counts using the method developed by Tokimatsu and Seed (1987).

Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change.

GWT Depth During Test, Zw = GWT Depth For Design, Zwd = 15.00 ft below ground surface 9.00 ft below ground surface

*** SUMMARY OF RESULTS ***

Total Thickness of Liquefiable Soils = 3.00 feet Earthquake-Induced Settlements:

- Liquefaction-Induced Settlement =

0.14 inches <--- Saturated Sands - Seismic Compaction Settlement = 0.02 inches <--- Dry or Unsaturated Sands

Total: 0.15 inches

	INPUT SOIL	PROFILE (C	PT DATA)		SOIL LIQUEFACTION POTENTIAL ANALYSIS (1996 NCEER & 1998 NCEER/NSF WORKSHOPS) +												DESII	DUAL STRE	NCTH*		CPOUNT	SETTLEM	GENT **			
	EG CT SOIL	KOTILE (C	II DAIA)		:		SOIL LIQUE					K & 1770 110	EER/NOT V					Factor of	KESH		TOTAL		GROUNE	SETTLES	112.11	
Soil	Average	Average	Average		D. (1			Total Vert.	Effective Vert.	Effective Vert.	Soil Behavior	Fines	Corrected	Shear Stress	Correction for High	Cyclic Stress	Cyclic	Safety Against	SPT Blow	Fines Corrected	Residual	Fines Corrected	Cyclic		Layer	Cumulativ
Soil Depth	Cone Tip	Sleeve	Friction		Bottom of Layer	Thin Layer	Equiv. SPT	Stress	Stress	Stress	Type	Correction		Reduction			Res.	Liqefaction Lique		SPT Blow	Shear	SPT Blow	Shear	Vol.	Settlemen	e Settlement
During Test	Resistance	Friction	Ratio	Soil Behavior Type	Elevation	Correction Factor	Blow Count		(Design)	(Test)	Index	Factor	Resistance	Coeff.	Stress	++	Ratio	+++ v?	Correction	Count	Strength	Count	Strain	Strain	t	Profile
(ft)	q _{t-avg} (tsf)	f _{s-avg} (tsf)	R _{f-avg} (%)	(Robertson et al., 1983)	(ft)	(Lunne, et al., 1997)	N_{60} (blows/ft)	σ _v (psf)	σ _{v'} (psf)	σ _{v'} (psf)	I,	\mathbf{K}_{c}	\mathbf{q}_{ctNes}	\mathbf{r}_{d}	K,	CSR	CRR _{7.5}	FS	N _{corr.}	$(N_1)_{60cs}$	$S_r(psf)$	$(N_1)_{60cs}$	γ _c (%)	& _v (%)	S _i (in.)	(in.)
0.50	49.63	0.89	1.79	silty sand to sandy silt	13.0	1.66	27	60	60	60	1.48	1.00	474.46	0.999	N/A	0.260	N/A	N/A NO	N/A	N/A	N/A	60.9	0.011	0.000	0.00	0.15
1.50 2.50	23.03 49.13	0.78	3.37	clayey silt to silty clay silty sand to sandy silt	12.0 11.0	1.00	12	180 300	180 300	180 300	2.36	2.16 1.30	165.78 164.33	0.997	N/A N/A	0.259	N/A N/A	N/A NO N/A NO		N/A N/A	N/A N/A	N/A 38.4	N/A 0.029	N/A 0.023	N/A 0.00	0.15
3.50	69.33	0.57	0.83	sand to salldy sand	10.0	1.00	17	420	420	420	1.72	1.05	159.13	0.992	N/A	0.258	N/A	N/A NO		N/A	N/A	33.4	0.025	0.034	0.00	0.15
4.50 5.50	44.70	0.53	1.19	silty sand to sandy silt	9.0	1.00	15	540	540	540	2.01	1.31	113.11	0.990	N/A	0.257	N/A	N/A NO	N/A	N/A	N/A	35.4	0.040	0.035	0.00	0.14
6.50	37.38 41.75	0.37 0.32	1.00 0.77	silty sand to sandy silt silty sand to sandy silt	8.0 7.0	1.00 1.66	12 23	660 780	660 780	660 780	2.06	1.39	90.14 110.69	0.987 0.985	N/A N/A	0.257	N/A N/A	N/A NO N/A NO	N/A N/A	N/A N/A	N/A N/A	30.4 49.3	0.047	0.048	0.01	0.14
7.50	6.92	0.16	2.26	silty clay to clay	6.0	1.00	5	900	900	900	2.86	N/A	N/A	0.983	N/A	0.255	N/A	N/A NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.14
8.50 9.50	8.77 17.98	0.37	4.18 5.50	clay	5.0 4.0	1.00	9	1,020 1,140	1,020 1,109	1,020 1,140	2.97 2.83	N/A N/A	N/A N/A	0.980	N/A N/A	0.255	N/A N/A	N/A NO N/A NO	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.14
10.50	14.50	0.71	4.90	clay	3.0	1.00	15	1,260	1,166	1,260	2.88	N/A	N/A	0.976	N/A	0.274	N/A	N/A NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.14
11.50	7.60	0.38	4.95	clay	2.0	1.00	8	1,380	1,224	1,380	3.12	N/A	N/A	0.973	N/A	0.285	N/A	N/A NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.14
12.50 13.50	5.88 5.18	0.24	4.10 3.28	clay	0.0	1.00	6	1,500 1,620	1,282 1,339	1,500 1,620	3.18	N/A N/A	N/A N/A	0.971	N/A N/A	0.295	N/A N/A	N/A NO N/A NO	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.14
14.50	8.02	0.23	2.85	silty clay to clay	-1.0	1.00	5	1,740	1,397	1,740	2.99	N/A	N/A	0.966	N/A	0.313	N/A	N/A NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.14
15.50 16.50	12.27	0.33	2.68	clayey silt to silty clay	-2.0 -3.0	1.00	6	1,860 1,980	1,454	1,829	2.83	N/A	N/A	0.964	N/A	0.320	N/A	N/A NO N/A NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.14
17.50	10.70	0.25	2.75	silty clay to clay clayey silt to silty clay	-3.0	1.00	5	2,100	1,512 1,570	1,944	2.96	N/A N/A	N/A N/A	0.962	N/A N/A	0.327	N/A N/A	N/A NO N/A NO	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.14
18.50	9.17	0.16	1.73	clayey silt to silty clay	-5.0	1.00	5	2,220	1,627	2,002	2.87	N/A	N/A	0.957	N/A	0.339	N/A	N/A NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.14
19.50 20.50	13.00 12.36	0.33	2.50 3.75	clayey silt to silty clay clay	-6.0 -7.0	1.00	7	2,340 2,460	1,685 1,742	2,059 2,117	2.84	N/A N/A	N/A N/A	0.955 0.952	N/A N/A	0.345	N/A N/A	N/A NO N/A NO		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.14 0.14
21.50	17.52	0.74	4.22	clay	-8.0	1.00	18	2,580	1,800	2,174	2.89	N/A	N/A	0.950	N/A	0.354	N/A	N/A NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.14
22.50 23.50	20.67 20.18	0.66	3.19 2.65	clayey silt to silty clay	-9.0 -10.0	1.00 1.00	10	2,700 2,820	1,858 1,915	2,232 2,290	2.76 2.73	N/A N/A	N/A	0.948 0.945	N/A N/A	0.358	N/A N/A	N/A NO N/A NO		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A	N/A N/A	0.14 0.14
24.50	21.77	0.54	3.14	clayey silt to silty clay clayey silt to silty clay	-10.0	1.00	11	2,820	1,913	2,290	2.75	N/A	N/A N/A	0.943	N/A N/A	0.362	N/A	N/A NO		N/A	N/A N/A	N/A N/A	N/A	N/A N/A	N/A	0.14
25.50	20.32	0.75	3.69	silty clay to clay	-12.0	1.00	14	3,060	2,030	2,405	2.83	N/A	N/A	0.941	N/A	0.369	N/A	N/A NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.14
26.50 27.50	22.40 93.25	0.69	3.08 1.16	clayey silt to silty clay sand to silty sand	-13.0 -14.0	1.00	23	3,180	2,088 2,146	2,462	2.75 1.99	N/A 1.29	N/A 115.94	0.938	N/A 0.976	0.372	N/A 0.225	N/A NO 0.754 YES	N/A	N/A 22.1	N/A 1.200	N/A 24.3	N/A N/A	N/A 0.909	N/A	0.14
28.50	121.28	1.17	0.96	sand to silty sand	-15.0	1.00	30	3,420	2,203	2,578	1.86	1.15	132.84	0.934	0.963	0.377	0.223	0.979 YES	1.3	28.0	1,200	30.5	N/A	0.083	0.01	0.03
29.50	213.15	0.97	0.46	sand	-16.0	1.00	43	3,540	2,261	2,635	1.46	1.00	200.48	0.931	0.952	0.379	N/A	N/A NO	N/A	N/A	N/A	37.1	N/A	0.025	0.00	0.01
30.50 31.50	350.87 493.11	1.63 3.09	0.46	gravelly sand to sand gravelly sand to sand	-17.0 -18.0	1.00	58 82	3,660 3,780	2,318 2,376	2,693 2,750	1.31	1.00	325.88 452.42	0.926	0.943 0.933	0.380	N/A N/A	N/A NO N/A NO	N/A N/A	N/A N/A	N/A N/A	50.4 70.1	N/A N/A	0.000	0.00	0.01
32.50	558.93	2.88	0.52	gravelly sand to sand	-19.0	1.00	93	3,900	2,434	2,808	1.21	1.00	506.70	0.909	0.925	0.379	N/A	N/A NO	N/A	N/A	N/A	78.6	N/A	0.000	0.00	0.01
33.50 34.50	575.72 413.05	3.33 2.28	0.58 0.55	gravelly sand to sand gravelly sand to sand	-20.0 -21.0	1.00 1.66	96 114	4,020 4,140	2,491 2,549	2,866 2,923	1.24	1.00	515.85 605.82	0.901	0.916 0.908	0.378	N/A N/A	N/A NO N/A NO	N/A N/A	N/A N/A	N/A N/A	80.2 94.3	N/A N/A	0.000	0.00	0.01
35.50	172.18	0.86	0.50	sand sand	-22.0	1.00	34	4,260	2,606	2,981	1.59	1.00	150.83	0.885	0.900	0.376	0.399	1.227 YES	0.0	28.2	1,200	28.2	N/A	0.110	0.00	0.00
36.50	274.98 462.32	1.61	0.59	sand	-23.0	1.00	55 77	4,380	2,664	3,038	1.48	1.00	238.26	0.877	0.892	0.375	N/A	N/A NO	N/A	N/A	N/A	44.6	N/A	0.000	0.00	0.00
37.50 38.50	462.32 329.55	2.42 1.37	0.52 0.42	gravelly sand to sand gravelly sand to sand	-24.0 -25.0	1.00	55	4,500 4,620	2,722 2,779	3,096 3,154	1.28	1.00	396.32 279.56	0.869	0.884 0.877	0.373	N/A N/A	N/A NO N/A NO	N/A N/A	N/A N/A	N/A N/A	61.9 43.7	N/A N/A	0.000	0.00	0.00
39.50	355.45	1.37	0.39	gravelly sand to sand	-26.0	1.00	59	4,740	2,837	3,211	1.28	1.00	298.46	0.852	0.870	0.370	N/A	N/A NO	N/A	N/A	N/A	46.8	N/A	0.000	0.00	0.00
40.50	436.57	2.41	0.55	gravelly sand to sand #N/A	-27.0	1.00	73	4,860	2,894	3,269	1.33	1.00	362.90	0.844	0.863	0.369	N/A	N/A NO	N/A	N/A	N/A	56.9	N/A	0.000	0.00	0.00
				#N/A				1																		
				#N/A																						
				#N/A #N/A				-		1									1	1						$\overline{}$
				#N/A																						
		1		#N/A #N/A	-					1		-						 	1							
				#N/A																						
	-			#N/A #N/A						1		<u> </u>							1							
				#N/A #N/A	-			 		 		 							 							$\overline{}$
				#N/A																						
				#N/A #N/A				-		1		-							1	1						-
		1		#N/A #N/A				1		1		1							1	1						
				#N/A																						
		1		#N/A #N/A	-		-			1		1							1							\vdash
				#N/A																						
				#N/A						1									1	max=	1.200					
																				max= min=	1,200					

1.200 avg=

> CPT-12-12 Liquefaction Analysis.XLS Output Sheet

(Engineer: Curt Scheyhing)

Earthquake Magnitude, Meq

Peak Ground Acceleration, Am

Required Factor of Safety

PROJECT INFORMATION		
Project Name	Marina Del Mar - Parcel 44	
Project No.	LA-1049	
Location	Los Angeles	
Exploration No.	CPT-12-13	
GENERAL INPUT DATA Ground Surf, Elev, During Test	13.00 ft	
	13.00 ft	
GWT Elev. During Test	-0.10 ft	
GWT Elev. For Design	5.00 ft	
Total Soil Unit Weight, γ _t	120.00 pcf	

6.80

0.40 g

1.30

REFERENCES

Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and I.M. Idriss, 2001)

+ CSR = 0.65 $A_{max} (\sigma_v/\sigma_v') r_d$

++++FS = (CRF₄/CSR) MSF K_σ K_{σ→∞} where CRR₇₅ is evaluated from direct CPT data, K_σ =1.0 and MSF = 1.28

* Residual strength values of liquefied soils are evaluated from converted SPT blow counts using the median curve by Seed & Harder (1990)

** Ground settlements are evaluated from converted SPT blow counts using the method developed by Tokimatsu and Seed (1987).

Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change.

GWT Depth During Test, Zw = GWT Depth For Design, Zwd = 13.10 ft below ground surface 8.00 ft below ground surface

*** SUMMARY OF RESULTS ***

Total Thickness of Liquefiable Soils = 5.00 feet Earthquake-Induced Settlements:

- Liquefaction-Induced Settlement =

0.97 inches <--- Saturated Sands - Seismic Compaction Settlement = 0.01 inches <--- Dry or Unsaturated Sands

Total: 0.98 inches

	INPUT SOIL	PROFILE (C	PT DATA)				SOIL LIQUEI	FACTION F	OTENTIAL A	NALYSIS (1	996 NCEE	R & 1998 NO	CEER/NSF W	VORKSHO	OPS) +				RESII	DUAL STRE	NGTH *		GROUNE	SETTLEM	IENT **	
								Total	Effective	Effective	Soil			Shear	Correction	Cyclic		Factor of Safety		Fines		Fines				
Soil	Average	Average	Average		Bottom of			Vert.	Vert.	Vert.	Behavior	Fines	Corrected	Stress	for High	Stress	Cyclic	Against	SPT Blow		Residual	Corrected	Cyclic		Layer	Cumulativ
Depth	Cone Tip	Sleeve	Friction		Layer	Thin Layer	Equiv. SPT	Stress	Stress	Stress	Type	Correction	Tip	Reduction	Overburden	Ratio	Res.	Liqefaction Liqu	ef Count	SPT Blow	Shear	SPT Blow	Shear	Vol.	Settlemen	Settlement
During Test	Resistance	Friction	Ratio	Soil Behavior Type	Elevation	Correction Factor	Blow Count		(Design)	(Test)	Index	Factor	Resistance	Coeff.	Stress	++	Ratio	+++ y 2			Strength	Count	Strain	Strain	t	Profile
(ft)	$\mathbf{q}_{\text{t-avg}}\left(\text{tsf}\right)$	$\mathbf{f}_{\text{s-avg}}\left(\text{tsf}\right)$			(ft)	(Lunne, et al., 1997)	N ₆₀ (blows/ft)		$\sigma_{v'}$ (psf)	$\pmb{\sigma}_{v'} \ (psf)$	I,	K _c	$\mathbf{q}_{\mathrm{c1Nes}}$	$\mathbf{r}_{\scriptscriptstyle \mathrm{d}}$	Kσ	CSR	CRR _{7.5}	FS	N _{corr.}	$(N_1)_{60cs}$	S _r (psf)	$(N_1)_{60cs}$	γ _c (%)	& _v (%)	S _i (in.)	(in.)
0.50 1.50	28.95 51.27	0.47	1.61 0.61	sandy silt to clayey silt sand to silty sand	12.0 11.0	1.00	12	60 180	60 180	60 180	1.89	1.18	197.84 170.89	0.999	N/A N/A	0.260	N/A N/A	N/A NO		N/A N/A	N/A N/A	28.6 25.3	N/A 0.026	N/A 0.034	N/A 0.00	0.98
2.50	100.75	0.47	0.47	sand to sirty sand	10.0	1.00	20	300	300	300	1.38	1.00	260.14	0.994	N/A	0.258	N/A	N/A NO		N/A	N/A	34.3	0.020	0.028	0.00	0.97
3.50	120.30	0.62	0.51	sand	9.0	1.00	24	420	420	420	1.40	1.00	262.52	0.992	N/A	0.258	N/A	N/A NO		N/A	N/A	40.9	0.034	0.000	0.00	0.97
4.50 5.50	66.72 22.08	0.49	0.73 1.02	sand to silty sand sandy silt to clayey silt	8.0 7.0	1.66 1.66	28 15	540 660	540 660	540 660	1.43	1.00	212.59 78.92	0.990	N/A N/A	0.257	N/A N/A	N/A NO		N/A N/A	N/A N/A	51.7 34.8	0.035 N/A	0.000 N/A	0.00 N/A	0.97 0.97
6.50	8.15	0.10	1.26	clayey silt to silty clay	6.0	1.00	4	780	780	780	2.62	N/A	N/A	0.985	N/A	0.256	N/A	N/A NO		N/A	N/A	N/A	N/A	N/A	N/A	0.97
7.50	16.80	0.64	3.82	silty clay to clay	5.0	1.00	11	900	900	900	2.69	N/A	N/A	0.983	N/A	0.255	N/A	N/A NO		N/A	N/A	N/A	N/A	N/A	N/A	0.97
8.50 9.50	18.45 13.65	0.69	3.74 2.94	silty clay to clay clayey silt to silty clay	4.0 3.0	1.00	12	1,020 1,140	989 1.046	1,020 1,140	2.68	N/A N/A	N/A N/A	0.980	N/A N/A	0.263	N/A N/A	N/A NO		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.97
10.50	8.40	0.28	3.31	clay	2.0	1.00	8	1,260	1,104	1,260	2.95	N/A	N/A	0.976	N/A	0.289	N/A	N/A NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.97
11.50 12.50	6.43	0.25	3.78 2.38	clay silty clay to clay	1.0	1.00	6	1,380 1,500	1,162 1,219	1,380 1,500	3.10 2.96	N/A N/A	N/A N/A	0.973	N/A N/A	0.301	N/A N/A	N/A NO		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.97 0.97
13.50	11.10	0.17	2.34	clayey silt to silty clay	-1.0	1.00	6	1,620	1,219	1,595	2.90	N/A N/A	N/A N/A	0.971	N/A N/A	0.311	N/A N/A	N/A NO		N/A	N/A N/A	N/A N/A	N/A	N/A N/A	N/A	0.97
14.50	12.32	0.29	2.37	clayey silt to silty clay	-2.0	1.00	6	1,740	1,334	1,653	2.77	N/A	N/A	0.966	N/A	0.328	N/A	N/A NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.97
15.50 16.50	10.13 9.13	0.19	1.89	clayey silt to silty clay clayey silt to silty clay	-3.0 -4.0	1.00	5	1,860 1,980	1,392 1,450	1,710	2.81	N/A N/A	N/A N/A	0.964	N/A N/A	0.335	N/A N/A	N/A NO		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.97
17.50	13.40	0.15	1.93	clayey silt to silty clay	-5.0	1.00	7	2,100	1,507	1,825	2.73	N/A	N/A	0.959	N/A	0.347	N/A	N/A NO		N/A	N/A	N/A	N/A	N/A	N/A	0.97
18.50	16.75	0.21	1.25	sandy silt to clayey silt	-6.0	1.00	7	2,220	1,565	1,883	2.55	3.04	61.23	0.957	1.000	0.353	0.101	0.369 YE	2.8	9.7	296	13.3	N/A	2.087	0.25	0.72
19.50 20.50	12.20 12.97	0.31	2.51	clayey silt to silty clay silty clay to clay	-7.0 -8.0	1.00	6	2,340 2,460	1,622 1,680	1,941	2.85 2.90	N/A N/A	N/A N/A	0.955 0.952	N/A N/A	0.358	N/A N/A	N/A NO		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.72 0.72
21.50	14.03	0.52	3.70	silty clay to clay	-9.0	1.00	9	2,580	1,738	2,056	2.92	N/A	N/A	0.950	N/A	0.367	N/A	N/A NO		N/A	N/A	N/A	N/A	N/A	N/A	0.72
22.50	25.75	0.63	2.43	sandy silt to clayey silt	-10.0	1.00	10	2,700	1,795	2,113	2.60	3.32	92.67	0.948	1.000	0.371	0.154	0.534 YE	S 2.8	12.8	496	17.0	N/A	1.684	0.20	0.52
23.50 24.50	28.73 21.55	0.96 0.75	3.35 3.45	clayey silt to silty clay clayey silt to silty clay	-11.0 -12.0	1.00 1.00	14	2,820 2,940	1,853 1,910	2,171	2.66 2.78	N/A N/A	N/A N/A	0.945	N/A N/A	0.374	N/A N/A	N/A NO		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.52 0.52
25.50	19.35	0.50	2.57	clayey silt to silty clay	-13.0	1.00	10	3,060	1,968	2,286	2.74	N/A	N/A	0.941	N/A	0.380	N/A	N/A NO		N/A	N/A	N/A	N/A	N/A	N/A	0.52
26.50 27.50	36.03 56.90	0.88	2.42	sandy silt to clayey silt	-14.0	1.00	14	3,180	2,026	2,344	2.51	2.83	101.38 80.92	0.938	0.997	0.383	0.177	0.591 YE 0.426 YE	S 2.8	16.1	785	21.0	N/A	1.330	0.16	0.36
27.50	56.90 123.22	0.52	0.92	sand to silty sand sand	-15.0 -16.0	1.00	14 25	3,300	2,083	2,401 2,459	2.10 1.78	1.45	80.92 129.90	0.936	0.989	0.385	0.129	0.426 YE 0.918 YE	S 1.3 S 0.0	22.2	619 1,200	16.1 22.2	N/A N/A	1.791	0.21	0.15
29.50	476.62	2.55	0.53	gravelly sand to sand	-17.0	1.00	79	3,540	2,198	2,517	1.25	1.00	454.60	0.931	0.963	0.390	N/A	N/A NO	N/A	N/A	N/A	70.8	N/A	0.000	0.00	0.00
30.50 31.50	544.30 495.04	2.40	0.44	gravelly sand to sand gravelly sand to sand	-18.0 -19.0	1.00	91 83	3,660 3,780	2,256 2,314	2,574	1.15	1.00	512.49 460.27	0.926	0.953	0.390	N/A N/A	N/A NO		N/A N/A	N/A N/A	80.0 71.9	N/A N/A	0.000	0.00	0.00
32.50	342.78	1.00	0.49	gravelly sand to sand	-20.0	1.00	57	3,900	2,371	2,689	1.19	1.00	314.81	0.909	0.943	0.389	N/A	N/A NO		N/A	N/A	49.3	N/A	0.000	0.00	0.00
33.50	422.53	1.97	0.47	gravelly sand to sand	-21.0	1.00	70	4,020	2,429	2,747	1.26	1.00	383.42	0.901	0.925	0.388	N/A	N/A NO		N/A	N/A	60.1	N/A	0.000	0.00	0.00
34.50 35.50	342.05 366.27	2.11	0.62	gravelly sand to sand gravelly sand to sand	-22.0 -23.0	1.00	57 61	4,140 4,260	2,486 2,544	2,805 2,862	1.41	1.00	306.77 324.75	0.893	0.917	0.387	N/A N/A	N/A NO		N/A N/A	N/A N/A	48.1 51.0	N/A N/A	0.000	0.00	0.00
36.50	596.02	3.61	0.61	gravelly sand to sand	-24.0	1.00	99	4,380	2,602	2,920	1.25	1.00	522.58	0.877	0.900	0.384	N/A	N/A NO		N/A	N/A	82.2	N/A	0.000	0.00	0.00
37.50	694.00	5.20	0.75	gravelly sand to sand	-25.0	1.00	116	4,500	2,659 2,717	2,977	1.30	1.00	601.86	0.869	0.892	0.382	N/A	N/A NO		N/A	N/A	94.8	N/A	0.000	0.00	0.00
38.50 39.50	588.15 422.48	3.87 1.41	0.66	gravelly sand to sand gravelly sand to sand	-26.0 -27.0	1.00	98 70	4,620 4,740	2,717	3,035	1.29	1.00	504.63 358.71	0.861	0.885	0.381	N/A N/A	N/A NO		N/A N/A	N/A N/A	79.6 56.6	N/A N/A	0.000	0.00	0.00
40.50	384.95	1.29	0.34	gravelly sand to sand	-28.0	1.00	64	4,860	2,832	3,150	1.22	1.00	323.50	0.844	0.870	0.377	N/A	N/A NO	N/A	N/A	N/A	51.1	N/A	0.000	0.00	0.00
41.50 42.50	349.96 389.30	2.54	0.72	gravelly sand to sand	-29.0 -30.0	1.00 1.00	58 65	4,980 5,100	2,890 2,947	3,208 3,265	1.48	1.00	291.15 320.70	0.836	0.863 0.856	0.375	N/A N/A	N/A NO		N/A N/A	N/A N/A	46.1 50.8	N/A N/A	0.000	0.00	0.00
42.50	389.30 451.33	2.01	0.52	gravelly sand to sand gravelly sand to sand	-30.0	1.00	75	5,100	3,005	3,323	1.34	1.00	368.22	0.828	0.850	0.373	N/A N/A	N/A NO		N/A N/A	N/A N/A	50.8	N/A N/A	0.000	0.00	0.00
44.50	435.12	1.87	0.43	gravelly sand to sand	-32.0	1.00	73	5,340	3,062	3,381	1.26	1.00	351.64	0.812	0.843	0.368	N/A	N/A NO	N/A	N/A	N/A	55.8	N/A	0.000	0.00	0.00
45.50 46.50	425.65 375.28	2.37	0.56	gravelly sand to sand gravelly sand to sand	-33.0 -34.0	1.00	71 63	5,460 5,580	3,120 3,178	3,438 3,496	1.35	1.00	340.80 297.73	0.804	0.837	0.366	N/A N/A	N/A NO		N/A N/A	N/A N/A	54.1 47.3	N/A N/A	0.000	0.00	0.00
47.50	421.02	2.83	0.67	gravelly sand to sand	-35.0	1.00	70	5,700	3,235	3,553	1.42	1.00	331.03	0.787	0.825	0.361	N/A	N/A NO	N/A	N/A	N/A	52.6	N/A	0.000	0.00	0.00
48.50	408.48	2.95	0.72	gravelly sand to sand	-36.0	1.00	68	5,820	3,293	3,611	1.45	1.00	318.35	0.779	0.819	0.358	N/A	N/A NO		N/A	N/A	50.7	N/A	0.000	0.00	0.00
49.50 50.50	445.62 328.55	2.75	0.62	gravelly sand to sand gravelly sand to sand	-37.0 -38.0	1.00	74 55	5,940 6,060	3,350 3,408	3,669 3,726	1.38	1.00	344.30 251.69	0.771	0.814	0.355	N/A N/A	N/A NO		N/A N/A	N/A N/A	54.8 40.1	N/A N/A	0.000	0.00	0.00
51.50	363.18	2.54	0.70	gravelly sand to sand	-39.0	1.00	61	6,180	3,466	3,784	1.48	1.00	275.90	0.755	0.803	0.350	N/A	N/A NO	N/A	N/A	N/A	44.0	N/A	0.000	0.00	0.00
52.50	422.44	3.30	0.78	gravelly sand to sand	-40.0 -41.0	1.00	70 80	6,300	3,523	3,841	1.48	1.00	318.29	0.747	0.797	0.347	N/A	N/A NO		N/A	N/A	50.8	N/A	0.000	0.00	0.00
53.50 54.50	399.95 365.12	3.49 4.03	0.87 1.10	sand sand	-41.0 -42.0	1.00	73	6,420 6,540	3,581 3,638	3,899 3,957	1.53	1.00	298.91 270.70	0.739	0.792	0.344	N/A N/A	N/A NO		N/A N/A	N/A N/A	57.3 51.9	N/A N/A	0.000	0.00	0.00
55.50	387.10	3.94	1.02	sand	-43.0	1.00	77	6,660	3,696	4,014	1.60	1.00	284.76	0.722	0.782	0.338	N/A	N/A NO	N/A	N/A	N/A	54.6	N/A	0.000	0.00	0.00
56.50 57.50	506.82 557.47	3.42 3.38	0.67 0.61	gravelly sand to sand	-44.0 -45.0	1.00	84 93	6,780	3,754 3,811	4,072	1.39	1.00	369.95 403.84	0.714	0.777	0.335	N/A	N/A NO		N/A N/A	N/A	59.2 64.7	N/A N/A	0.000	0.00	0.00
57.50	456.07	4.26	0.61	gravelly sand to sand sand	-45.0 -46.0	1.00	91	6,900 7,020	3,869	4,129 4,187	1.53	1.00	403.84 327.91	0.706	0.773	0.332	N/A N/A	N/A NO		N/A N/A	N/A N/A	63.0	N/A N/A	0.000	0.00	0.00
59.50	383.92	4.97	1.29	sand	-47.0	1.00	77	7,140	3,926	4,245	1.69	1.03	282.23	0.690	0.764	0.326	N/A	N/A NO		N/A	N/A	52.7	N/A	0.000	0.00	0.00
			-	#N/A #N/A				-		-	-	-				-			-							
		1	1	#14/F3				1		1		1	1	1	1	1		1	1	max=	1,200	1		1	1	

679 avg=

CPT-12-13 Liquefaction Analysis.XLS Output Sheet

(Engineer: Curt Scheyhing)

Total Soil Unit Weight, Yt

Earthquake Magnitude, Mea

Peak Ground Acceleration, An

Required Factor of Safety

PROJECT INFORMATION		
Project Name	Marina Del Mar - Parcel 44	
Project No.	LA-1049	
Location	Los Angeles	
Exploration No.	CPT-12-14	
GENERAL INPUT DATA		
Ground Surf. Elev. During Test	10.00 ft	
GWT Elev. During Test	2.50 ft	
GWT Elev. For Design	5.00 ft	

120.00 pcf

6.80

0.40 g

1.30

REFERENCES

Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and I.M. Idriss, 2001)

+ CSR = $0.65 A_{max} (\sigma_v/\sigma_v') r_d$

++++FS = (CRF₂/CSR) MSF K₀ K_{0→∞} where CRR_{7,5} is evaluated from direct CPT data, K₀ = 1.0 and MSF = 1.28

* Residual strength values of liquefied soils are evaluated from converted SPT blow counts using the median curve by Seed & Harder (1990)

** Ground settlements are evaluated from converted SPT blow counts using the method developed by Tokimatsu and Seed (1987).

Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change.

GWT Depth During Test, Zw = GWT Depth For Design, Zwd = 7.50 ft below ground surface 5.00 ft below ground surface

*** SUMMARY OF RESULTS ***

Total Thickness of Liquefiable Soils = 5.00 feet

Earthquake-Induced Settlements: - Liquefaction-Induced Settlement =

0.62 inches <--- Saturated Sands

Dry or Unsaturated Sands

	- Seismic Compaction Settlement =		0.00 inches	< Dry or Unsaturated Sands	
		Total:	0.62 inches	- '	
	•				_
INPUT SOIL PROFILE (CPT DATA)		S	OIL LIQUEFACTION	POTENTIAL ANALYSIS (1996 NCEER & 1998 N	CEER/NSF WORKSHOPS) +

	INFOT SOIL	THOTTEL (C					SOIL LIQUE		OTENTIAL A	111111111111111111111111111111111111111	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	a 1990 110	LILIU. IOI	Ombii	, .				1		UAL SIKE			OROC.12	SETTLEN		
																		Factor of							1		
								Total	Effective	Effective	Soil			Shear	Correction	Cyclic		Safety			Fines		Fines		1		Cumulativ
Soil	Average	Average	Average		Bottom of			Vert.	Vert.	Vert.	Behavior	Fines	Corrected	Stress	for High	Stress	Cyclic	Against		SPT Blow	Corrected	Residual	Corrected	Cyclic	1	Layer	e
Depth	Cone Tip	Sleeve	Friction		Layer	Thin Layer	Equiv. SPT	Stress	Stress	Stress	Type	Correction	Tip	Reduction	Overburder	Ratio	Res.	Liqefaction	T :	Count	SPT Blow	Shear	SPT Blow	Shear	Vol.	Settlemen	Settlement
	Resistance	Friction							(Design)	(Test)		Factor	Resistance		Stress		Ratio			C	Count			Strain	Strain		
During Test			Ratio	Soil Behavior Type	Elevation	Correction Factor	Blow Count		(Design)	(1est)	Index		Resistance	Coen.		++		+++	y ?	Correction		Strength	Count	Strain	Strain	t	Profile
(ft)	$\mathbf{q}_{t\text{-avg}}\left(t\mathbf{s}\mathbf{f}\right)$	f (tsf)	R _{f-avg} (%)	(Robertson et al., 1983)	(ft)	(Lunne, et al., 1997)	N ₆₀ (blows/ft)	σ _v (psf)	$\sigma_{v'}$ (psf)	σ _{v'} (psf)	I.	K.	\mathbf{q}_{c1Nes}	\mathbf{r}_{d}	K,	CSR	CRR ₇₅	FS		N _{corr.}	$(N_1)_{60cs}$	S _r (psf)	$(N_1)_{60cc}$	γ _c (%)	& _v (%)	S _i (in.)	(in.)
5.50	11.37	0.30	2.63	silty clay to clay	4.0	1.00	8	660	629	660	2.62	N/A	N/A	0.987	N/A	0.269	N/A	N/A	NO		N/A	N/A	N/A	N/A	N/A	N/A	0.62
6.50	9.67	0.50	5.09	clay	3.0	1.00	10	780	686	780											N/A						
											2.89	N/A	N/A	0.985	N/A	0.291	N/A	N/A	NO			N/A	N/A	N/A	N/A	N/A	0.62
7.50	8.23	0.37	4.43	clay	2.0	1.00	8	900	744	900	2.93	N/A	N/A	0.983	N/A	0.309	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.62
8.50	7.20	0.15	2.11	silty clay to clay	1.0	1.00	5	1,020	802	958	2.80	N/A	N/A	0.980	N/A	0.324	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.62
9.50	9.10	0.17	1.90	clayey silt to silty clay	0.0	1.00	5	1,140	859	1,015	2.71	N/A	N/A	0.978	N/A	0.337	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.62
10.50	10.73	0.20	1.83	clayey silt to silty clay	-1.0	1.00	5	1,260	917	1,073	2.66	N/A	N/A	0.976	N/A	0.349	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.62
11.50	20.52	0.38	1.85		-2.0	1.00	8	1,380	974	1.130	2.50	2.78	81.81	0.973	1.000	0.358	0.131	0.469	YES	2.8	13.7	568	18.1	N/A	1.551	0.19	0.44
12.50	46.23	0.29	0.63	sand to silty sand	-3.0	1.00	12	1,500	1.032	1,188	1.95	1.24	79.93	0.971	1.000	0.367	0.127		YES	1.3	16.3	806	18.2	N/A	1.558	0.19	0.25
13.50	42.83	0.41		silty sand to sandy silt	-4.0	1.66	24	1,620	1,090	1,246	1.79	1.10	105.42	0.969	1.000	0.374	0.189		YES	2.8	32.8	1,200	40.9	N/A	0.000	0.00	0.25
							7																				
14.50	13.08	0.31	2.36	clayey silt to silty clay	-5.0	1.00		1,740	1,147	1,303	2.71	N/A	N/A	0.966	N/A	0.381	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.25
15.50	13.07	0.27	2.04	clayey silt to silty clay	-6.0	1.00	7	1,860	1,205	1,361	2.69	N/A	N/A	0.964	N/A	0.387	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.25
16.50	13.17	0.28	2.13	clayey silt to silty clay	-7.0	1.00	7	1,980	1,262	1,418	2.71	N/A	N/A	0.962	N/A	0.392	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.25
17.50	15.63	0.26	1.65	sandy silt to clayey silt	-8.0	1.00	6	2,100	1,320	1,476	2.60	3.31	70.68	0.959	1.000	0.397	0.113	0.365	YES	2.8	10.1	316	13.7	N/A	2.018	0.24	0.01
18.50	11.22	0.40	3.51	silty clay to clay	-9.0	1.00	7	2,220	1,378	1,534	2.93	N/A	N/A	0.957	N/A	0.401	N/A	N/A	NO		N/A	N/A	N/A	N/A	N/A	N/A	0.01
19.50	13.82	0.45	3.22	silty clay to clay	-10.0	1.00	9	2,340	1,435	1,591	2.84	N/A	N/A	0.955	N/A	0.405	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.01
20.50	22.64	0.76	3.34	clayey silt to silty clay	-11.0	1.00	11	2,460	1,493	1,649	2.69	N/A	N/A	0.952	N/A	0.408	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.01
21.50	19.33	0.76	3.36		-12.0	1.00	10	2,460	1,493	1,049	2.09			0.952		0.408											0.01
				clayey silt to silty clay								N/A	N/A		N/A		N/A	N/A	NO		N/A	N/A	N/A	N/A	N/A	N/A	
22.50	19.52	0.54	2.76	clayey silt to silty clay	-13.0	1.00	10	2,700	1,608	1,764	2.71	N/A	N/A	0.948	N/A	0.414	N/A	N/A	NO		N/A	N/A	N/A	N/A	N/A	N/A	0.01
23.50	71.13	1.06		silty sand to sandy silt	-14.0	1.00	24	2,820	1,666	1,822		1.47	114.77	0.945	1.000	0.416	0.221		YES		27.6	1,200	34.8	N/A	0.052	0.01	0.00
24.50	284.05	3.98	1.40	sand	-15.0	1.00	57	2,940	1,723	1,879	1.69	1.03	314.73	0.943	1.000	0.418	N/A	N/A	NO		N/A	N/A	58.6	N/A	0.000	0.00	0.00
25.50	221.17	1.61	0.73	sand	-16.0	1.00	44	3,060	1,781	1,937	1.54	1.00	234.38	0.941	1.000	0.420	N/A	N/A	NO	N/A	N/A	N/A	44.9	N/A	0.000	0.00	0.00
26.50	347.78	1.46	0.42	gravelly sand to sand	-17.0	1.00	58	3,180	1,838	1,994	1.24	1.00	362.75	0.938	1.000	0.422	N/A	N/A	NO	N/A	N/A	N/A	58.0	N/A	0.000	0.00	0.00
27.50	372.13	1.32	0.35	gravelly sand to sand	-18.0	1.00	62	3,300	1.896	2,052	1.18	1.00	382.20	0.936	1.000	0.424	N/A	N/A	NO	N/A	N/A	N/A	61.2	N/A	0.000	0.00	0.00
28.50	553.42	1.46	0.26	gravelly sand to sand	-19.0	1.00	92	3,420	1,954	2,110	0.97	1.00	559.95		1.000		N/A	N/A	NO		N/A	N/A	89.8	N/A	0.000	0.00	0.00
20.50	555.12	1.10	0.20	#N/A	17.0	1.00	,	3,120	1,,,,,,,	2,110	0.77	1.00	337.73	0.751	1.000	0.123	. 1//11		.10	1011	10.1	1071	07.0		0.000	0.00	0.00
				#N/A						-																	
				#N/A																							
				#N/A																							
				#N/A																					1		1
				#N/A																					i		
				#N/A																							
				#N/A																					$\overline{}$		
-		_		#N/A						+						+											
										-						-											
				#N/A																							
				#N/A																							
				#N/A																							
				#N/A																							
				#N/A																					1		1
				#N/A																					ĺ	1	
				#N/A																							
				#N/A			1						1			1 1			t	i						1	
		1	1	#N/A			1		l	1					1	1 -				l	l				$\overline{}$	 	
				#N/A	_		+		l	+					+	+ +			1	l							
			-		—		+		l	1					-	+			-	l						\vdash	
-			-	#N/A	-		1			1					1	1			-								₩
				#N/A																							
				#N/A																							
				#N/A																					1		
				#N/A																					i .		
				#N/A																							
				#N/A																							
				#N/A																					$\overline{}$		
H		1	+	#N/A	H		1		l	1					1	1 -			 	1						+	-
										-						-											
-			-	#N/A	·		1		l	1					1	1 1			-							↓	
				#N/A			1			1					1				1								
L				#N/A						1					<u> </u>												
				#N/A			1								1				1	1							
				#N/A																					i		
				#N/A			1						1			1 1			t	i						1	
		1	1	#N/A			1		l	1					1	1 -				l					$\overline{}$	 	
				#N/A	_		+		l	+					+	+ +			1	l							
-			-	#N/A #N/A	-		1			+					1	1			-	-						\vdash	
			-		—		+		l	1					-	+			-	l						\vdash	
			1	#N/A			1			1					1	I				I							1
																					max=	1,200					

818 avg=

RESIDUAL STRENGTH *

GROUND SETTLEMENT **

CPT-12-14 Liquefaction Analysis.XLS Output Sheet

EVALUATION OF LIQUEFACTION POTENTIAL AND EARTHQUAKE-INDUCED GROUND SETTLEMENTS USING SPT DATA

GENERAL INPUT DATA ------ REFERENCES ---+ Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and L.M. Idriss, 2001) Marina Del Rey - Parcel 44 Project Name Location Marina Del Rey ++ Combination of corrrection factors for hammer energy ratio (C E), borehole diameter (C B), rod length (C R), and sampling method (C S). Correction Factor = C E C R C R C S GDC Project Number LA-1049 +++ $CSR = 0.65 A_{max} (\sigma_v/\sigma_v') r_d$ Exploration No. R-12-15 * FS = (CRR $_{7.5}$ /CSR) MSF K $_{\sigma}$ K $_{\alpha}$ where K $_{\alpha}$ =1.0 and MSF = 1.28 **Ground Surf. Elevation** 10.00 ft ** Sr value based on extrapolated median curve and limited to a maximum value of 1,200 psf (Seed & Harder, 1990) GWT Depth During Testing, $\boldsymbol{Z}_{\boldsymbol{w}}$ 13.00 ft *** Based on Tokimatsu and Seed (1987) and Pradel (1998). GWT Depth for Design, Z_{wd} 5.00 ft Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change. Soil Unit Weight, yt 120.00 pcf Earthquake Magnitude, M eq 6.80 ---- SUMMARY OF RESULTS ----Total Thickness of Liquefiable Soils = Peak Ground Acceelration, A max 0.40 g 5.00 feet Required FS 1.30 Earthquake-Induced Settlements: - Liquefaction-Induced Settlement = 0.21 inches <--- Saturated Sands - Seismic Compaction Settlement = 0.00 inches <--- Dry or Unsaturated Sands 0.21 inches Total:

	INPUT SO	IL PRO	OFILE					SOIL LI	QUEFACTI	ON POTENT	TIAL ANAL	YSIS (1996 N	CEER & 1	998 NCEER/N	SF WORK	SHOPS) +			RESIDU	AL STREN	GTH **	GROUND	SETTLE	MENT ***
Soil La Depth Thicl Z (ft) H	ness Tyl	il pe	Equivalent SPT Blow Count N (blows/ft)		Combined SPT Correction Factor ++	Bottom of Layer Elevation (ft)	Stress	Effective Vert. Stress (Design) σ _{v'} (psf)	Effective Vert. Stress (Testing) $\sigma_{v'}$ (psf)	SPT Stress Correction Factor+ C _N	Stress Corrected SPT Blow Count (N ₁) ₆₀	Fines Corrected SPT Blow Count $(N_1)_{60cs}$	Shear Stress Reduction Coeff.+ \mathbf{r}_{d}	Correction for High Overburden Stress+ K_{σ}	Cyclic Stress Ratio++ CSR	Cyclic Res. Ratio CRR _{7.5}	Factor of Safety Against Liqefaction * FS	Liquefy?		Fines Corrected SPT Blow Count $(N_1)_{60cs}$	$\begin{aligned} & Residual \\ & Shear \\ & Strength \\ & S_r(psf) \end{aligned}$	Cyclic Shear Strain ** γ_c (%)	Vol. Strain ** &v (%)	$\begin{array}{c} \text{Layer} \\ \text{Settlement} \\ ** \\ S_i(\text{in.}) \end{array}$
10.00	SM/	ML	14.7	15	1.09	-2.5	1200	888	1200	1.291	20.7	24.2	0.977	1.000	0.343	0.277	1.035	YES	1.3	22.0	1,200	N/A	0.357	0.214

EVALUATION OF LIQUEFACTION POTENTIAL AND EARTHQUAKE-INDUCED GROUND SETTLEMENTS USING SPT DATA

- GENERAL INPUT DATA ------- REFERENCES ---+ Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and L.M. Idriss, 2001) Marina Del Rey - Parcel 44 Project Name Location Marina Del Rey ++ Combination of corrrection factors for hammer energy ratio (C E), borehole diameter (C B), rod length (C R), and sampling method (C S). Correction Factor = C E C R C R C S GDC Project Number LA-1049 +++ $CSR = 0.65 A_{max} (\sigma_v/\sigma_v') r_d$ Exploration No. R-12-16 * FS = (CRR $_{7.5}$ /CSR) MSF K $_{\sigma}$ K $_{\alpha}$ where K $_{\alpha}$ =1.0 and MSF = 1.28 **Ground Surf. Elevation** 16.00 ft ** Sr value based on extrapolated median curve and limited to a maximum value of 1,200 psf (Seed & Harder, 1990) GWT Depth During Testing, $\boldsymbol{Z}_{\boldsymbol{w}}$ 14.00 ft *** Based on Tokimatsu and Seed (1987) and Pradel (1998). Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change. GWT Depth for Design, Z_{wd} 11.00 ft Soil Unit Weight, yt 120.00 pcf Earthquake Magnitude, M eq 6.80 ---- SUMMARY OF RESULTS ----Total Thickness of Liquefiable Soils = Peak Ground Acceelration, A max 0.40 g 10.00 feet Required FS 1.30 Earthquake-Induced Settlements: - Liquefaction-Induced Settlement = 0.16 inches <--- Saturated Sands - Seismic Compaction Settlement = 0.00 inches <--- Dry or Unsaturated Sands

Total:

INPUT SOIL PROFILE							SOIL LIQUEFACTION POTENTIAL ANALYSIS (1996 NCEER & 1998 NCEER/NSF WORKSHOPS) +													RESIDUAL STRENGTH **			GROUND SETTLEMENT ***		
Soil Depth Z (ft)	Layer Thickness H (ft)	USCS Soil Type	Equivalent SPT Blow Count N (blows/ft)		Combined SPT Correction Factor ++	Bottom of Layer Elevation (ft)	Total Vert. Stress (Design) σ_v (psf)	Effective Vert. Stress (Design) $\sigma_{v'}$ (psf)	Effective Vert. Stress (Testing) $\sigma_{v'}$ (psf)	SPT Stress Correction Factor+ C _N	Stress Corrected SPT Blow Count (N ₁) ₆₀	Fines Corrected SPT Blow Count (N ₁) _{60cs}	Shear Stress Reduction Coeff.+ \mathbf{r}_{d}	Correction for High Overburden Stress+ \mathbf{K}_{σ}	Cyclic Stress Ratio++ CSR	Cyclic Res. Ratio CRR _{7.5}	Factor of Safety Against Liqefaction *	Liquefy ?		Fines Corrected SPT Blow Count (N ₁) _{60cs}	$\begin{aligned} & Residual \\ & Shear \\ & Strength \\ & S_r(psf) \end{aligned}$	Cyclic Shear Strain ** \(\gamma_c\((\gamma)\)	Vol. Strain ** &\begin{align*} \(\begin{align*} \text{\$\pi_v\$} (\pi) \end{align*}	Layer Settlement ** S _i (in.)	
12.75	3.5	SP/SC	19.4	16	1.09	1.5	1530	1421	1530	1.143	24.2	28.2	0.970	1.000	0.272	0.379	1.790	NO	N/A	N/A	N/A	N/A	0.068	0.028	
20.00	5	SC	14.1	36	1.22	-6.5	2400	1838	2026	0.994	17.1	25.5	0.953	1.000	0.324	0.302	1.200	YES	2.9	20.0	1,183	N/A	0.121	0.073	
30.00	5	SP-SM	25.0	5	1.29	-16.5	3600	2414	2602	0.877	28.3	28.3	0.930	0.928	0.361	0.380	1.255	YES	0.5	28.8	1,200	N/A	0.096	0.057	

0.16 inches

EVALUATION OF LIQUEFACTION POTENTIAL AND EARTHQUAKE-INDUCED GROUND SETTLEMENTS USING SPT DATA

- GENERAL INPUT DATA ------ REFERENCES ---+ Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and L.M. Idriss, 2001) Marina Del Rey - Parcel 44 Project Name Location Marina Del Rey ++ Combination of corrrection factors for hammer energy ratio (C E), borehole diameter (C B), rod length (C R), and sampling method (C S). Correction Factor = C E C R C R C S GDC Project Number LA-1049 +++ $CSR = 0.65 A_{max} (\sigma_v/\sigma_v') r_d$ Exploration No. R-12-17 * FS = (CRR $_{7.5}$ /CSR) MSF K $_{\sigma}$ K $_{\alpha}$ where K $_{\alpha}$ =1.0 and MSF = 1.28 **Ground Surf. Elevation** 18.00 ft ** Sr value based on extrapolated median curve and limited to a maximum value of 1,200 psf (Seed & Harder, 1990) *** Based on Tokimatsu and Seed (1987) and Pradel (1998). GWT Depth During Testing, $\boldsymbol{Z}_{\boldsymbol{w}}$ 16.00 ft GWT Depth for Design, Z_{wd} 13.00 ft Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change. Soil Unit Weight, yt 120.00 pcf Earthquake Magnitude, M eq 6.80 ---- SUMMARY OF RESULTS ---Total Thickness of Liquefiable Soils = Peak Ground Acceelration, A max 0.40 g 4.50 feet Required FS 1.30 Earthquake-Induced Settlements: - Liquefaction-Induced Settlement = 0.19 inches <--- Saturated Sands - Seismic Compaction Settlement = 0.00 inches <--- Dry or Unsaturated Sands 0.19 inches Total:

INPUT SOIL PROFILE							SOIL LIQUEFACTION POTENTIAL ANALYSIS (1996 NCEER & 1998 NCEER/NSF WORKSHOPS) +											RESIDU	AL STREN	GTH **	GROUND SETTLEMENT ***			
Soil Depth Z (ft)	Layer Thickness H (ft)	USCS Soil Type	Equivalent SPT Blow Count N (blows/ft)	Fines Content FC (%)	Combined SPT Correction Factor ++ C	Layer	Total Vert. Stress (Design) σ_v (psf)		Effective Vert. Stress (Testing) $\sigma_{v'}$ (psf)	SPT Stress Correction Factor+ C _N	Stress Corrected SPT Blow Count (N ₁) ₆₀	Fines Corrected SPT Blow Count $(N_1)_{60cs}$	Shear Stress Reduction Coeff.+ r _d	Correction for High Overburden Stress+ K_{σ}	Ratio++ CSR	Cyclic Res. Ratio CRR _{7.5}	Factor of Safety Against Liqefaction *	Liquefy ?		Fines Corrected SPT Blow Count (N ₁) _{60cs}	$\begin{aligned} & Residual \\ & Shear \\ & Strength \\ & S_r(psf) \end{aligned}$	Cyclic Shear Strain ** γ_c (%)	** & _v (%)	$Layer \\ Settlement \\ ** \\ S_i(in.)$
15.25	4.5	SC	12.7	16	1.22	0.5	1830	1690	1830	1.045	16.2	19.8	0.964	1.000	0.272	0.213	1.009	YES	1.4	17.6	-758	N/A	0.344	0.186

APPENDIX D LATERAL SPREADING SCREENING ANALYSIS

3.5.19 Chemical Test Results

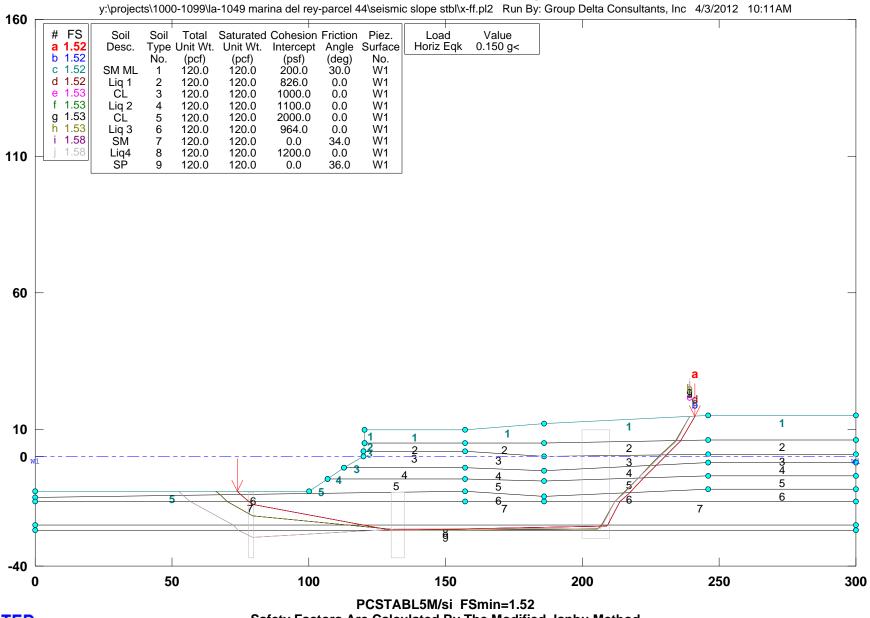
Chemical tests results (sulfate, chloride, resistivity, pH) for the onsite soils must address the presence of chemicals deleterious to concrete and ferrous materials. The tests must be in accordance with California Test Methods, Department of Transportation, or equivalent (aqueous solution tests, such as EPA Tests or similar methods are not acceptable for determination of resistivity). Resistivity tests must be performed on soils samples in a saturated condition.

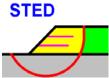
3.5.2 Engineering Analysis and Standards

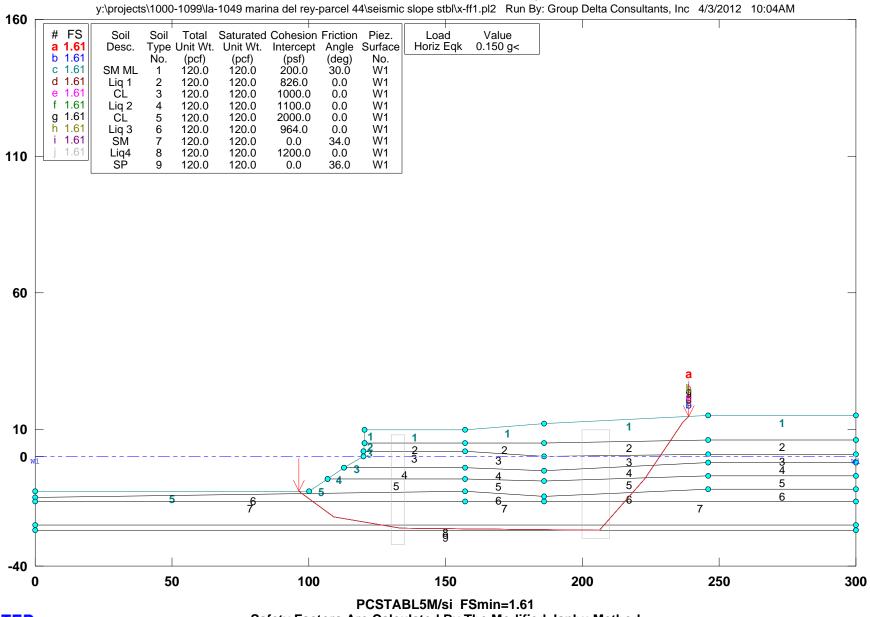
3.5.2.1 Slope Stability Analysis

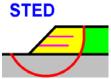
Slope stability analysis, including establishing design criteria and performing calculations, will generally be required for all cut, fill, and natural slopes when the slope gradient is steeper that 2:1 (H:V). Slope stability analysis may be required for slopes at 2:1 gradient or flatter if there is evidence that the slope may not meet County minimum standards.

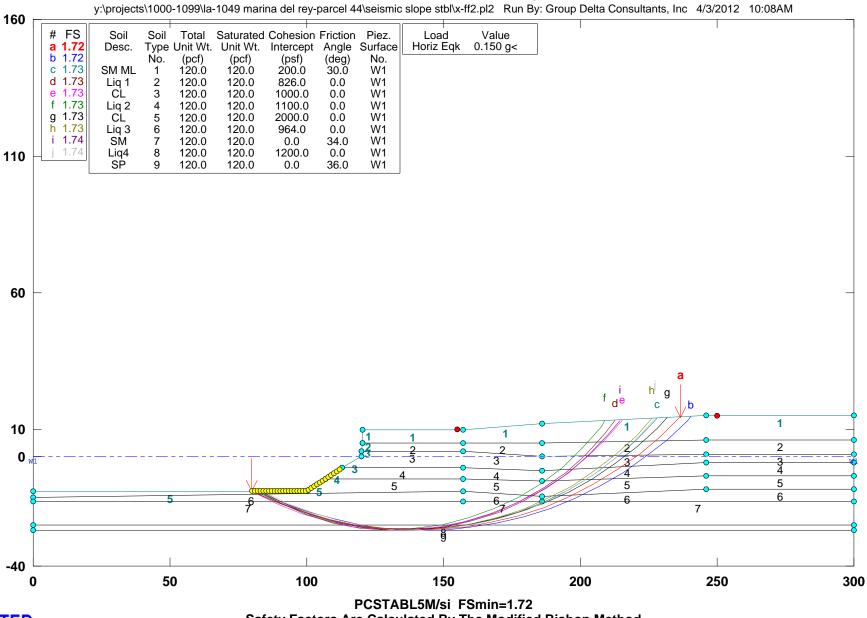
The data to be utilized in the slope stability analysis shall be based on detailed site plans, geologic/geotechnical cross section, detailed field descriptions, onsite exploration data, and laboratory test data. It is the responsibility of the soils engineer to determine the weakest potential failure surface based on the above factors. In performing any analysis, the worst possible conditions must be utilized.


3.5.2.2 Static and Seismic Slope Stability (Global)

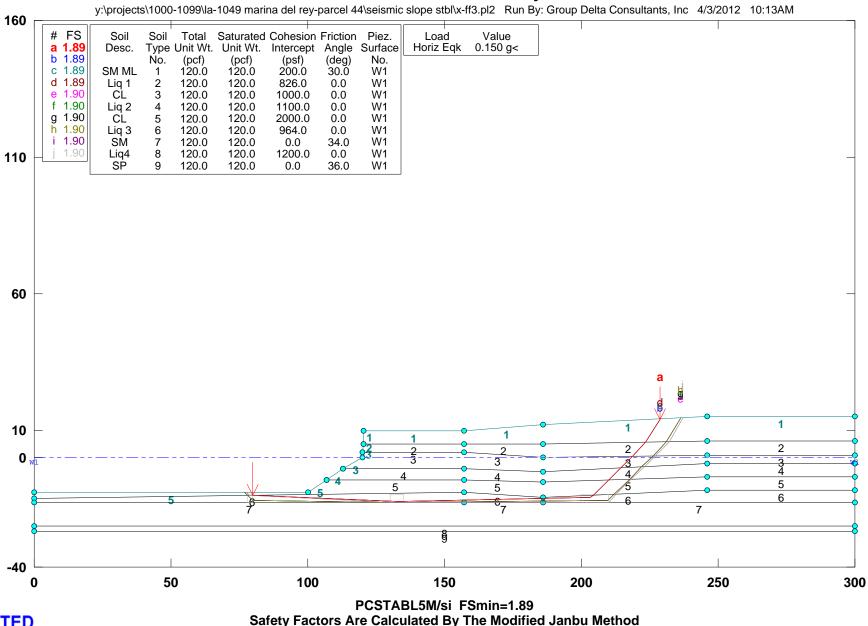

- All slope stability analyses submitted for review may be checked by various methods including Modified Bishop, Janbu, Spencer, etc., to verify compliance with the minimum acceptable safety factor. The following shall be considered when preparing stability analyses:
- Separate calculations shall be performed for static and seismic conditions.
- The minimum acceptable factor of safety for shear strength is 1.50 for static loads and 1.10 for pseudostatic loads. The factor of safety for strength is defined as the ratio of the shearing resistance force to the actual driving force acting along the potential failure surface.

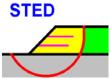

- The pseudostatic slope stability analyses shall be the minimum seismic analysis accepted for design.
- Conventional static methods of slope stability analysis based upon principles of mechanics may be used to analyze the stability of slopes under both static and pseudostatic conditions.
- The analyses shall include the effect of expected maximum moisture conditions, soil weight, and seepage or pore pressure where applicable. Saturated conditions shall be utilized unless it can be shown that other moisture contents will represent the worst possible conditions for the project.
- Pseudostatic analysis shall include the effect of static loads combined with a horizontal inertial force acting out of the slope and through the center of gravity of the potential sliding mass.
- A minimum pseudostatic horizontal inertial force equal to 0.15 times the total weight of the potential sliding mass shall be used. This minimum lateral design value should be increased where, in the opinion of the private consultant(s), subsurface conditions or the proximity of active faults warrant the use of higher values.
- Potential failure modes must be based upon the stratigraphy and structure of the slope analyzed and input from the consulting engineering geologist.
- The cross section determined to be the critical section shall be used in the stability analyses of the slope or for the buttress design. The use of a weighted average for the Factor of Safety using multiple cross sections of the slope is not acceptable.
- The critical potential failure surface used in the analysis may be composed of circles, planes, or other shapes considered to yield the minimum factor of safety against sliding and most appropriate to the soil and geologic site conditions. In cohesive soils, a vertical tension crack extending down from the top of the slope to the potential failure surface may be used to limit the lateral extent of the potential sliding mass.

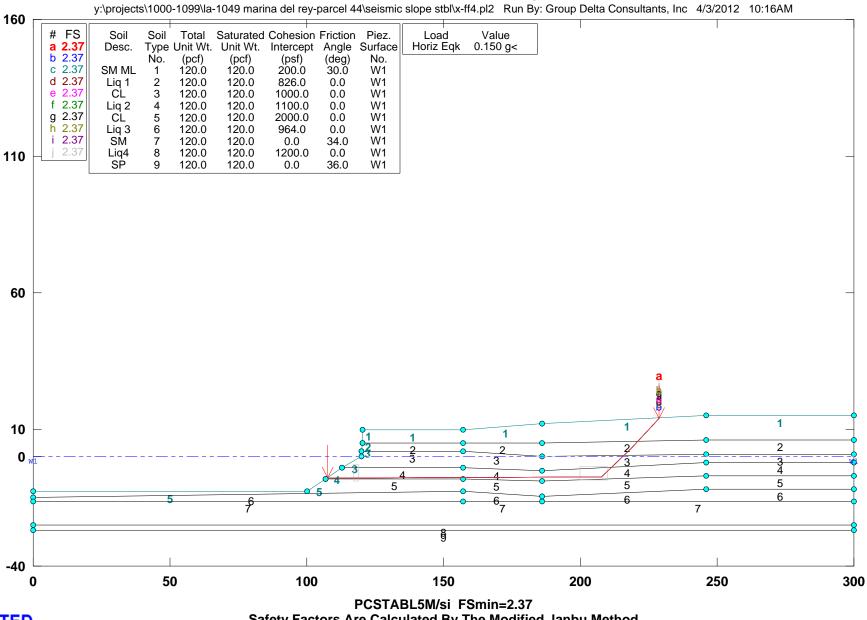


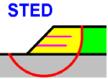



Safety Factors Are Calculated By The Modified Janbu Method

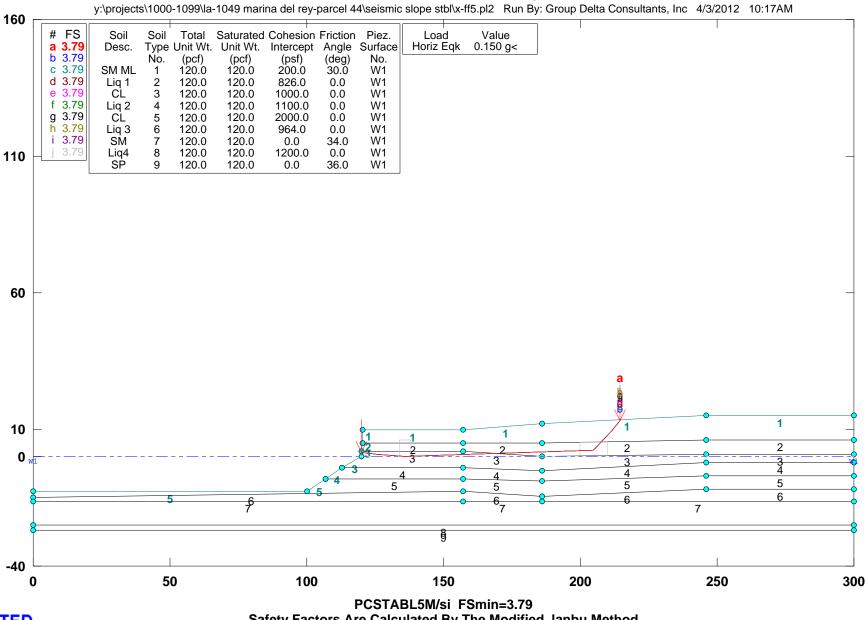


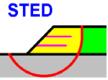

Safety Factors Are Calculated By The Modified Janbu Method





Safety Factors Are Calculated By The Modified Bishop Method





Safety Factors Are Calculated By The Modified Janbu Method

Safety Factors Are Calculated By The Modified Janbu Method

March 11, 2014 LA-1049A

Pacific Marina Venture, LLC c/o Pacific Ocean Management 13737 Fiji Way C-10 Marina Del Rey, CA 90292

Geotechnical Engineering

Attention: Ms. Marsha Santry

Geology

Addendum 1 - Geotechnical Engineering Report Subject:

Hydro Geology

Update to Seismic Design Parameters

Earthauake

Proposed Commercial and Retail Development

Engineering

Marina Del Rey - Parcel 44

Materials Testing & Inspection

Northwest Corner of Mindanao Way and Admiralty Way

Marina Del Rey, California

Forensic Services

Reference: Group Delta Consultants, Inc., "Geotechnical Engineering Report,

> Proposed Commercial and Retail Development, Marina Del Rey -Parcel 44, Northwest Corner of Mindanao Way and Admiralty Way,

Marina Del Rey Area of Los Angeles, California", June 1, 2012.

Dear Ms. Santry:

Group Delta Consultants (GDC) is pleased to submit this addendum to our above referenced geotechnical report, dated June 1, 2012. On January 1, 2014, the new version of the Los Angeles County Building Code was adopted, and is based on the requirements and provisions of the California Building Code (CBC) 2013, and ASCE 7-10. The new code includes changes to the seismic design parameters, including the peak ground acceleration adjusted for site class, and its effects of liquefaction and lateral spreading. This addendum addresses these changes in the code.

There have been no significant changes in the project descriptions and no changes in the site conditions from those documented in our 2012 original report. Therefore, all other conclusions and recommendations provided our reference report remain applicable, without change.

1.0 UPDATED SEISMIC GROUND MOTION PARAMETERS

Updated design ground motion parameters were developed in accordance with CBC 2013 for the proposed new buildings. The site coordinates used in our seismic hazard analysis are: -118.4413 (Longitude) and 33.9806 (Latitude).

The subsurface soil profile at the site consists of 25 to 30 feet of stiff clay underlain by dense sands. Based on the shear wave velocity, V_S, measurements performed in CPT-12-07, the site has a $V_{S(30)}$ of 976 fps, and is classified as Site Class D, corresponding to a "Stiff Soil" profile.

The seismic design parameters were calculated using the USGS Ground Motion Parameter Calculator (Version 5.1.0), are summarized in Table 1. The calculations of the seismic parameters are provided in Appendix A.

Table 1: Seismic Ground Motion Values	
Latitude: 33.9806 Longitude: -118.4413	
Site Class	D
Seismic Design Category	D
Mapped MCE Spectral Response Acceleration at Short Period (S _s)	1.611g
Mapped MCE Spectral Response Acceleration at Period of 1 Second (S ₁)	0.635g
Site Coefficient, F _a	1.0
Site Coefficient, F _v	1.5
Adjusted MCE Spectral Response Acceleration at Short Period (S _{MS})	1.611g
Adjusted MCE Spectral Response Acceleration at Period of 1 Second (S _{M1})	0.953g
Design Earthquake Spectral Response Acceleration at Short Period (S _{DS})	1.074g
Design Earthquake Spectral Response Acceleration at Period of 1 Second (S _{D1})	0.635g
Peak Ground Acceleration Adjusted for Site Class (PGA _M)	0.617g

The peak ground acceleration adjusted for site class is 0.617g.

2.0 LIQUEFACTION POTENTIAL:

In our original geotechnical engineering report, the potential for liquefaction of soils underlying the site was evaluated using the simplified liquefaction analysis procedure recommended by NCEER (Youd and Idriss, 1997, 2001) for both SPT and CPT data, and based on a design groundwater level of El. +5 feet, the predominant moment magnitude, M_W , of 6.8, and a PGA of 0.40g in accordance of ASCE 7-05.

In accordance with ASCE 7-10, the updated PGA adjusted for site class is 0.617g. This PGA is significantly higher than calculated under the previous code, and impacts the liquefaction potential and seismic settlement at the site. The total dynamic settlement was evaluated using the updated PGA (0.617g) and both our SPT and CPT data. For comparison, a summary of the total dynamic settlement estimated under each proposed building for both the old and new PGA is provided in Table 2.

Table 2: Summary of Dynamic Settlement under Each Proposed Building

Proposed Structure	Description	Exploration	Total Dynamic Settlement (in) Based on PGA=0.4g	Total Dynamic Settlement (in) Based on PGA=0.62g
BLDG. 1	New Restroom - Single Story	CPT-12-14	0.62	0.66
BLDG. II	New Grocery Store - Single Story	CPT-12-11	0.15	0.17
		CPT12-12	0.15	0.39
		CPT-12-13	0.98	1.05
		R-12-20	0	0
BLDG. III	New Restroom - Single Story	CPT-12-10	0.14	0.32
BLDG. IV	Retail Boat Supply Story	CPT-12-7	0.23	0.67
	- 2 story	CPT-12-8	0.22	0.47
		CPT-12-9	0.02	0.12
		CPT-12-10	0.14	0.32
		R-12-18	0	0
		R-12-19	0	0
BLDG. V	Boat Broker Office - Single Story	CPT-12-4	0.38	0.77
		CPT-12-5	0.69	1.41
		CPT-12-6	0.36	0.53
		R-12-17	0.19	0.81
BLDG. VI	Boaters Lounge - Single Story	CPT-12-03	0.31	0.76
		R-12-16	0.16	0.34
BLDG VII	Storage Rack for Boats	CPT-12-1	0.38	0.53
	- 4 story	CPT-12-2	1.23	2.03
		R-12-15	0.21	0.74

As noted in the Table 1, the total dynamic settlement based on the updated PGA on average varies from about 0.5 to 0.75 inches, with maximums in the range of 1 to 2 inches. The differential seismic settlements will be likely less than 1 inch over a horizontal distance of 30 feet.

3.0 LATERAL SPREADING:

Under cyclic loading, lateral spreading can occur on gently sloping ground or on virtually flat ground adjacent to bodies of water. The subject site is underlain by approximately 25 to 30 feet of firm to stiff clays interbedded with thin layers of silty sands, underlain by very dense sand, some of which are susceptible to liquefaction. However, these interbedded thin sandy layers appear to be localized and do not form a continuous liquefiable layer.

As discussed in our original report, using a conservative approach, the potential for

lateral spreading at the site was conservatively evaluated following the screening analysis outlined in SP 117A – Guidelines for Evaluating and Mitigating Seismic Hazards in California (2008). Liquefiable layers were conservatively modeled as continuous clay with undrained shear strength equivalent to post liquefaction residual shear strength. Based on our evaluation, the post liquefaction residual shear strength of the liquefied silty sands are generally greater than 1.0 ksf.

Computer program PCSTBL 5 was used in our analysis. Based on the Manual for Preparation of Geotechnical Reports prepared by County of Los Angeles Department of Public Works (dated July 2010), for screening analysis, a horizontal seismic coefficient of 0.15 was use. The analyses indicated that the factor of safety under seismic event is greater than 1.5, which is much higher than the 1.1 factor of safety required for seismic condition.

Comparing the liquefaction potential results for both the old and the new PGA, there is essentially no change in the locations and extent of continuous layers that may liquefy as a result of an increase in the PGA. As a result, the conservative lateral spreading screening analysis performed in our original geotechnical engineering report remains valid, and is still conservative. Therefore, liquefaction induced lateral spreading and seismic slope stability is not an issue at this site.

Should you have any questions regarding this addendum, please feel free to call us at (310) 320-5100.

The following items are attached:

APPENDIX A: Seismic Design Parameters Based On CBC2013/ASCE 7-10

APPENDIX B: Updated Liquefaction Analyses

Sincerely,

GROUP DELTA CONSULTANTS,

Thomas D. Swantko, G.E. #813 Principal Geotechnical Engineer Pirooz Kashighandi, Ph.D., P.E.

Senior Engineer

Distribution: Addressee (1)

APPENDIX ASEISMIC DESIGN PARAMETERS BASED ON CBC2013/ASCE 7-10

USGS Design Maps Summary Report

User-Specified Input

Report Title Parcel 44 - Marina Del Rey

Thu March 6, 2014 22:19:07 UTC

Building Code Reference Document ASCE 7-10 Standard

(which utilizes USGS hazard data available in 2008)

Site Coordinates 33.9806°N, 118.4413°W

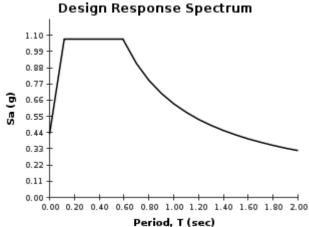
Site Soil Classification Site Class D - "Stiff Soil"

Risk Category 1/11/111

USGS-Provided Output

$$S_s = 1.611 g$$
 $S_{MS} = 1.611 g$ $S_{DS} = 1.074 g$
 $S_1 = 0.635 g$ $S_{M1} = 0.953 g$ $S_{D1} = 0.635 g$

$$S_{DE} = 1.0/4 g$$


$$S = 0.635 g$$

$$S_{...} = 0.953$$

$$S_{-1} = 0.635 \, g$$

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

For PGA_M, T_L , $C_{RS'}$ and C_{R1} values, please <u>view the detailed report</u>.

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of

USGS Design Maps Detailed Report

ASCE 7-10 Standard (33.9806°N, 118.4413°W)

Site Class D - "Stiff Soil", Risk Category I/II/III

Section 11.4.1 — Mapped Acceleration Parameters

Note: Ground motion values provided below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain S_s) and 1.3 (to obtain S_1). Maps in the 2010 ASCE-7 Standard are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 11.4.3.

$$S_{s} = 1.611 g$$

$$S_{_{1}} = 0.635 g$$

Section 11.4.2 — Site Class

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class D, based on the site soil properties in accordance with Chapter 20.

Table 20.3–1 Site Classification

Site Class	- v _s	\overline{N} or \overline{N}_{ch}	- S _u
A. Hard Rock	>5,000 ft/s	N/A	N/A
B. Rock	2,500 to 5,000 ft/s	N/A	N/A
C. Very dense soil and soft rock	1,200 to 2,500 ft/s	>50	>2,000 psf
D. Stiff Soil	600 to 1,200 ft/s	15 to 50	1,000 to 2,000 psf
E. Soft clay soil	<600 ft/s	<15	<1,000 psf

Any profile with more than 10 ft of soil having the characteristics:

- Plasticity index PI > 20,
- Moisture content $w \ge 40\%$, and
- Undrained shear strength $s_{\parallel} < 500 \text{ psf}$

F. Soils requiring site response analysis in accordance with Section 21.1

See Section 20.3.1

For SI: $1ft/s = 0.3048 \text{ m/s} 1lb/ft^2 = 0.0479 \text{ kN/m}^2$

1 of 6 3/6/2014 2:19 PM

Section 11.4.3 — Site Coefficients and Risk-Targeted Maximum Considered Earthquake ($\underline{\text{MCE}}_{\text{R}}$) Spectral Response Acceleration Parameters

Table 11.4-1: Site Coefficient F

Site Class	Mapped MCE _R Spectral Response Acceleration Parameter at Short Period				
	S _S ≤ 0.25	$S_{s} = 0.50$	S _s = 0.75	S _S = 1.00	S _S ≥ 1.25
А	0.8	0.8	0.8	0.8	0.8
В	1.0	1.0	1.0	1.0	1.0
С	1.2	1.2	1.1	1.0	1.0
D	1.6	1.4	1.2	1.1	1.0
Е	2.5	1.7	1.2	0.9	0.9
F		See Se	ction 11.4.7 of	ASCE 7	

Note: Use straight–line interpolation for intermediate values of $\boldsymbol{S}_{_{\boldsymbol{S}}}$

For Site Class = D and $S_s = 1.611 g$, $F_a = 1.000$

Table 11.4–2: Site Coefficient F

Site Class	Mapped MCE _R Spectral Response Acceleration Parameter at 1–s Period				
•	S ₁ ≤ 0.10	S ₁ = 0.20	S ₁ = 0.30	S ₁ = 0.40	S ₁ ≥ 0.50
Α	0.8	0.8	0.8	0.8	0.8
В	1.0	1.0	1.0	1.0	1.0
С	1.7	1.6	1.5	1.4	1.3
D	2.4	2.0	1.8	1.6	1.5
E	3.5	3.2	2.8	2.4	2.4
F		See Se	ction 11.4.7 of	ASCE 7	

Note: Use straight-line interpolation for intermediate values of $S_{_{\mbox{\scriptsize I}}}$

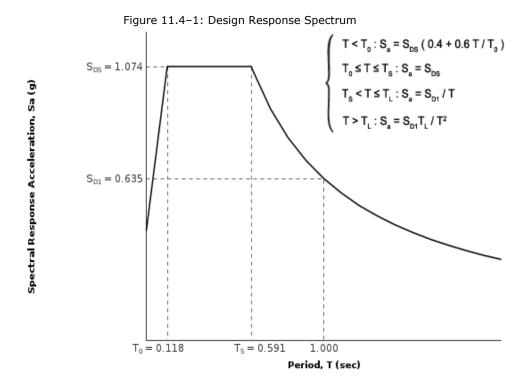
For Site Class = D and S $_{_1}$ = 0.635 g, F $_{_{_{V}}}$ = 1.500

2 of 6 3/6/2014 2:19 PM

Design Maps Detailed Report

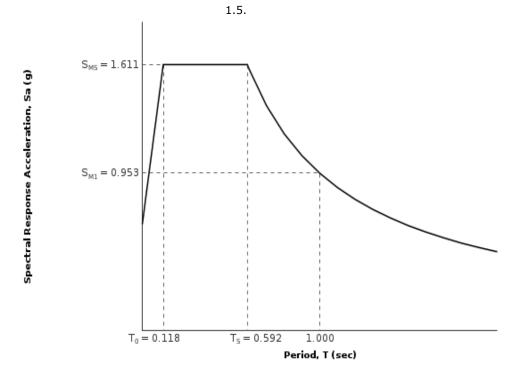
Equation (11.4–1):
$$S_{MS} = F_a S_S = 1.000 \times 1.611 = 1.611 g$$

Equation (11.4–2):
$$S_{M1} = F_{V}S_{1} = 1.500 \times 0.635 = 0.953 \text{ g}$$


Section 11.4.4 — Design Spectral Acceleration Parameters

Equation (11.4–3):
$$S_{DS} = \frac{2}{3} S_{MS} = \frac{2}{3} \times 1.611 = 1.074 g$$

Equation (11.4–4):
$$S_{D1} = \frac{2}{3} S_{M1} = \frac{2}{3} \times 0.953 = 0.635 g$$


Section 11.4.5 — Design Response Spectrum

From Figure 22-12 [3]
$$T_L = 8$$
 seconds

Section 11.4.6 — Risk-Targeted Maximum Considered Earthquake (MCE $_{\!_{\rm R}}\!\!$) Response Spectrum

The MCE $_{_{\rm R}}$ Response Spectrum is determined by multiplying the design response spectrum above by

4 of 6 3/6/2014 2:19 PM

Section 11.8.3 — Additional Geotechnical Investigation Report Requirements for Seismic Design Categories D through F

From Figure 22-7^[4]

PGA = 0.617

Equation (11.8-1):

$$PGA_{M} = F_{PGA}PGA = 1.000 \times 0.617 = 0.617 g$$

Table 11.8–1: Site Coefficient F

Site	Mapped	MCE Geometri	c Mean Peak Gr	ound Acceleration	on, PGA
Class	PGA ≤ 0.10	PGA = 0.20	PGA = 0.30	PGA = 0.40	PGA ≥ 0.50
Α	0.8	0.8	0.8	0.8	0.8
В	1.0	1.0	1.0	1.0	1.0
С	1.2	1.2	1.1	1.0	1.0
D	1.6	1.4	1.2	1.1	1.0
E	2.5	1.7	1.2	0.9	0.9
F	See Section 11.4.7 of ASCE 7				

Note: Use straight-line interpolation for intermediate values of PGA

For Site Class = D and PGA = 0.617 g, F_{PGA} = 1.000

Section 21.2.1.1 — Method 1 (from Chapter 21 – Site-Specific Ground Motion Procedures for Seismic Design)

From <u>Figure 22-17</u> [5]

$$C_{RS} = 0.993$$

From Figure 22-18 [6]

$$C_{R1} = 0.995$$

Section 11.6 — Seismic Design Category

Table 11.6-1 Seismic Design Category Based on Short Period Response Acceleration Parameter

VALUE OF S	RISK CATEGORY			
DS DS	I or II	III	IV	
S _{DS} < 0.167g	А	А	А	
$0.167g \le S_{DS} < 0.33g$	В	В	С	
$0.33g \le S_{DS} < 0.50g$	С	С	D	
0.50g ≤ S _{DS}	D	D	D	

For Risk Category = I and $S_{DS} = 1.074 g$, Seismic Design Category = D

Table 11.6-2 Seismic Design Category Based on 1-S Period Response Acceleration Parameter

VALUE OF S	RISK CATEGORY			
VALUE OF S _{D1}	I or II	III	IV	
S _{D1} < 0.067g	Α	А	А	
$0.067g \le S_{_{D1}} < 0.133g$	В	В	С	
$0.133g \le S_{D1} < 0.20g$	С	С	D	
0.20g ≤ S _{D1}	D	D	D	

For Risk Category = I and $S_{D1} = 0.635 g$, Seismic Design Category = D

Note: When S_1 is greater than or equal to 0.75g, the Seismic Design Category is **E** for buildings in Risk Categories I, II, and III, and **F** for those in Risk Category IV, irrespective of the above.

Seismic Design Category \equiv "the more severe design category in accordance with Table 11.6-1 or 11.6-2" = D

Note: See Section 11.6 for alternative approaches to calculating Seismic Design Category.

References

- 1. Figure 22-1: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-1.pdf
- 2. Figure 22-2: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-2.pdf
- 3. Figure 22-12: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-12.pdf
- 4. Figure 22-7: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-7.pdf
- Figure 22-17: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-17.pdf
- 6. Figure 22-18: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-18.pdf

6 of 6 3/6/2014 2:19 PM

APPENDIX BUPDATED LIQUEFACTION ANALYSES

(Engineer: Curt Scheyhing)

Page 1

PROJECT INFORMATION		
Project Name	Marina Del Rey -Parcel 44	
Project No.	LA-1049	
Location	Marina Del Rey	
Exploration No.	CPT-12-01	
GENERAL INPUT DATA		
Ground Surf. Elev. During Test	12.00 ft	

GENERAL INPUT DATA		
Ground Surf. Elev. During Test	12.00 ft	
GWT Elev. During Test	-7.00 ft	
GWT Elev. For Design	5.00 ft	
Total Soil Unit Weight, γ _t	120.00 pcf	
Earthquake Magnitude, Meq	6.80	
Peak Ground Acceleration, Amax	0.62 g	
Required Factor of Safety	1.30	

REFERENCES

Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and I.M. Idriss, 2001)

+ CSR = 0.65 $A_{max} (\sigma_v/\sigma_v') r_d$

++++F = CRF₃/CSR MSF K₀ K₀→∞ where CRR_{7,5} is evaluated from direct CPT data, K₀ = 1.0 and MSF = 1.28

Residual strength values of liquefied soils are evaluated from converted SPT blow counts using the median curve by Seed & Harder (1990)

Ground settlements are evaluated from converted SPT blow counts using the method developed by Tokimatsu and Seed (1987).

Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change.

GWT Depth During Test, Zw = GWT Depth For Design, Zwd = 19.00 ft below ground surface 7.00 ft below ground surface

*** SUMMARY OF RESULTS ***

Total Thickness of Liquefiable Soils = 7.00 feet

Earthquake-Induced Settlements: - Liquefaction-Induced Settlement =

0.52 inches <--- Saturated Sands - Seismic Compaction Settlement = 0.01 inches <--- Dry or Unsaturated Sands

Total: 0.53 inches

During Test Resistance Friction Ratio Soil Behavior Type Elevation Correction Factor Blow Count (Design) (Test) Index Factor Resistance Coeff. Stress ++ Ratio +++ y? Correction Count Strength Count Strain Strain	Cumulativ Layer e ttlemen t Profile
No. Control Popular	Layer e ttlemen Settlement
During the Relstance Felician Current for Early Felician Current for Early	ettienen
Column C	t Profile
1.50 1.50	
1.50	S _i (in.) (in.)
2.50 74.32 0.91 1.23 send to selly sand	0.00 0.53 N/A 0.53
4.50	0.01 0.52
5.50	0.00 0.52
5.00	0.00 0.52 N/A 0.52
8.50 35.95 1.08 2.99 clayey site osligy clay 9.0 1.00 18 1.00 926 1.020 2.44 2.48 130.95 0.890 1.000 0.435 0.289 0.853 1.785 2.8 18.0 1.200 N.A. N.A. 0.000 1.05 1.373 0.44 3.22 silty clay to clay 1.00 1.00 9 1.20 1.00 1.21 1.260 2.75 N.A. N.A. 0.976 N.A. 0.476 0.8A N.A. N.A. N.A. N.A. N.A. N.A. N.A. N	N/A 0.52
9.50	N/A 0.52
11.50 13.73 0.44 3.22 silty clay to clay 1.0 1.00 9 1.260 1.942 1.260 2.75 N/A	0.00 0.52 0.00 0.52
12.50	N/A 0.52
13.50	0.00 0.52 0.00 0.52
14.50	N/A 0.52
16.50	N/A 0.52
17.50 13.90 0.40 2.83 clayey sith o sity clay 5.60 1.00 7 2.100 1.445 2.100 2.80 N/A N/A N/A 0.562 N/A	N/A 0.52 N/A 0.52
18.50 16.47 0.67	N/A 0.52 N/A 0.52
20.50 71.61 0.69 0.97 sand to silty sand 9.0 1.00 18 2.460 1.618 2.366 1.98 1.28 10.183 0.952 1.000 0.584 0.178 0.392 YES 1.3 17.8 954 19.7 N.A 1.572 1.515 1.	N/A 0.52
21.50	N/A 0.52 0.19 0.33
23.50 8.30 0.22 2.58 silty clay to clay 12.0 1.00 6 2.820 1.790 2.539 3.05 N/A N	0.07 0.26
24.50 10.47 0.28 2.64 silty clay to clay -13.0 1.00 7 2.940 1.848 2.597 2.97 N/A N/A 0.491 N/A 0.605 N/A N/A	N/A 0.26
25.50	N/A 0.26 N/A 0.26
27.50 80.90 0.82 1.02 sand to sitty sand 28.50 192.05 1.25 0.65 sand 4 1.60 1.00 20 3.300 2.021 2.770 1.99 1.29 103.99 0.936 0.997 0.616 0.185 0.384 YES 1.3 18.5 1.000 20.5 N.A 1.519 2.50 1.25 0.65 sand 1.100 1.00 3.8 3.420 2.07.8 2.827 1.58 1.00 188.39 0.934 0.985 0.619 N.A N/A N/A N/A N/A N/A 32.3 N/A 0.385 2.95.0 201.48 0.98 0.49 sand to sand 1.18.0 1.00 40 3.540 2.136 2.885 1.49 1.00 194.96 0.931 0.974 0.622 N/A N/A N/A N/A N/A N/A N/A 3.26 N/A 0.385 1.30 0.30.50 284.85 1.41 0.50 gravelly sand to sand 1.19.0 1.00 47 3.660 2.194 2.942 1.38 1.00 271.99 0.926 0.964 0.622 N/A	N/A 0.26
28.50 192.05 1.25 0.65 sand -17.0 1.00 38 3.420 2.078 2.827 1.58 1.00 188.39 0.934 0.985 0.619 N/A N/A NO N/A N/A N/A NO N/A	N/A 0.26
29.50 201.48 0.98 0.49 sand 1.80 1.00 40 3.540 2.136 2.885 1.49 1.00 194.96 0.931 0.974 0.622 N/A N/A NO N/A N/A N/A 33.6 N/A 0.167 30.50 284.85 1.41 0.50 gravelly sand to sand 1.90 1.00 47 3.660 2.194 2.942 1.38 1.00 27.199 0.926 0.964 0.622 N/A N/A N/A N/A N/A N/A 39.1 N/A 0.016 31.50 502.14 3.71 0.74 gravelly sand to sand 2.20 1.00 84 3.780 2.251 3.000 1.35 1.00 473.30 0.918 0.954 0.621 N/A	0.18 0.08 0.05 0.04
31.50 502.14 3.71 0.74 gravelly sand to sand 20.0 1.00 84 3.780 2.251 3.000 1.35 1.00 473.30 0.918 0.954 0.621 N/A	0.02 0.02
32.50 297.43 1.89 0.64 gravelly sand to sand 33.50 368.45 2.25 0.61 gravelly sand to sand 2.20 1.00 50 3.900 2.309 3.058 1.45 1.00 276.83 0.909 0.944 0.619 N/A	0.00 0.01
33.50 368.45 2.25 0.61 gravelly sand to sand 3.50 1.00 1.00 61 4.020 2.366 3.115 1.38 1.00 338.73 0.901 0.935 0.617 N/A	0.00 0.01 0.00 0.01
35.50 459.55 4.08 0.89 gravelly sand to sand -24.0 1.00 77 4.260 2.482 3.230 1.45 1.00 412.56 0.885 0.917 0.612 N/A N/A N/A N/A N/A N/A 0.0000	0.00 0.01
	0.01 0.00 0.00 0.00
	0.00 0.00
37.50 525.83 2.44 0.46 gravelly sand to sand -26.0 1.00 88 4,500 2,597 3,346 1.20 1.00 461.47 0.869 0.901 0.607 N/A N/A N/A N/A N/A N/A N/A N/A 0.0000	0.00 0.00
38.50 541.90 18.7 0.35 gravelly sand to sand 27.0 1.00 90 4.620 2.654 3.403 1.10 1.00 470.38 0.861 0.893 0.604 N/A	0.00 0.00 0.00 0.00
40.50 \$256.25 2.13 0.41 gravelly sand to sand 2-9.0 1.00 88 4,860 2,770 3,518 1.17 1.00 447.20 0.844 0.878 0.597 N/A N/A N/A N/A N/A 66.1 N/A 0.000 1.	0.00 0.00
41.50 467.60 2.31 0.49 gravelly sand to sand -30.0 1.00 78 4.980 2.827 3.576 1.27 1.00 393.29 0.836 0.871 0.594 N/A	0.00 0.00
42.50 484.78 3.09 0.64 gravelly sand to sand 31.0 1.00 81 5.100 2.885 3.634 1.34 1.00 403.65 0.828 0.864 0.590 N/A N/A N/O N/A N/A N/A N/O N/A N/A N/A N/O N/O N/A N/A N/O	0.00 0.00 0.00 0.00
44.50 561.23 2.80 0.50 gravelly sand to sand -33.0 1.00 94 5.340 3.000 3.749 1.23 1.00 458.25 0.812 0.850 0.582 N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.0000	0.00 0.00
45.50 475.50 2.05 0.43 gravelly sand to sand 34.0 1.00 79 5.460 3.058 3.806 1.23 1.00 38.457 0.804 0.844 0.578 N/A	0.00 0.00
46.50 327.37 2.66 0.81 sand 35.0 1.00 65 5.580 3.115 3.864 1.55 1.00 262.31 0.795 0.838 0.574 N/A N/A N/A N/A N/A N/A N/A N/A 47.1 N/A 0.0000 47.5 5.700 3.173 3.922 1.40 1.00 358.00 0.787 0.831 0.579 N/A N/A N/A N/A N/A N/A 53.7 N/A 0.0000 1.00 1.00 1.00 1.00 1.00 1.00 1	0.00 0.00
48.50 561.48 3.38 0.60 gravelly sand to sand -37.0 1.00 94 5,820 3,230 3,979 1.30 1.00 441.80 0.779 0.825 0.566 N/A N/A N/O N/A N/A N/A N/A 0.000 0.000	0.00 0.00
49.50 480.37 4.52 0.94 sand -38.0 1.00 96 5.940 3.288 4.037 1.49 1.00 374.65 0.771 0.820 0.561 N/A N/A NO N/A N/A N/A N/A N/A N/A 0.000	0.00 0.00
	-
max= 1,200	

1.065

avg=

CPT-12-01 Liquefaction Analysis.XLS Output Sheet

(Engineer: Curt Scheyhing)

Earthquake Magnitude, Meq

Peak Ground Acceleration, An

Required Factor of Safety

PROJECT INFORMATION		
Project Name	Marina Del Mar - Parcel 44	
Project No.	LA-1049	
Location	Los Angeles	
Exploration No.	CPT-12-02	
	<u> </u>	
GENERAL INPUT DATA		
Ground Surf. Elev. During Test	12.00 ft	
GWT Elev. During Test	1.00 ft	
GWT Elev. For Design	5.00 ft	
Total Soil Unit Weight, Y.	120.00 pcf	

6.80

0.62 g

1.30

REFERENCES

Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and I.M. Idriss, 2001)

+ CSR = 0.65 $A_{max} (\sigma_v/\sigma_v') r_d$

++++FS = (CRF₄/CSR) MSF K_σ K_{σ→∞} where CRR₇₅ is evaluated from direct CPT data, K_σ =1.0 and MSF = 1.28

* Residual strength values of liquefied soils are evaluated from converted SPT blow counts using the median curve by Seed & Harder (1990)

** Ground settlements are evaluated from converted SPT blow counts using the method developed by Tokimatsu and Seed (1987).

Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change.

GWT Depth During Test, Zw = GWT Depth For Design, Zwd = 11.00 ft below ground surface 7.00 ft below ground surface

*** SUMMARY OF RESULTS ***

Total Thickness of Liquefiable Soils = 15.00 feet

Earthquake-Induced Settlements: - Liquefaction-Induced Settlement =

2.03 inches <--- Saturated Sands - Seismic Compaction Settlement = 0.00 inches <--- Dry or Unsaturated Sands

Total: 2.03 inches

	INPUT SOIL PROFILE (CPT DATA)						SOIL LIQUER	ACTION I	OTENTIAL AN	NALYSIS (1	996 NCEEF	& 1998 NO	EER/NSF W	ORKSHO	OPS) +					RESID	UAL STREE	NGTH *		GROUND	SETTLEM	ENT **	
								Total	Effective	Effective	Soil			Shear	C	Cyclic		Factor of Safety			Fines		Fines				
Soil	Average	Average	Average		Bottom of			Vert.	Vert.	Vert.	Behavior	Fines	Corrected		Correction for High	Stress	Cyclic	Against		SPT Blow	Corrected	Residual	Corrected	Cyclic		Laver	Cumulativ e
Depth	Cone Tip	Sleeve	Friction		Layer	Thin Layer	Equiv. SPT	Stress	Stress	Stress	Type	Correction		Reduction			Res.	Liqefaction	Liquef		SPT Blow	Shear	SPT Blow	Shear	Vol.		Settlement
During Test	Resistance	Friction	Ratio	Soil Behavior Type	Elevation	Correction Factor	Blow Count		(Design)	(Test)	Index	Factor	Resistance	Coeff.	Stress	++	Ratio	+++	y ?	Correction		Strength	Count	Strain	Strain	t	Profile
(ft)	$\mathbf{q}_{t\text{-avg}}\left(t\mathbf{s}\mathbf{f}\right)$			(Robertson et al., 1983)	(ft)	(Lunne, et al., 1997)	N_{60} (blows/ft)		σ _{v'} (psf)	$\sigma_{v'}$ (psf)	I _c	K,	$\mathbf{q}_{\mathrm{c1Nes}}$	$\mathbf{r}_{\scriptscriptstyle \mathrm{d}}$	Kσ	CSR	CRR _{7.5}	FS		N _{corr.}	$(N_1)_{60cs}$	$S_r(psf)$	$(N_1)_{60cs}$	γ _c (%)	દ _v (%)	S _i (in.)	(in.)
5.50 6.50	16.85 18.73	0.36	2.14	clayey silt to silty clay clayey silt to silty clay	6.0 5.0	1.00	8	660 780	660 780	660 780	2.54 2.56	2.97 3.09	86.98 92.81	0.987	N/A N/A	0.398	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	2.03
7.50	29.08	0.43	2.78	sandy silt to clayey silt	4.0	1.00	12	900	869	900	2.47	2.64	116.59	0.983	1.000	0.410	0.227	0.712	YES	2.8	20.1	1,200	25.8	N/A	0.870	0.10	1.93
8.50	21.27	0.57	2.68	clayey silt to silty clay	3.0	1.00	11	1,020	926	1,020	2.58	3.20	100.06	0.980	1.000	0.435	0.173	0.511	YES	2.8	17.7	944	N/A	N/A	0.000	0.00	1.93
9.50 10.50	16.72 14.97	0.37 0.42	2.22		2.0 1.0	1.00 1.00	7	1,140	984 1,042	1,140 1,260	2.56 2.68	3.11 N/A	88.39 N/A	0.978	1.000 N/A	0.457 0.476	0.144 N/A	0.406 N/A	YES NO		13.9 N/A	581 N/A	N/A N/A	N/A N/A	0.000 N/A	0.00 N/A	1.93
11.50	30.78	0.76	2.47	sandy silt to clayey silt	0.0	1.00	12	1,380	1,099	1,349	2.46	2.59	107.40	0.973	1.000	0.492	0.195	0.509	YES	2.8	17.8	954	23.0	N/A	1.299	0.16	1.77
12.50 13.50	46.73 14.47	0.48	2.05	silty sand to sandy silt clayey silt to silty clay	-1.0 -2.0	1.66 1.00	26 7	1,500 1,620	1,157 1,214	1,406 1,464	1.78 2.65	1.09 N/A	111.15 N/A	0.971	1.000 N/A	0.507	0.208 N/A	0.526 N/A	YES NO		33.6 N/A	1,200 N/A	41.9 N/A	N/A N/A	0.000 N/A	0.00 N/A	1.77
14.50	9.95	0.30	2.09	clayey silt to silty clay	-3.0	1.00	5	1,740	1,272	1,522	2.81	N/A	N/A	0.966	N/A	0.533	N/A	N/A	NO		N/A	N/A	N/A	N/A	N/A	N/A	1.77
15.50	14.48	0.34	2.36	clayey silt to silty clay	-4.0	1.00	7	1,860	1,330	1,579	2.71	N/A	N/A	0.964	N/A	0.543	N/A	N/A	NO		N/A	N/A	N/A	N/A	N/A	N/A	1.77
16.50 17.50	10.20 22.70	0.25	2.41	silty clay to clay sandy silt to clayey silt	-5.0 -6.0	1.00	9	1,980 2,100	1,387 1,445	1,637	2.86	N/A 3.14	N/A 91.10	0.962	N/A 1.000	0.553	N/A 0.150	N/A 0.344	NO YES	N/A 2.8	N/A 12.7	N/A 485	N/A 16.8	N/A N/A	N/A 1.782	N/A 0.21	1.77
18.50	70.55	0.54	0.77	sand to silty sand	-7.0	1.00	18	2,220	1,502	1,752	1.92	1.20	98.02	0.957	1.000	0.570	0.168	0.378	YES	1.3	20.2	1,200	22.2	N/A	1.389	0.17	1.39
19.50	40.70	0.90	2.19	sandy silt to clayey silt	-8.0	1.00	16	2,340	1,560	1,810	2.40	2.30	105.92	0.955	1.000	0.577	0.191	0.424	YES	2.8	19.9	1,177	25.5	N/A	1.151	0.14	1.25
20.50 21.50	24.31 9.52	0.40	1.62 2.70	sandy silt to clayey silt silty clay to clay	-9.0 -10.0	1.66 1.00	16 6	2,460 2,580	1,618 1,675	1,867 1,925	2.19 2.98	1.65 N/A	73.94 N/A	0.952	1.000 N/A	0.584	0.118 N/A	0.259 N/A	YES NO	2.8 N/A	19.5 N/A	1,130 N/A	25.0 N/A	N/A N/A	1.192 N/A	0.14 N/A	1.11
22.50	15.20	0.45	2.92	clayey silt to silty clay	-11.0	1.00	8	2,700	1,733	1,982	2.83	N/A	N/A	0.948	N/A	0.595	N/A	N/A	NO		N/A	N/A	N/A	N/A	N/A	N/A	1.11
23.50 24.50	16.67 17.17	0.52	3.10	clayey silt to silty clay silty clay to clay	-12.0 -13.0	1.00	8	2,820 2,940	1,790 1.848	2,040	2.82	N/A N/A	N/A N/A	0.945	N/A N/A	0.600	N/A N/A	N/A N/A	NO NO		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	1.11
25.50	16.30	0.47	2.87	clayey silt to silty clay	-14.0	1.00	8	3,060	1,906	2,155	2.83	N/A	N/A	0.941	N/A	0.609	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.11
26.50 27.50	20.70 37.23	0.52 0.52	2.48 1.39	clayey silt to silty clay silty sand to sandy silt	-15.0 -16.0	1.00 1.00	10 12	3,180 3,300	1,963 2,021	2,213 2,270	2.71	N/A 2.13	N/A 78.80	0.938	N/A 0.997	0.612	N/A	N/A 0.261	NO YES	N/A 2.8	N/A 14.4	N/A 631	N/A 19.0	N/A N/A	N/A 1.629	N/A 0.20	0.91
28.50	65.62	0.63	0.96		-17.0	1.00	16	3,420	2,078	2,328		1.38	89.09	0.934	0.997	0.619	0.126	0.201	YES		16.5	827	18.4	N/A	1.669	0.20	0.71
29.50	89.40	0.94	1.05		-18.0	1.00	22	3,540	2,136	2,386		1.27	110.09	0.931	0.978	0.622	0.204	0.412	YES		21.8	1,200	23.9	N/A	1.270	0.15	0.56
30.50 31.50	147.55 170.69	1.08 0.99	0.73	sand sand	-19.0 -20.0	1.00	30 34	3,660 3,780	2,194 2,251	2,443 2,501	1.60	1.05	147.38 160.88	0.926	0.965	0.622	0.378 N/A	0.752 N/A	YES NO		26.7 N/A	1,200 N/A	26.7 30.5	N/A N/A	1.072 0.659	0.13	0.43
32.50	200.92	1.24	0.62	sand	-21.0	1.00	40	3,900	2,309	2,558	1.57	1.00	187.00	0.909	0.944	0.619	N/A	N/A	NO	N/A	N/A	N/A	35.5	N/A	0.080	0.01	0.34
33.50 34.50	276.43	0.97	0.35	gravelly sand to sand	-22.0	1.00	46	4,020	2,366 2,424	2,616	1.31	1.00	254.13	0.901	0.935	0.617	N/A	N/A	NO		N/A	N/A	40.3	N/A	0.000	0.00	0.34
34.50 35.50	218.78 181.30	1.20	0.55	sand sand	-23.0 -24.0	1.00	44 36	4,140 4,260	2,424	2,674 2,731	1.52	1.00	198.73 165.65	0.893	0.926 0.917	0.615 0.612	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	37.8 31.0	N/A N/A	0.038	0.00	0.34
36.50	138.50	1.11	0.80	sand	-25.0	1.00	28	4,380	2,539	2,789	1.78	1.09	134.59	0.877	0.917	0.610	0.307	0.593	YES	0.0	23.5	1,200	23.5	N/A	1.306	0.16	0.11
37.50 38.50	119.47 220.48	0.97	0.81	sand to silty sand sand	-26.0 -27.0	1.00	30 44	4,500 4.620	2,597 2,654	2,846 2,904	1.84	1.14	119.39 191.38	0.869	0.907	0.607	0.238 N/A	0.457 N/A	YES NO	1.3 N/A	26.4 N/A	1,200 N/A	28.7 36.6	N/A N/A	0.871	0.10	0.01
39.50	540.07	1.75	0.32	gravelly sand to sand	-28.0	1.00	90	4,740	2,712	2,962	1.09	1.00	463.79	0.852	0.885	0.600	N/A	N/A	NO	N/A	N/A	N/A	74.0	N/A	0.000	0.00	0.00
40.50 41.50	588.00 600.37	1.72 1.88	0.29	gravelly sand to sand gravelly sand to sand	-29.0 -30.0	1.00	98 100	4,860 4,980	2,770 2,827	3,019 3,077	1.03	1.00	499.67 504.96	0.844	0.878 0.871	0.597	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	79.8 80.7	N/A N/A	0.000	0.00	0.00
42.50	572.72	2.17	0.38	gravelly sand to sand	-31.0	1.00	95	5,100	2,885	3,134	1.13	1.00	476.87	0.828	0.864	0.590	N/A	N/A	NO		N/A	N/A	76.2	N/A	0.000	0.00	0.00
				#N/A #N/A																							
				#N/A																							
				#N/A																							
				#N/A #N/A																							
				#N/A																							
				#N/A #N/A						1						\perp											
				#N/A			1			1					1	1 1											
				#N/A																							
				#N/A #N/A																							
				#N/A																							
				#N/A #N/A											-												
				#N/A																							
				#N/A																							
1				#N/A #N/A			1									1											
				#N/A																							
				#N/A #N/A											-												
				#14/A																							
																					max=	1,200					

1.008 avg=

(Engineer: Curt Scheyhing)

PROJECT INFORMATION		
Project Name	Marina Del Mar - Parcel 44	
Project No.	LA-1049	
Location	Los Angeles	
Exploration No.	CPT-12-03	
GENERAL INPUT DATA		
Ground Surf. Elev. During Test	10.00 ft	

GENERAL INPUT DATA		
Ground Surf. Elev. During Test	10.00 ft	
GWT Elev. During Test	8.00 ft	
GWT Elev. For Design	5.00 ft	
Total Soil Unit Weight, γ _t	120.00 pcf	
Earthquake Magnitude, Meq	6.80	
Peak Ground Acceleration, Amax	0.62 g	
Required Factor of Safety	1.30	

REFERENCES

Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and I.M. Idriss, 2001)

+ CSR = 0.65 $A_{max} (\sigma_v/\sigma_v') r_d$

++++FS = (CRF₄/CSR) MSF K_σ K_{σ→∞} where CRR₇₅ is evaluated from direct CPT data, K_σ =1.0 and MSF = 1.28

* Residual strength values of liquefied soils are evaluated from converted SPT blow counts using the median curve by Seed & Harder (1990)

** Ground settlements are evaluated from converted SPT blow counts using the method developed by Tokimatsu and Seed (1987).

Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change.

GWT Depth During Test, Zw = GWT Depth For Design, Zwd = 2.00 ft below ground surface 5.00 ft below ground surface

*** SUMMARY OF RESULTS ***

11.00 feet Total Thickness of Liquefiable Soils =

Earthquake-Induced Settlements: - Liquefaction-Induced Settlement =

0.76 inches <--- Saturated Sands

- Seismic Compaction Settlement = 0.00 inches <--- Dry or Unsaturated Sands Total: 0.76 inches

INPUT SOIL PROFILE (CPT DATA)							SOIL LIQUEE	ACTION	POTENTIAL AN	AT VCIC /1	004 NCEE	D 6. 1009 No	TEED/NEE V	VODVCHO	NDC) .					DECID	UAL STRE	NCTH *		CROUNT	SETTLEN	AENT ##	
	INFOT SOIL	KOFILE (C	II DAIA)				SOIL LIQUER	ACTION	OTENTIAL AN	AL 1313 (1	JO NCEE	K & 1770 N	LERINGE V	TREATE	71 S) T			Factor of		KESID	CALSIKE			GROUNI	SETTLE	112111	
								Total	Effective	Effective	Soil			Shear	Correction	Cyclic		Safety			Fines		Fines	~			ımulativ
Soil	Average Cone Tip	Average Sleeve	Average Friction		Bottom of		Equiv. SPT	Vert.	Vert. Stress	Vert. Stress	Behavior	Fines Correction	Corrected Tip	Stress Reduction	for High	Stress Ratio	Cyclic Res.	Against			Corrected SPT Blow	Residual Shear	Corrected SPT Blow	Cyclic Shear	Vol.	Layer Settlemen Set	e
Depth Depth	Resistance	Friction	Ratio	Soil Behavior Type	Layer Elevation	Thin Layer	Blow Count	Stress	(Design)	(Test)	Type Index	Factor	Resistance	Coeff.	Overburden Stress	++	Res.	Liqefaction +++		Count		Strength	Count	Strain	Strain	J.C.	ttlement Profile
During Test (ft)	q _{t-avg} (tsf)	f _{s-avg} (tsf)	_	(Robertson et al., 1983)	(ft)	Correction Factor (Lunne, et al., 1997)	N ₆₀ (blows/ft)	σ _v (psf)	σ _{v'} (psf)	σ _{v'} (psf)	I	K.	q _{c1Ncs}	r _d	K,	CSR	CRR,	FS	y ?	N _{corr.}	(N ₁) _{60cs}	Sr (psf)	(N ₁) _{60cs}	γ _c (%)	& , (%)		(in.)
0.50	33.47	0.48	1.43	silty sand to sandy silt	9.0	1.66	18	60	60	60	1.51	1.00	319.93	0.999	N/A	0.403	N/A	N/A	NO	N/A	N/A	N/A	42.7	0.036	0.000	0.00	0.76
1.50	16.05	0.45	2.80	clayey silt to silty clay	8.0	1.00	8	180	180	180	2.41	2.37	126.60	0.997	N/A	0.402	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.76
2.50	21.75	0.64	2.96	clayey silt to silty clay	7.0	1.00	11	300	300	269	2.41	2.37	133.21	0.994	N/A	0.401	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.76
3.50 4.50	25.03 24.42	0.62	2.46 2.67	sandy silt to clayey silt	6.0 5.0	1.00	10 12	420 540	420 540	326 384	2.37	2.19 2.49	119.72 117.05	0.992	N/A N/A	0.400	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	25.4 N/A	N/A N/A	N/A N/A		0.76
5.50	19.48	0.65	2.52	clayey silt to silty clay clayey silt to silty clay	4.0	1.00	10	660	629	384 442	2.53	2.49	100.87	0.990	1.000	0.399	0.175	0.540	YES	N/A 2.8	19.4		N/A N/A	N/A N/A	0.000	0.00	0.76
6.50	27.47	0.60	2.17	sandy silt to clayey silt	3.0	1.00	11	780	686	499	2.38	2.25	105.38	0.985	1.000	0.451	0.189	0.538	YES	2.8		1,200	27.4	N/A	0.724	0.09	0.67
7.50	40.65	0.90	2.22	sandy silt to clayey silt	2.0	1.00	16	900	744	557	2.28	1.87	124.87	0.983	1.000	0.479	0.261	0.700	YES	2.8	30.4		38.2	N/A	0.023		0.67
8.50 9.50	98.27 91.37	0.81	0.82 0.45	sand to silty sand sand to silty sand	1.0 0.0	1.00 1.66	25 38	1,020 1,140	802 859	614 672	1.71	1.05	162.26 230.81	0.980	1.000	0.503	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	46.3 69.9	N/A N/A	0.000		0.67
10.50	18.09	0.50	2.72	clayey silt to silty clay	-1.0	1.66	15	1,260	917	730	2.33	2.05	90.51	0.976	1.000	0.540	0.149	0.354	YES	2.8	27.6	1,200	N/A	N/A	0.000		0.67
11.50	8.22	0.19	2.30	silty clay to clay	-2.0	1.00	5	1,380	974	787	2.83	N/A	N/A	0.973	N/A	0.555	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A		0.67
12.50 13.50	7.10 17.28	0.18	2.44 1.28	silty clay to clay sandy silt to clayey silt	-3.0 -4.0	1.00	5	1,500 1,620	1,032	845 902	2.92	N/A 2.76	N/A 64.56	0.971	N/A 1.000	0.569	N/A 0.105	N/A 0.232	NO YES	N/A 2.8	N/A 13.1	N/A 518	N/A 17.4	N/A N/A	N/A 1.746		0.67
14.50	64.92	0.22	0.57	sandy stit to clayey stit	-5.0	1.00	16	1,740	1,147	960	1.82	1.12	96.37	0.969	1.000	0.591	0.103	0.232	YES	1.3	24.8	1,200	27.0	N/A	1.045		0.46
15.50	45.30	0.59	1.29	silty sand to sandy silt	-6.0	1.00	15	1,860	1,205	1,018	2.17	1.59	92.99	0.964	1.000	0.600	0.155	0.332	YES	2.8	24.0	1,200	30.4	N/A	0.661	0.08	0.25
16.50	55.42	0.67	1.21	silty sand to sandy silt	-7.0	1.66	31	1,980	1,262	1,075	1.78	1.09	126.08	0.962	1.000	0.608	0.266	0.563	YES	2.8	44.5	1,200	55.1	N/A	0.000		0.25
17.50 18.50	16.58 16.17	0.48	2.85	clayey silt to silty clay clayey silt to silty clay	-8.0 -9.0	1.00	8	2,100 2,220	1,320 1,378	1,133	2.72	N/A N/A	N/A N/A	0.959	N/A N/A	0.615	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A		0.25
19.50	18.02	0.50	2.75	clayey silt to silty clay	-10.0	1.00	9	2,340	1,435	1,248	2.70	N/A	N/A	0.955	N/A	0.627	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.25
20.50	23.31	0.73	3.09	clayey silt to silty clay	-11.0	1.00	12	2,460	1,493	1,306	2.65	N/A	N/A	0.952	N/A	0.632	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A		0.25
21.50 22.50	23.30 16.67	0.93 0.50	3.97 2.94	silty clay to clay clayey silt to silty clay	-12.0 -13.0	1.00 1.00	16	2,580 2,700	1,550 1,608	1,363 1,421	2.74 2.78	N/A N/A	N/A N/A	0.950 0.948	N/A N/A	0.637	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A		0.25
23.50	19.87	0.52	2.57	clayey silt to silty clay	-14.0	1.00	10	2,820	1,666	1,478	2.69	N/A	N/A	0.945	N/A	0.645	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A		0.25
24.50	31.32	0.91	2.88	clayey silt to silty clay	-15.0	1.00	16	2,940	1,723	1,536	2.58	3.22	108.71	0.943	1.000	0.648	0.199	0.395	YES	2.8	20.7	1,200	N/A	N/A	0.000		0.25
25.50 26.50	99.28 191.17	1.38	1.38 0.59	sand to silty sand sand	-16.0 -17.0	1.00 1.00	25 38	3,060 3,180	1,781	1,594	1.99	1.29	135.71	0.941	1.000	0.651	0.312 N/A	0.616 N/A	YES NO	1.3 N/A		1,200 N/A	31.6 42.1	N/A N/A	0.542		0.19
27.50	254.68	1.13	0.39	sand	-17.0	1.00	51	3,180	1,896	1,031	1.34	1.00	261.57	0.936	1.000	0.656	N/A	N/A N/A	NO	N/A	N/A N/A	N/A	55.1	N/A	0.000		0.19
28.50	340.82	1.45	0.43	gravelly sand to sand	-19.0	1.00	57	3,420	1,954	1,766	1.26	1.00	344.84	0.934	1.000	0.659	N/A	N/A	NO	N/A	N/A	N/A	60.4	N/A	0.000		0.19
29.50	390.80	2.63	0.67	gravelly sand to sand	-20.0	1.00	65	3,540	2,011	1,824	1.37	1.00	389.71	0.931	0.998	0.661	N/A	N/A	NO	N/A	N/A	N/A	68.2	N/A	0.000		0.19
30.50 31.50	371.22 282.26	1.70 0.91	0.46	gravelly sand to sand gravelly sand to sand	-21.0 -22.0	1.00 1.00	62 47	3,660 3,780	2,069 2,126	1,882 1,939	1.27	1.00	364.99 273.74	0.926	0.987 0.976	0.660	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	63.8 47.8	N/A N/A	0.000		0.19
32.50	304.52	1.36	0.45	gravelly sand to sand	-23.0	1.00	51	3,900	2,120	1,997	1.33	1.00	291.41	0.909	0.965	0.654	N/A	N/A	NO	N/A	N/A	N/A	50.8	N/A	0.000		0.19
33.50	162.30	1.75	1.08	sand	-24.0	1.00	32	4,020	2,242	2,054	1.80	1.11	169.49	0.901	0.955	0.651	N/A	N/A	NO	N/A	N/A	N/A	32.0	N/A	0.493		0.13
34.50 35.50	118.78 58.62	0.87 1.08	0.73 1.84	sand silty sand to sandy silt	-25.0 -26.0	1.66 1.00	39 20	4,140 4,260	2,299 2,357	2,112	1.49 2.30	1.00	183.43 104.53	0.893	0.946 0.948	0.648	N/A 0.186	N/A 0.352	NO YES	N/A 2.8	N/A 21.6	N/A 1,200	38.3 27.5	N/A N/A	0.033 1.013		0.12
36.50	205.97	1.08	0.94	sand to sandy sait	-27.0	1.00	41	4,280	2,414	2,170	1.69	1.03	193.74	0.877	0.948	0.641	0.180 N/A	0.332 N/A	NO	N/A	N/A	N/A	39.0	N/A N/A	0.018		0.00
37.50	476.20	1.56	0.33	gravelly sand to sand	-28.0	1.00	79	4,500	2,472	2,285	1.12	1.00	428.33	0.869	0.919	0.637	N/A	N/A	NO	N/A	N/A	N/A	74.3	N/A	0.000	0.00	0.00
38.50	498.68	1.74	0.35	gravelly sand to sand	-29.0	1.00	83	4,620	2,530	2,342	1.12	1.00	443.42	0.861	0.910	0.633	N/A	N/A	NO	N/A	N/A	N/A	76.8	N/A	0.000		0.00
39.50 40.50	535.92 508.52	2.03 1.95	0.38	gravelly sand to sand gravelly sand to sand	-30.0 -31.0	1.00 1.00	89 85	4,740 4.860	2,587 2,645	2,400 2,458	1.13	1.00	471.19 442.21	0.852 0.844	0.902	0.629	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	81.5 76.5	N/A N/A	0.000		0.00
41.50	492.79	1.48	0.30	gravelly sand to sand	-32.0	1.00	82	4,980	2,702	2,515	1.09	1.00	423.94	0.836	0.887	0.621	N/A	N/A	NO	N/A	N/A	N/A	73.2	N/A	0.000		0.00
42.50	741.82	1.03	0.14	gravelly sand to sand	-33.0	1.00	124	5,100	2,760	2,573	0.76	1.00	631.48	0.828	0.879	0.617	N/A	N/A	NO	N/A	N/A	N/A	109.0	N/A	0.000	0.00	0.00
		1		#N/A #N/A				-		-	 	1			1				1		 	-					
				#N/A #N/A			1					 															==
				#N/A																							•
		1		#N/A #N/A	-		1												-								
		+		#N/A #N/A			1					 			1												\dashv
				#N/A																							
				#N/A																							
		-	-	#N/A #N/A				1		1	-	 		-	1			-	 		-				-		
		1		#N/A								1															
				#N/A																							
		1		#N/A #N/A				-		-	 	1			1				1		 	-					
		+		#N/A #N/A			1					 			1												
				#N/A																							
				#N/A																							
		1	1			1	1	1	1	1	l	1	1	l	1	11		1			max=	1,200	I		l	1	
																					min=	518					

1.131 avg=

> CPT-12-03 Liquefaction Analysis.XLS Output Sheet

#N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A

(Engineer: Curt Scheyhing)

PROJECT INFORMATION		
Project Name	Marina Del Mar - Parcel 44	
Project No.	LA-1049	
Location	Los Angeles	
Exploration No.	CPT-12-04	
	<u></u>	
GENERAL INPUT DATA		
Ground Surf. Elev. During Test	14.00 ft	

GENERAL INPUT DATA		
Ground Surf. Elev. During Test	14.00 ft	
GWT Elev. During Test	4.50 ft	
GWT Elev. For Design	5.00 ft	
Total Soil Unit Weight, γ _t	120.00 pcf	
Earthquake Magnitude, Meq	6.80	
Peak Ground Acceleration, Amax	0.62 g	
Required Factor of Safety	1.30	

S

Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and I.M. Idriss, 2001)

+ CSR = 0.65 $A_{max} (\sigma_v/\sigma_v') r_d$

++++FS = (CRF₄/CSR) MSF K_σ K_{σ→∞} where CRR₇₅ is evaluated from direct CPT data, K_σ =1.0 and MSF = 1.28

* Residual strength values of liquefied soils are evaluated from converted SPT blow counts using the median curve by Seed & Harder (1990)

** Ground settlements are evaluated from converted SPT blow counts using the method developed by Tokimatsu and Seed (1987).

Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change.

GWT Depth During Test, Zw = GWT Depth For Design, Zwd = 9.50 ft below ground surface 9.00 ft below ground surface

*** SUMMARY OF RESULTS ***

9.00 feet Total Thickness of Liquefiable Soils = Earthquake-Induced Settlements:

- Liquefaction-Induced Settlement =

0.76 inches <--- Saturated Sands - Seismic Compaction Settlement = 0.01 inches <--- Dry or Unsaturated Sands Total: 0.77 inches

																			1								
	INPUT SOIL	PROFILE (C	PT DATA)		ļ		SOIL LIQUE	FACTION I	POTENTIAL AN	NALYSIS (1	996 NCEE	R & 1998 NO	EER/NSF W	ORKSHO	PS) +					RESII	DUAL STRE	NGTH *	1	GROUND	SETTLEM	ENT **	
								Total	Effective	Effective	Soil			Shear	Correction	Cyclic		Factor of Safety			Fines		Fines				
e-n	Average	Average	Average		D-446			Vert.	Vert.	Vert.	Behavior	Fines	Corrected	Stress	for High	Stress	Cyclic	Against		SPT Blow		Residual	Corrected	Cyclic		Laver	Cumulativ
Depth	Cone Tip	Sleeve	Friction		Bottom of Laver	Thin Layer	Equiv. SPT	Stress	Stress	Stress	Type	Correction		Reduction	Overburden	Ratio	Res.	Liqefaction	Lianof	Count	SPT Blow	Shear	SPT Blow	Shear	Vol.	Settlemen	e Settlement
During Test	Resistance	Friction	Ratio	Soil Behavior Type	Elevation	Correction Factor	Blow Count		(Design)	(Test)	Index	Factor	Resistance	Coeff.	Stress	++	Ratio	+++		Correction		Strength	Count	Strain	Strain	t	Profile
(ft)	$q_{t\text{-avg}}(tsf)$	f _{s-avg} (tsf)	R _{f-avg} (%)	(Robertson et al., 1983)	(ft)	(Lunne, et al., 1997)	N ₆₀ (blows/ft)	σ _v (psf)	σ _{v'} (psf)	σ _{v'} (psf)	ī	K.	$\mathbf{q}_{\mathrm{ctNes}}$	\mathbf{r}_{d}	K,	CSR	CRR,	FS	y .	N	$(N_1)_{60c}$	S _r (psf)	$(N_1)_{60cs}$	γ _c (%)	& _v (%)	S _i (in.)	(in.)
0.50	103.77	0.53	0.51	sand	13.0	1.00	21	60	60	60	1.16	1.00	599.10	0.999	N/A	0.403	N/A	N/A	NO	N/A	N/A	N/A	35.3	0.038	0.033	0.00	0.77
1.50	85.25	0.97	1.14	sand to silty sand	12.0	1.00	21	180	180	180	1.63	1.00	284.17	0.997	N/A	0.402	N/A	N/A	NO	N/A	N/A	N/A	40.5	0.063	0.000	0.00	0.77
2.50	69.77	0.95	1.36	silty sand to sandy silt	11.0	1.00	23	300	300	300	1.82	1.12	202.06	0.994	N/A	0.401	N/A	N/A	NO	N/A	N/A	N/A	52.4	0.074	0.000	0.00	0.77
3.50	75.55	0.94	1.24	sand to silty sand	10.0	1.00	19	420	420	420	1.82	1.12	184.33	0.992	N/A	0.400	N/A	N/A	NO	N/A	N/A	N/A	36.2	0.099	0.083	0.01	0.76
4.50 5.50	38.77 15.07	0.52	1.34 2.89	silty sand to sandy silt	9.0	1.66	21 8	540 660	540 660	540 660	1.78 2.57	1.09 3.13	135.06 108.15	0.990	N/A	0.399	N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A	48.6	0.101	0.000	0.00 N/A	0.76 0.76
6.50	26.22	0.44	2.65	clayey silt to silty clay sandy silt to clayey silt	7.0	1.00	10	780	780	780	2.48	2.65	111.37	0.985	N/A N/A	0.398	N/A N/A	N/A	NO	N/A N/A	N/A	N/A N/A	N/A 25.2	N/A N/A	N/A N/A	N/A N/A	0.76
7.50	18.08	0.49	2.69	clayey silt to silty clay	6.0	1.00	9	900	900	900	2.56	3.11	102.41	0.983	N/A	0.396	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.76
8.50	14.42	0.47	3.28	silty clay to clay	5.0	1.00	10	1,020	1,020	1,020	2.73	N/A	N/A	0.980	N/A	0.395	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.76
9.50	16.20	0.49	2.99	clayey silt to silty clay	4.0	1.00	8	1,140	1,109	1,140	2.68	N/A	N/A	0.978	N/A	0.405	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.76
10.50 11.50	19.07 65.75	0.47 1.03	2.46 1.57	clayey silt to silty clay silty sand to sandy silt	3.0 2.0	1.00	10 22	1,260	1,166 1,224	1,198	2.59	3.26 1.45	93.10 122.16	0.976	1.000	0.425	0.155	0.469	YES	2.8	15.1 30.5	691 1,200	N/A 38.2	N/A N/A	0.000	0.00	0.76
12.50	89.70	0.98	1.09	sand to salty sand	1.0	1.66	37	1,500	1,224	1,313	1.59	1.43	185.53	0.973	1.000	0.442	0.230 N/A	0.725 N/A	NO	2.8 N/A	30.3 N/A	N/A	50.5	N/A N/A	0.020	0.00	0.76
13.50	18.75	0.47	2.48	clayey silt to silty clay	0.0	1.66	16	1,620	1,339	1,370	2.36	2.15	81.53	0.969	1.000	0.472	0.130	0.355	YES	2.8	21.6	1,200	N/A	N/A	0.000	0.00	0.76
14.50	8.22	0.19	2.26	silty clay to clay	-1.0	1.00	5	1,740	1,397	1,428	2.93	N/A	N/A	0.966	N/A	0.485	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.76
15.50	8.70	0.21	2.39	silty clay to clay	-2.0	1.00	6	1,860	1,454	1,486	2.93	N/A	N/A	0.964	N/A	0.497	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.76
16.50 17.50	38.43 103.13	0.24	0.62	silty sand to sandy silt sand	-3.0 -4.0	1.00	13 21	1,980 2,100	1,512 1,570	1,543 1,601	2.09 1.66	1.44	63.66 116.42	0.962	1.000	0.507	0.104	0.263	YES	2.8 0.0	17.4 23.1	912 1,200	22.5 23.1	N/A N/A	1.343	0.16	0.60
18.50	93.72	0.48	0.47	sand sand	-4.0	1.66	39	2,220	1,570	1,658	1.54	1.00	172.03	0.957	1.000	0.526		0.363 N/A	NO		23.1 N/A	N/A	47.1	N/A	0.000	0.10	0.44
19.50	36.90	0.55	1.49	silty sand to sandy silt	-6.0	1.66	20	2,340	1,685	1,716	2.03	1.34	89.13	0.955	1.000	0.534		0.351	YES	2.8	24.8	1,200	31.4	N/A	0.345	0.04	0.40
20.50	11.44	0.15	1.34	clayey silt to silty clay	-7.0	1.00	6	2,460	1,742	1,774	2.75	N/A	N/A	0.952	N/A	0.542		N/A	NO		N/A	N/A	N/A	N/A	N/A	N/A	0.40
21.50	16.25	0.24	1.49	sandy silt to clayey silt	-8.0	1.00	7	2,580	1,800	1,831	2.65	N/A	N/A	0.950	N/A	0.549		N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.40
22.50 23.50	27.62 33.55	0.66 1.55	2.39 4.59	sandy silt to clayey silt silty clay to clay	-9.0 -10.0	1.00	22	2,700 2,820	1,858 1,915	1,889	2.58	3.23 N/A	92.67 N/A	0.948	1.000 N/A	0.555	0.154 N/A	0.356 N/A	NO	2.8 N/A	14.2 N/A	606 N/A	18.6 N/A	N/A N/A	1.650 N/A	0.20 N/A	0.20
24.50	19.15	0.82	4.28	clay	-11.0	1.00	19	2,940	1,973	2.004	2.89	N/A	N/A	0.943	N/A	0.566	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.20
25.50	15.55	0.52	3.34	silty clay to clay	-12.0	1.00	10	3,060	2,030	2,062	2.90	N/A	N/A	0.941	N/A	0.571	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.20
26.50	43.78	0.91	2.08	sandy silt to clayey silt	-13.0	1.00	18	3,180	2,088	2,119	2.41	2.34	100.45	0.938	0.987	0.576	0.174	0.384	YES	2.8	19.8	1,166	25.4	N/A	1.160	0.14	0.06
27.50	22.85	0.66	2.85	clayey silt to silty clay	-14.0	1.00	11	3,300	2,146	2,177	2.73	N/A	N/A	0.936	N/A	0.580	N/A	N/A	NO NO	N/A N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.06
28.50 29.50	21.82 34.53	0.74 1.20	3.38 3.47	clayey silt to silty clay clayey silt to silty clay	-15.0 -16.0	1.00	11 17	3,420 3,540	2,203	2,234	2.80	N/A N/A	N/A N/A	0.934	N/A N/A	0.584	N/A N/A	N/A N/A	NO	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.06
30.50	73.55	1.57	2.13	silty sand to sandy silt	-17.0	1.00	25	3,660	2,318	2,350	2.26	1.83	124.94	0.926	0.949	0.589	0.261	0.541	YES	2.8	25.4	1.200	32.1	N/A	0.360	0.04	0.02
31.50	232.09	0.90	0.39	sand	-18.0	1.00	46	3,780	2,376	2,407	1.40	1.00	212.93	0.918	0.933	0.588	N/A	N/A	NO	N/A	N/A	N/A	42.3	N/A	0.000	0.00	0.02
32.50	206.53	0.73	0.35	sand	-19.0	1.00	41	3,900	2,434	2,465	1.42	1.00	187.23	0.909	0.925	0.587	N/A	N/A	NO	N/A	N/A	N/A	37.2	N/A	0.047	0.01	0.01
33.50 34.50	202.22 390.65	1.57	0.77	sand	-20.0 -21.0	1.00	40 65	4,020 4,140	2,491 2,549	2,522 2,580	1.65	1.00	181.25 346.05	0.901	0.916 0.908	0.586	N/A	N/A	NO NO	N/A	N/A	N/A	36.0 57.3	N/A	0.066	0.01	0.00
34.50	390.65 554.55	1.86 4.29	0.48	gravelly sand to sand gravelly sand to sand	-21.0 -22.0	1.00	92	4,140	2,549	2,580	1.29	1.00	346.05 485.78	0.893	0.908	0.585	N/A N/A	N/A N/A	NO	N/A N/A	N/A N/A	N/A N/A	57.3 80.5	N/A N/A	0.000	0.00	0.00
36.50	532.48	1.72	0.32	gravelly sand to sand	-23.0	1.00	89	4,380	2,664	2,695	1.09	1.00	461.37	0.877	0.892	0.581	N/A	N/A	NO	N/A	N/A	N/A	76.4	N/A	0.000	0.00	0.00
37.50	488.42	1.36	0.28	gravelly sand to sand	-24.0	1.00	81	4,500	2,722	2,753	1.08	1.00	418.69	0.869	0.884	0.579	N/A	N/A	NO	N/A	N/A	N/A	69.4	N/A	0.000	0.00	0.00
38.50	405.65	0.83	0.21	gravelly sand to sand	-25.0	1.00	68	4,620	2,779	2,810	1.08	1.00	344.12	0.861	0.877	0.577	N/A	N/A	NO	N/A	N/A	N/A	57.0	N/A	0.000	0.00	0.00
39.50 40.50	468.97 516.57	1.09 2.06	0.23	gravelly sand to sand gravelly sand to sand	-26.0 -27.0	1.00	78 86	4,740 4,860	2,837 2,894	2,868	1.05	1.00	393.77 429.40	0.852	0.870	0.574	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	65.3 71.2	N/A N/A	0.000	0.00	0.00
40.50	526.49	1.66	0.40	gravelly sand to sand	-27.0	1.00	88	4,860	2,894	2,920	1.17	1.00	429.40	0.836	0.856	0.568	N/A N/A	N/A	NO	N/A N/A	N/A	N/A	71.8	N/A	0.000	0.00	0.00
42.50	578.73	1.98	0.34	gravelly sand to sand	-29.0	1.00	96	5,100	3,010	3,041	1.10	1.00	471.78	0.828	0.849	0.565	N/A	N/A	NO	N/A	N/A	N/A	78.2	N/A	0.000	0.00	0.00
43.50	596.97	2.56	0.43	gravelly sand to sand	-30.0	1.00	99	5,220	3,067	3,098	1.16	1.00	482.06	0.820	0.843	0.562	N/A	N/A	NO	N/A	N/A	N/A	79.9	N/A	0.000	0.00	0.00
44.50	685.75	2.03	0.30	gravelly sand to sand	-31.0	1.00	114	5,340	3,125	3,156	1.01	1.00	548.62	0.812	0.837	0.559	N/A	N/A	NO	N/A	N/A	N/A	91.0	N/A	0.000	0.00	0.00
45.50 46.50	545.87 506.40	1.72	0.32	gravelly sand to sand gravelly sand to sand	-32.0 -33.0	1.00	91 84	5,460 5,580	3,182 3,240	3,214 3,271	1.10	1.00	432.74 397.87	0.804	0.830 0.825	0.556	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	71.8 66.0	N/A N/A	0.000	0.00	0.00
47.50	664.88	2.00	0.32	gravelly sand to sand	-34.0	1.00	111	5,700	3,298	3,329	1.03	1.00	517.80	0.787	0.823	0.548	N/A	N/A	NO	N/A	N/A	N/A	85.9	N/A	0.000	0.00	0.00
48.50	587.92	2.39	0.41	gravelly sand to sand	-35.0	1.00	98	5,820	3,355	3,386	1.16	1.00	453.92	0.779	0.813	0.545	N/A	N/A	NO	N/A	N/A	N/A	75.3	N/A	0.000	0.00	0.00
49.50	709.97	1.65	0.23	gravelly sand to sand	-36.0	1.00	118	5,940	3,413	3,444	0.94	1.00	543.50	0.771	0.808	0.541	N/A	N/A	NO	N/A	N/A	N/A	90.2	N/A	0.000	0.00	0.00
				#N/A																							
		-		#N/A				-		+	-										+						

1,200 max=

606 1,042 avg=

(Engineer: Curt Scheyhing)

Peak Ground Acceleration, An

Required Factor of Safety

PROJECT INFORMATION		
Project Name	Marina Del Mar - Parcel 44	
Project No.	LA-1049	
Location	Los Angeles	
Exploration No.	CPT-12-05	
GENERAL INPUT DATA Ground Surf. Elev. During Test	14.00 ft	
Ground Surf. Elev. During Test	14.00 ft	
GWT Elev. During Test	3.00 ft	
GWT Elev. For Design	5.00 ft	
Total Soil Unit Weight, γ _t	120.00 pcf	
Earthquake Magnitude, Mea	6.80	

0.62 g

1.30

REFERENCES

Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and I.M. Idriss, 2001)

+ CSR = 0.65 $A_{max} (\sigma_v/\sigma_v') r_d$

++++FS = (CRF₄/CSR) MSF K_σ K_{σ→∞} where CRR₇₅ is evaluated from direct CPT data, K_σ =1.0 and MSF = 1.28

* Residual strength values of liquefied soils are evaluated from converted SPT blow counts using the median curve by Seed & Harder (1990)

** Ground settlements are evaluated from converted SPT blow counts using the method developed by Tokimatsu and Seed (1987).

Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change.

GWT Depth During Test, Zw = GWT Depth For Design, Zwd = 11.00 ft below ground surface 9.00 ft below ground surface

*** SUMMARY OF RESULTS ***

Total Thickness of Liquefiable Soils = 12.00 feet

Earthquake-Induced Settlements:

- Liquefaction-Induced Settlement = 1.40 inches <--- Saturated Sands - Seismic Compaction Settlement = 0.01 inches <--- Dry or Unsaturated Sands

Total: 1.41 inches

	INPUT SOIL I	PROFILE (C	PT DATA)				SOIL LIQUE	ACTION	POTENTIAL A	NALYSIS (1	996 NCEE	R & 1998 NO	EER/NSF W	VORKSHO	OPS) +				RI	SIDUAL S	FRENGTH *		GROUNI	SETTLE	MENT **	
								Total	Effective	Effective	Soil			Shear	Correction	Cvelie		Factor of Safety		Fin	es	Fines			'	Cumulativ
Soil	Average	Average	Average		Bottom of			Vert.	Vert.	Vert.	Behavior	Fines	Corrected	Stress	for High	Stress	Cyclic	Against	SPT E	low Corre	cted Residu	Corrected	Cyclic		Layer	e
Depth	Cone Tip	Sleeve	Friction		Layer	Thin Layer	Equiv. SPT	Stress	Stress	Stress	Type	Correction			Overburden		Res.	Liqefaction L					Shear	Vol.	Settlemen	Settienient
During Test (ft)	Resistance	Friction f (tof)	Ratio	Soil Behavior Type (Robertson et al., 1983)	Elevation (ft)	Correction Factor (Lunne, et al., 1997)	Blow Count	a (6)	(Design)	(Test)	Index	Factor K	Resistance	Coeff.	Stress K _a	CSR	Ratio CRR,	FS	y? Correc				Strain	Strain	S _i (in.)	Profile (in.)
0.50	q _{t-avg} (tsf) 33.58	f _{s-avg} (tsf) 0.15	R _{f-avg} (%)	silty sand to sandy silt	13.0	1.00	N ₆₀ (blows/ft)	σ _v (psf)	σ _{v'} (psf) 60	σ _{v'} (psf)	1.47	1.00	q _{c1Nes} 193.89	r _d 0.999	N/A	0.403	N/A		NO N/A	rr. (1 1)		27.8	γ _c (%) 0.042	& _v (%)	0.01	1.41
1.50	74.03	0.83	1.12	sand to salty sand	12.0	1.00	19	180	180	180	1.67	1.01	250.34	0.997	N/A	0.402	N/A	N/A	NO N/A	N/.	A N/A	35.5	0.066	0.057	0.01	1.40
2.50 3.50	88.45 91.72	1.39	1.57	silty sand to sandy silt sand to silty sand	11.0	1.00 1.00	29	300 420	300 420	300 420	1.80	1.11	252.96 215.08	0.994	N/A N/A	0.401	N/A N/A		NO N/A			65.1 43.4	0.069	0.000	0.00	1.40
4.50	56.58	0.71	1.25	silty sand to sandy silt	9.0	1.00	19	540	540	540	1.75	1.24	134.61	0.992	N/A	0.399	N/A		NO N/A			43.5	0.104	0.000	0.00	1.40
5.50	44.13	0.44	0.99	silty sand to sandy silt	8.0	1.66	24	660	660	660	1.69	1.03	131.21	0.987	N/A	0.398	N/A		NO N/A			54.7	0.106	0.000	0.00	1.40
6.50 7.50	12.35 24.78	0.23	1.89 2.71	clayey silt to silty clay clayey silt to silty clay	7.0	1.00	6	780 900	780 900	780 900	2.56	3.11 2.90	77.81 107.02	0.985	N/A N/A	0.397	N/A N/A		NO N/A			N/A N/A	N/A N/A	N/A N/A	N/A N/A	1.40
8.50	23.97	0.69	2.87	clayey silt to silty clay	5.0	1.00	12	1,020	1,020	1,020	2.57	3.17	106.40	0.980	N/A	0.395	N/A		NO N/A				N/A	N/A	N/A	1.40
9.50 10.50	20.92 18.59	0.66	3.14 2.51	clayey silt to silty clay clayey silt to silty clay	4.0 3.0	1.00	10	1,140	1,109	1,140	2.61	N/A N/A	N/A N/A	0.978	N/A N/A	0.405	N/A N/A		NO N/A				N/A N/A	N/A N/A	N/A N/A	1.40
11.50	20.98	0.46	2.20	sandy silt to clayey silt	2.0	1.00	8	1,380	1,224	1,349	2.58	3.21	85.98	0.973	1.000	0.442	0.139		ES 2.8	13.	512	17.3	N/A	1.723	0.21	1.20
12.50 13.50	35.20 51.87	0.88 0.97	2.49 1.86	sandy silt to clayey silt silty sand to sandy silt	0.0	1.00	14 29	1,500 1,620	1,282 1,339	1,406	2.44 1.93	2.50 1.22	110.15 127.87	0.971	1.000	0.458	0.204	0.575	ES 2.8 ES 2.8				N/A N/A	0.000	0.13	1.07
14.50	11.78	0.30	2.54	clayey silt to silty clay	-1.0	1.00	6	1,740	1,397	1,522	2.82	N/A	N/A	0.966	N/A	0.485	N/A	N/A	NO N/A	N/.	A N/A	N/A	N/A	N/A	N/A	1.07
15.50 16.50	9.55 12.17	0.18	1.84 3.12	clayey silt to silty clay silty clay to clay	-2.0 -3.0	1.00 1.00	5 8	1,860	1,454 1,512	1,579 1,637	2.84	N/A N/A	N/A N/A	0.964	N/A N/A	0.497	N/A N/A		NO N/A			N/A N/A	N/A N/A	N/A N/A	N/A N/A	1.07
17.50	31.68	0.51	1.61	sandy silt to clayey silt	-4.0	1.00	13	2,100	1,570	1,694	2.40	2.31	82.57	0.959	1.000	0.517	0.132	0.329	(ES 2.8				N/A	1.422	0.17	0.90
18.50	56.67 75.93	0.73	1.28	silty sand to sandy silt	-5.0	1.00	19	2,220	1,627	1,752		1.53	96.23	0.957	1.000	0.526	0.163		ES 2.8				N/A	0.693	0.08	
19.50 20.50	75.93 38.90	0.61	0.80 1.71	sand to silty sand silty sand to sandy silt	-6.0 -7.0	1.00 1.66	19 21	2,340 2,460	1,685 1,742	1,810 1,867		1.21		0.955 0.952	1.000	0.534 0.542		0.416	ES 1.3				N/A N/A	1.291 0.317	0.15	
21.50	13.35	0.34	2.53	clayey silt to silty clay	-8.0	1.00	7	2,580	1,800	1,925		N/A	N/A	0.950	N/A	0.549			NO N/A				N/A	N/A	N/A	0.62
22.50 23.50	21.45 25.98	0.80	3.75 3.41	silty clay to clay clayey silt to silty clay	-9.0 -10.0	1.00	14	2,700 2,820	1,858 1,915	1,982 2,040	2.79	N/A N/A	N/A N/A	0.948	N/A N/A	0.555	N/A N/A		NO N/A				N/A N/A	N/A N/A	N/A N/A	0.62
24.50	27.83	0.61	2.18	sandy silt to clayey silt	-11.0	1.00	11	2,940	1,973	2,098	2.57	3.13	87.98	0.943	1.000	0.566	0.143	0.325	ES 2.8	13.	7 564	18.0	N/A	1.695	0.20	0.42
25.50 26.50	25.98 20.57	0.73	2.80 3.34	clayey silt to silty clay clayey silt to silty clay	-12.0 -13.0	1.00	13	3,060 3,180	2,030 2,088	2,155 2,213	2.67 2.81	N/A N/A	N/A N/A	0.941	N/A N/A	0.571	N/A N/A		NO N/A			N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.42
27.50	46.97	1.18	2.52	sandy silt to clayey silt	-14.0	1.00	19	3,300	2,146	2,270		2.50	113.18	0.936	0.978	0.580	0.215		(ES 2.8				N/A	1.107	0.13	
28.50 29.50	84.93 139.82	1.57	1.85 0.85	silty sand to sandy silt	-15.0 -16.0	1.00	28 28	3,420 3,540	2,203 2,261	2,328 2,386	2.16 1.78	1.58	127.95 143.56	0.934	0.964	0.584	0.275		ES 2.8				N/A	0.058	0.01	0.28
30.50	145.62	1.52	1.05	sand sand	-17.0	1.00	29	3,660	2,318	2,443	1.78	1.13	152.52	0.931	0.933	0.589	0.333	0.741	ES 0.0				N/A N/A	1.149	0.14	0.14
31.50	221.80	1.91	0.86	sand	-18.0	1.00	44	3,780	2,376	2,501	1.64	1.00	202.78	0.918	0.933	0.588	N/A		NO N/A				N/A	0.006	0.00	0.01
32.50 33.50	380.27 474.85	0.94 2.20	0.25	gravelly sand to sand gravelly sand to sand	-19.0 -20.0	1.00	63 79	3,900 4,020	2,434 2,491	2,558 2,616	1.12	1.00	344.73 425.47	0.909	0.925	0.587	N/A N/A		NO N/A				N/A N/A	0.000	0.00	0.01
34.50	652.08	5.73	0.88	gravelly sand to sand	-21.0	1.00	109	4,140	2,549	2,674	1.36	1.00	577.63	0.893	0.908	0.585	N/A		NO N/A				N/A	0.000	0.00	0.01
35.50 36.50	520.00 247.58	2.92 1.47	0.56	gravelly sand to sand sand	-22.0 -23.0	1.66 1.00	143 50	4,260 4,380	2,606 2,664	2,731 2,789	0.96	1.00	754.21 214.52	0.885	0.899 0.892	0.583	N/A N/A		NO N/A				N/A N/A	0.000	0.00	0.01
37.50	362.73	1.50	0.41	gravelly sand to sand	-24.0	1.00	60	4,500	2,722	2,846	1.29	1.00	310.95	0.869	0.884	0.579	N/A	N/A	NO N/A	N/.	A N/A	50.7	N/A	0.000	0.00	0.01
38.50 39.50	393.37 431.93	1.13	0.29	gravelly sand to sand gravelly sand to sand	-25.0 -26.0	1.00	66 72	4,620 4,740	2,779 2,837	2,904 2,962	1.17	1.00	333.70 362.67	0.861	0.877	0.577	N/A N/A		NO N/A				N/A N/A	0.000	0.00	0.01
40.50	450.02	1.24	0.28	gravelly sand to sand	-27.0	1.00	75	4,860	2,894	3,019	1.12	1.00	374.08	0.844	0.863	0.571	N/A		NO N/A				N/A	0.000	0.00	0.01
41.50	478.06	1.65	0.35	gravelly sand to sand	-28.0	1.00	80	4,980	2,952	3,077	1.16	1.00	393.50	0.836	0.856	0.568	N/A		NO N/A			64.2	N/A	0.000	0.00	0.01
42.50 43.50	555.95 637.50	1.96 3.09	0.35	gravelly sand to sand gravelly sand to sand	-29.0 -30.0	1.00 1.00	93 106	5,100 5,220	3,010 3,067	3,134 3,192	1.12	1.00	453.21 514.79	0.828	0.849 0.843	0.565 0.562	N/A N/A		NO N/A			74.0 84.1	N/A N/A	0.000	0.00	0.01
44.50	586.12	2.58	0.44	gravelly sand to sand	-31.0	1.00	98	5,340	3,125	3,250	1.18	1.00	468.91	0.812	0.837	0.559	N/A	N/A	NO N/A	N/.	A N/A	76.6	N/A	0.000	0.00	0.01
45.50 46.50	645.50 500.82	2.16 1.61	0.33	gravelly sand to sand gravelly sand to sand	-32.0 -33.0	1.00	108 83	5,460 5,580	3,182 3,240	3,307 3,365	1.07	1.00	511.73 393.48	0.804	0.830 0.825	0.556	N/A N/A		NO N/A			83.7 64.4	N/A N/A	0.000	0.00	0.01
47.50	520.17	1.47	0.28	gravelly sand to sand	-34.0	1.00	87	5,700	3,298	3,422	1.09	1.00	405.10	0.787	0.819	0.548	N/A	N/A	NO N/A	N/.	A N/A	66.3	N/A	0.000	0.00	0.01
48.50 49.50	545.60 569.57	2.22 1.44	0.41	gravelly sand to sand gravelly sand to sand	-35.0 -36.0	1.00	91 95	5,820 5,940	3,355 3,413	3,480 3,538	1.19	1.00	421.24 436.02	0.779	0.813	0.545	N/A N/A		NO N/A			68.9 71.4	N/A N/A	0.000	0.00	0.01
47.50	307.31	1.777	0.23	#N/A	-50.0	1.00	/3	5,740	3,713	2,230	1.04	1.00	430.02	0.771	0.000	0.541	19/23	IVA	.10	10/.	. IN/A	/1.4	1974	0.000	0.00	0.01
				#N/A #N/A																						₩-
				#N/A																						
				#N/A			1																		\vdash	\Box
				#N/A #N/A	-					1						1							-		 	$\overline{}$
				#N/A																						
 				#N/A #N/A	-		-															_				
				#N/A																						
										1										ma	= 1.200					
																				mii						

1,054 avg=

> CPT-12-05 Liquefaction Analysis.XLS Output Sheet

(Engineer: Curt Scheyhing)

Peak Ground Acceleration, Amas

Required Factor of Safety

PROJECT INFORMATION		
Project Name	Marina Del Mar - Parcel 44	
Project No.	LA-1049	
Location	Los Angeles	
Exploration No.	CPT-12-06	
GENERAL INPUT DATA		
GENERAL INPUT DATA Ground Surf. Elev. During Test	14.00 ft	
	14.00 ft -6.30 ft	
Ground Surf. Elev. During Test		
Ground Surf. Elev. During Test GWT Elev. During Test	-6.30 ft	

0.62 g

REFERENCES

Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and I.M. Idriss, 2001)

+ CSR = 0.65 $A_{max} (\sigma_v/\sigma_v') r_d$

++++FS = (CRF₄/CSR) MSF K_σ K_{σ→∞} where CRR₇₅ is evaluated from direct CPT data, K_σ =1.0 and MSF = 1.28

* Residual strength values of liquefied soils are evaluated from converted SPT blow counts using the median curve by Seed & Harder (1990)

** Ground settlements are evaluated from converted SPT blow counts using the method developed by Tokimatsu and Seed (1987).

Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change.

GWT Depth During Test, Zw = GWT Depth For Design, Zwd = 20.30 ft below ground surface 9.00 ft below ground surface

*** SUMMARY OF RESULTS ***

Total Thickness of Liquefiable Soils = 4.00 feet

Earthquake-Induced Settlements:

- Liquefaction-Induced Settlement = 0.53 inches <--- Saturated Sands - Seismic Compaction Settlement = 0.00 inches <--- Dry or Unsaturated Sands

Total: 0.53 inches

	INPUT SOIL PROFILE (CPT DATA)						SOIL LIQUES	FACTION	POTENTIAL AN	JAT VCTC (1)	004 NCEE	D 6. 1009 N/	PEED/NCE U	ODVCUC	NDC) :				DECH	DUAL STRE	NCTH *		CROUNT	SETTLEM	TENT ##	
	INFOT SOIL	KOFILE (C	ATI DATA)				SOIL LIQUE					A & 1990 INC	EER/NSF V					Factor of	KESI		NGIII ·		GROUNE	SETTLEN	IENI ··	
	Average	Average	Average					Total Vert.	Effective Vert.	Effective Vert.	Soil Behavior	¥72	C	Shear Stress	Correction for High	Cyclic Stress	Cyclic	Safety Against	SPT Blow	Fines Corrected	Residual	Fines Corrected	Cyclic		T	Cumulativ
Soil Depth	Cone Tip	Sleeve	Friction		Bottom of Layer	Thin Layer	Equiv. SPT	Stress	Stress	Stress	Type	Fines Correction	Corrected Tip	Reduction			Res.	Liqefaction Liqu		SPT Blow		SPT Blow	Shear	Vol.	Layer Settlemen	e Settlement
During Test	Resistance	Friction	Ratio	Soil Behavior Type	Elevation	Correction Factor	Blow Count		(Design)	(Test)	Index	Factor	Resistance	Coeff.	Stress	++	Ratio	+++ y?			Strength	Count	Strain	Strain	t	Profile
(ft)	$\mathbf{q}_{t\text{-avg}}\left(t\mathbf{s}\mathbf{f}\right)$	f _{s-avg} (tsf)	$R_{f\text{-avg}}$ (%)	(Robertson et al., 1983)	(ft)	(Lunne, et al., 1997)	N_{60} (blows/ft)	σ _v (psf)	σ _{v'} (psf)	σ _{v'} (psf)	I.	K,	$\mathbf{q}_{\mathrm{c1Nes}}$	\mathbf{r}_{d}	K,	CSR	CRR _{7.5}	FS	N _{corr.}	$(N_1)_{60cs}$	$S_r(psf)$	$(N_1)_{60cs}$	γ _c (%)	E _v (%)	S _i (in.)	(in.)
5.50	9.45	0.13	1.36	clayey silt to silty clay	8.0	1.00	5	660	660	660	2.53	2.95	63.94	0.987	N/A	0.398	N/A	N/A NO		N/A	N/A	N/A	N/A	N/A	N/A	0.53
6.50 7.50	11.00 27.13	0.42	3.82 2.82	clay clayey silt to silty clay	7.0 6.0	1.00	11	780 900	780 900	780 900	2.79	N/A 2.80	N/A 113.41	0.985	N/A N/A	0.397	N/A N/A	N/A NO		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.53
8.50	23.83	0.57	2.38	sandy silt to clayey silt	5.0	1.00	10	1,020	1,020	1,020	2.52	2.89	96.44	0.980	N/A	0.395	N/A	N/A NO	N/A	N/A	N/A	21.0	N/A	N/A	N/A	0.53
9.50 10.50	51.47 44.56	0.76	1.48	silty sand to sandy silt silty sand to sandy silt	4.0 3.0	1.00 1.66	17 25	1,140 1,260	1,109 1,166	1,140 1,260		1.54	106.79 115.43	0.978	1.000	0.405	0.193	0.613 YE 0.675 YE		25.5 33.8	1,200 1,200	32.3 42.2	N/A N/A	0.074	0.01	0.52
11.50	15.75	0.42	2.64	clayey silt to silty clay	2.0	1.00	8	1,380	1,224	1,380	2.69	N/A	N/A	0.973	N/A	0.442		N/A NO		N/A	N/A	N/A	N/A	N/A	N/A	0.52
12.50 13.50	17.02 21.45	0.46	2.67	clayey silt to silty clay	0.0	1.00	9	1,500 1,620	1,282	1,500 1,620	2.68	N/A 3.13	N/A 81.95	0.971	N/A 1.000	0.458	N/A 0.131	N/A NC 0.357 YE		N/A 12.3	N/A 460	N/A 16.4	N/A	N/A 1.798	N/A 0.22	0.52
14.50	17.37	0.43	1.93	sandy silt to clayey silt clayey silt to silty clay	-1.0	1.00	9	1,740	1,397	1,740	2.61	3.13 N/A	81.93 N/A	0.966	N/A	0.472	0.131 N/A	0.357 YE N/A NO		N/A	N/A	N/A	N/A N/A	N/A	N/A	0.30
15.50	8.75	0.24	2.79	silty clay to clay	-2.0	1.00	6	1,860	1,454	1,860	2.97	N/A	N/A	0.964	N/A	0.497	N/A	N/A NO		N/A	N/A	N/A	N/A	N/A	N/A	0.30
16.50 17.50	8.83 16.38	0.21	2.34 3.09	silty clay to clay clayey silt to silty clay	-3.0 -4.0	1.00	6	1,980 2,100	1,512 1,570	1,980 2,100	2.93	N/A N/A	N/A N/A	0.962	N/A N/A	0.507	N/A N/A	N/A NO		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.30
18.50	35.25	0.59	1.69	sandy silt to clayey silt	-5.0	1.00	14	2,220	1,627	2,220	2.38	2.23	87.05	0.957	1.000	0.526	0.141	0.345 YE	2.8	16.2	792	21.1	N/A	1.461	0.18	0.13
19.50 20.50	22.12 13.40	0.56	2.53	clayey silt to silty clay clayey silt to silty clay	-6.0 -7.0	1.00	11	2,340 2,460	1,685 1,742	2,340 2,448	2.64	N/A N/A	N/A N/A	0.955	N/A N/A	0.534	N/A N/A	N/A NO		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.13
21.50	11.22	0.38	3.39	silty clay to clay	-8.0	1.00	7	2,580	1,800	2,505	2.99	N/A	N/A	0.950	N/A	0.549	N/A	N/A NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.13
22.50 23.50	18.20 33.10	0.60	3.30 3.33	clayey silt to silty clay clayey silt to silty clay	-9.0 -10.0	1.00 1.00	9 17	2,700 2,820	1,858 1,915	2,563 2,620	2.81	N/A N/A	N/A N/A	0.948	N/A N/A	0.555 0.561	N/A N/A	N/A NO N/A NO		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.13 0.13
24.50	21.28	0.78	3.65	silty clay to clay	-10.0	1.00	14	2,820	1,913	2,620	2.80	N/A N/A	N/A N/A	0.943	N/A N/A	0.566	N/A N/A	N/A NO		N/A N/A	N/A N/A	N/A N/A	N/A	N/A N/A	N/A	0.13
25.50	23.75	1.04	4.38	silty clay to clay	-12.0	1.00	16	3,060	2,030 2,088	2,736	2.82	N/A	N/A	0.941	N/A	0.571	N/A	N/A NO		N/A	N/A	N/A	N/A	N/A	N/A	0.13
26.50 27.50	20.97 19.47	0.87 0.77	4.13 3.94	silty clay to clay silty clay to clay	-13.0 -14.0	1.00 1.00	14 13	3,180 3,300	2,088	2,793 2,851	2.86 2.88	N/A N/A	N/A N/A	0.938	N/A N/A	0.576 0.580	N/A N/A	N/A NO N/A NO		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.13
28.50	162.58	1.62	1.00	sand	-15.0	1.00	33	3,420	2,203	2,908	1.77	1.09	168.10	0.934	0.963	0.584	N/A	N/A NO	N/A	N/A	N/A	27.0	N/A	1.049	0.13	0.00
29.50 30.50	559.58 708.05	3.22 5.51	0.58 0.78	gravelly sand to sand gravelly sand to sand	-16.0 -17.0	1.00 1.00	93 118	3,540 3,660	2,261 2,318	2,966 3,024	1.23	1.00	526.32 657.63	0.931	0.952 0.943	0.588	N/A N/A	N/A NO N/A NO		N/A N/A	N/A N/A	76.6 96.0	N/A N/A	0.000	0.00	0.00
31.50	686.50	2.89	0.42	gravelly sand to sand	-18.0	1.00	114	3,780	2,376	3,081	1.08	1.00	629.84	0.918	0.933	0.588	N/A	N/A NO		N/A	N/A	92.2	N/A	0.000	0.00	0.00
				#N/A #N/A																						
				#N/A																						
				#N/A																						
				#N/A #N/A																						
				#N/A																						
				#N/A #N/A	-																					
				#N/A																						
				#N/A #N/A																						
				#N/A																						
				#N/A #N/A																						
				#N/A																						
				#N/A #N/A																						
				#N/A																						
				#N/A																						
		1		#N/A #N/A				1											1	1						-
				#N/A																						
		1		#N/A #N/A	-														1	1						
				#N/A																						
		1		#N/A #N/A				-		1		1	-			1			1	1	-					$\overline{}$
				#N/A																						
		1		#N/A #N/A						1										1						
				#N/A #N/A						1									+							
				#N/A																						
				#N/A	-			-		1						1			1	-						
		•	•				*	•		•		•	•		•	•	•			max=	1,200					
																				min=	460 913					

913 avg=

> CPT-12-06 Liquefaction Analysis.XLS Output Sheet

(Engineer: Curt Scheyhing)

PROJECT INFORMATION		
Project Name	Marina Del Mar - Parcel 44	
Project No.	LA-1049	
Location	Los Angeles	
Exploration No.	CPT-12-07	

GENERAL INPUT DATA		
Ground Surf. Elev. During Test	14.00 ft	
GWT Elev. During Test	2.00 ft	
GWT Elev. For Design	5.00 ft	
Total Soil Unit Weight, γ _t	120.00 pcf	
Earthquake Magnitude, Meq	6.80	
Peak Ground Acceleration, Amax	0.62 g	
Required Factor of Safety	1.30	
	•	

REFERENCES

Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and I.M. Idriss, 2001)

+ CSR = 0.65 $A_{max} (\sigma_v/\sigma_v') r_d$

++++FS = (CRF₄/CSR) MSF K_σ K_{σ→∞} where CRR₇₅ is evaluated from direct CPT data, K_σ =1.0 and MSF = 1.28

* Residual strength values of liquefied soils are evaluated from converted SPT blow counts using the median curve by Seed & Harder (1990)

** Ground settlements are evaluated from converted SPT blow counts using the method developed by Tokimatsu and Seed (1987).

Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change.

GWT Depth During Test, Zw = GWT Depth For Design, Zwd = 12.00 ft below ground surface 9.00 ft below ground surface

*** SUMMARY OF RESULTS ***

6.00 feet Total Thickness of Liquefiable Soils =

Earthquake-Induced Settlements:

- Liquefaction-Induced Settlement = 0.67 inches <--- Saturated Sands - Seismic Compaction Settlement = 0.00 inches <--- Dry or Unsaturated Sands

Total: 0.67 inches

	INPUT SOIL I	PROFILE (C	PT DATA)				SOIL LIQUE	FACTION I	POTENTIAL A	NALYSIS (1	996 NCEE	R & 1998 NO	CEER/NSF V	VORKSHO	PS) +				F	ESIDUAI	L STREN	NGTH *		GROUNI	SETTLE	MENT **	$\overline{}$
								Total	Effective	Effective	Soil			Shear	Correction	Cyclic		Factor of Safety			Fines		Fines				
Soil	Average	Average	Average		Bottom of			Vert.	Vert.	Vert.	Behavior	Fines	Corrected	Stress	for High	Stress	Cyclic	Against	SPT		orrected	Residual	Corrected	Cyclic		Layer	Cumulativ e
Depth	Cone Tip	Sleeve	Friction		Layer	Thin Layer	Equiv. SPT	Stress	Stress	Stress	Type	Correction		Reduction		Ratio	Res.	Liqefaction	Liquef Co		T Blow	Shear	SPT Blow	Shear	Vol.	Settlemen	Settlement
During Test	Resistance	Friction	Ratio	Soil Behavior Type	Elevation	Correction Factor	Blow Count		(Design)	(Test)	Index	Factor	Resistance	Coeff.	Stress	++	Ratio	+++	y? Corr		Count	Strength	Count	Strain	Strain	t c	Profile
(ft) 5.50	q _{t-avg} (tsf)		R _{f-avg} (%)		(ft)	(Lunne, et al., 1997)	N ₆₀ (blows/ft)		σ _{v'} (psf)	σ _{v'} (psf)	I _c	K,	q _{c1Nes}	r _d	Κσ		CRR _{7.5}	FS			N ₁) _{60cs}	S _r (psf)	(N ₁) _{60cs}	γ _c (%)	E _v (%)	S _i (in.)	(in.)
6.50	17.67	0.30	1.68 2.08	sandy silt to clayey silt silty clay to clay	7.0	1.66 1.00	12	660 780	660 780	660 780	2.15	1.55 N/A	79.14 N/A	0.987	N/A N/A	0.398	N/A N/A	N/A N/A	NO N		N/A N/A	N/A N/A	28.9 N/A	N/A N/A	N/A N/A	N/A N/A	0.67
7.50	17.48	0.71	4.07	silty clay to clay	6.0	1.00	12	900	900	900	2.69	N/A	N/A	0.983	N/A	0.396	N/A	N/A	NO N	Ά	N/A	N/A	N/A	N/A	N/A	N/A	0.67
8.50 9.50	28.23 23.02	0.79	2.81	clayey silt to silty clay sandy silt to clayey silt	5.0	1.00	14	1,020	1,020 1,109	1,020	2.51	2.84 3.00	112.15 92.73	0.980	N/A 1.000	0.395	N/A 0.154	N/A 0.489	NO N YES 2		N/A 15.0	N/A 680	N/A 19.6	N/A N/A	N/A 1.493	N/A 0.18	0.67
10.50	16.00	0.40	2.49	clayey silt to silty clay	3.0	1.00	8	1,260	1,166	1,260	2.65	N/A	N/A	0.976	N/A	0.405	N/A	N/A			N/A	N/A	N/A	N/A	N/A	N/A	0.49
11.50	11.00	0.34	3.08	silty clay to clay	2.0	1.00	7	1,380	1,224	1,380	2.86	N/A	N/A	0.973	N/A	0.442	N/A	N/A	NO N		N/A	N/A	N/A	N/A	N/A	N/A	0.49
12.50 13.50	11.00 15.42	0.22	2.03	clayey silt to silty clay clayey silt to silty clay	0.0	1.00	6 8	1,500 1,620	1,282 1,339	1,469 1,526	2.76	N/A N/A	N/A N/A	0.971	N/A N/A	0.458	N/A N/A	N/A N/A			N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.49
14.50	18.57	0.34	1.84	sandy silt to clayey silt	-1.0	1.66	12	1,740	1,397	1,584	2.29	1.93	70.96	0.966	1.000	0.485	0.113	0.300	YES 2	8	16.6	835	21.6	N/A	1.404	0.17	0.32
15.50 16.50	8.82 9.37	0.17	1.92	clayey silt to silty clay clayey silt to silty clay	-2.0 -3.0	1.00	4	1,860	1,454 1,512	1,642	2.87	N/A N/A	N/A N/A	0.964	N/A N/A	0.497	N/A N/A	N/A N/A			N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.32
17.50	13.27	0.22	1.66	clayey silt to silty clay	-4.0	1.00	7	2,100	1,570	1,757	2.70	N/A	N/A	0.959	N/A	0.517	N/A	N/A	NO N		N/A	N/A	N/A	N/A	N/A	N/A	0.32
18.50 19.50	40.65 17.78	0.28	0.69 2.41	silty sand to sandy silt	-5.0 -6.0	1.66 1.00	22	2,220 2,340	1,627 1.685	1,814	1.81	1.00 N/A	74.62	0.957	1.000	0.526	0.119	0.290 N/A	YES 2 NO N		26.4	1,200	33.3	N/A	0.095	0.01	0.31
20.50	17.78	0.43	3.60	clayey silt to silty clay silty clay to clay	-6.0 -7.0	1.00	9	2,340	1,685	1,872	2.71	N/A N/A	N/A N/A	0.955	N/A N/A	0.534	N/A N/A	N/A N/A	NO N		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.31
21.50	12.77	0.47	3.71	silty clay to clay	-8.0	1.00	9	2,580	1,800	1,987	2.96	N/A	N/A	0.950	N/A	0.549	N/A	N/A	NO N	Ά	N/A	N/A	N/A	N/A	N/A	N/A	0.31
22.50	14.80 41.10	0.54	3.66 2.08	silty clay to clay	-9.0 -10.0	1.00	10	2,700	1,858 1,915	2,045	2.91	N/A 2.36	N/A 99.29	0.948	N/A 1.000	0.555	N/A 0.171	N/A 0.392	NO N YES 2		N/A 18.8	N/A 1.063	N/A 24.2	N/A N/A	N/A 1.243	N/A 0.15	0.31
24.50	22.93	0.87	3.81	silty clay to clay	-11.0	1.00	15	2,940	1,973	2,160	2.79	N/A	N/A	0.943	N/A	0.566	N/A	N/A	NO N	Ά	N/A	N/A	N/A	N/A	N/A	N/A	0.16
25.50 26.50	13.23 20.05	0.49 0.92	3.71 4.57	silty clay to clay	-12.0 -13.0	1.00 1.00	9 20	3,060 3,180	2,030 2,088	2,218 2,275	2.99 2.90	N/A N/A	N/A N/A	0.941	N/A N/A	0.571	N/A N/A	N/A N/A			N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.16 0.16
27.50	73.20	1.35	1.85	clay silty sand to sandy silt	-13.0 -14.0	1.00	24	3,300	2,088	2,273	2.90	1.68	118.82	0.936	0.975	0.576	0.236	0.510			N/A 25.4	1,200	32.1	N/A N/A	0.341	0.04	0.10
28.50	154.32	1.11	0.72	sand	-15.0	1.00	31	3,420	2,203	2,390	1.69	1.03	151.99	0.934	0.962	0.584	0.407	0.860	YES 0		28.2	1,200	28.2	N/A	0.924	0.11	0.01
29.50 30.50	201.75 295.42	1.13	0.56	sand gravelly sand to sand	-16.0 -17.0	1.00 1.00	40 49	3,540 3,660	2,261 2,318	2,448 2,506	1.54	1.00	189.76 274.38	0.931	0.952 0.943	0.588	N/A N/A	N/A N/A	NO N		N/A N/A	N/A N/A	36.5 44.0	N/A N/A	0.059	0.01	0.00
31.50	276.09	1.61	0.58	sand	-18.0	1.00	55	3,780	2,376	2,563	1.45	1.00	253.30	0.918	0.933	0.588	N/A	N/A	NO N		N/A	N/A	48.8	N/A	0.000	0.00	0.00
32.50 33.50	292.65	1.33	0.45	gravelly sand to sand	-19.0	1.00	49	3,900	2,434	2,621	1.37	1.00	265.30	0.909	0.925	0.587	N/A	N/A	NO N		N/A	N/A	42.6	N/A	0.000	0.00	0.00
33.50 34.50	317.98 366.65	1.77	0.56	gravelly sand to sand gravelly sand to sand	-20.0 -21.0	1.00	53 61	4,020 4,140	2,491 2,549	2,678 2,736	1.40	1.00	284.91 324.79	0.901	0.916	0.586	N/A N/A	N/A N/A	NO N NO N		N/A N/A	N/A N/A	45.8 52.2	N/A N/A	0.000	0.00	0.00
35.50	416.12	1.80	0.43	gravelly sand to sand	-22.0	1.00	69	4,260	2,606	2,794	1.25	1.00	364.51	0.885	0.899	0.583	N/A	N/A	NO N	Ά	N/A	N/A	58.7	N/A	0.000	0.00	0.00
36.50 37.50	544.02 622.00	3.30 3.04	0.61	gravelly sand to sand gravelly sand to sand	-23.0 -24.0	1.00	91 104	4,380 4,500	2,664 2,722	2,851	1.28	1.00	471.37 533.20	0.877 0.869	0.892	0.581	N/A N/A	N/A N/A			N/A N/A	N/A N/A	75.9 86.0	N/A N/A	0.000	0.00	0.00
38.50	642.33	5.78	0.90	gravelly sand to sand	-25.0	1.00	107	4,620	2,779	2,966	1.39	1.00	544.90	0.861	0.877	0.577	N/A	N/A	NO N	Ά	N/A	N/A	87.9	N/A	0.000	0.00	0.00
39.50 40.50	563.43 459.15	3.05 1.59	0.54	gravelly sand to sand gravelly sand to sand	-26.0 -27.0	1.00	94 77	4,740 4.860	2,837 2,894	3,024 3,082	1.24	1.00	473.09 381.67	0.852 0.844	0.870 0.863	0.574	N/A N/A	N/A N/A			N/A N/A	N/A N/A	76.4 61.6	N/A N/A	0.000	0.00	0.00
41.50	390.20	2.24	0.57	gravelly sand to sand	-27.0	1.00	65	4,860	2,894	3,139	1.17	1.00	321.18	0.836	0.856	0.568	N/A	N/A N/A	NO N		N/A	N/A	51.9	N/A	0.000	0.00	0.00
42.50	610.42	4.63	0.76	gravelly sand to sand	-29.0	1.00	102	5,100	3,010	3,197	1.35	1.00	497.61	0.828	0.849	0.565	N/A	N/A			N/A	N/A	80.5	N/A	0.000	0.00	0.00
43.50 44.50	536.42 465.87	2.50 2.45	0.47	gravelly sand to sand gravelly sand to sand	-30.0 -31.0	1.00	89 78	5,220 5,340	3,067 3,125	3,254 3,312	1.22	1.00	433.16 372.71	0.820 0.812	0.843 0.837	0.562	N/A N/A	N/A N/A	NO N NO N		N/A N/A	N/A N/A	70.1 60.3	N/A N/A	0.000	0.00	0.00
45.50	469.73	3.37	0.72	gravelly sand to sand	-32.0	1.00	78	5,460	3,182	3,370	1.40	1.00	372.39	0.804	0.830	0.556	N/A	N/A	NO N	Ά	N/A	N/A	60.3	N/A	0.000	0.00	0.00
46.50 47.50	641.13 653.83	3.10 3.45	0.48	gravelly sand to sand gravelly sand to sand	-33.0 -34.0	1.00 1.00	107	5,580	3,240 3,298	3,427	1.19	1.00	503.73 509.20	0.795	0.825 0.819	0.552	N/A N/A	N/A N/A			N/A N/A	N/A N/A	81.6 82.6	N/A N/A	0.000	0.00	0.00
48.50	524.28	4.28	0.82	gravelly sand to sand	-35.0	1.00	87	5,820	3,355	3,542	1.42	1.00	404.79	0.779	0.813	0.545	N/A	N/A	NO N		N/A	N/A	65.7	N/A	0.000	0.00	0.00
49.50 50.50	551.02 604.58	4.84 3.46	0.88	gravelly sand to sand gravelly sand to sand	-36.0 -37.0	1.00	92 101	5,940 6,060	3,413 3,470	3,600 3,658	1.44	1.00	421.82 458.97	0.771	0.808 0.802	0.541	N/A N/A	N/A N/A	NO N		N/A N/A	N/A N/A	68.5 74.5	N/A N/A	0.000	0.00	0.00
51.50	675.42	4.87	0.57	gravelly sand to sand	-38.0	1.00	113	6,180	3,528	3,038	1.27	1.00	508.54	0.755	0.802	0.537	N/A	N/A N/A	NO N		N/A	N/A	74.5 82.6	N/A	0.000	0.00	0.00
52.50	520.21	6.02	1.16	sand	-39.0	1.00	104	6,300	3,586	3,773	1.56	1.00	388.53	0.747	0.792	0.529	N/A	N/A	NO N		N/A	N/A	75.8	N/A	0.000	0.00	0.00
53.50 54.50	608.55 528.70	4.25 5.28	0.70 1.00	gravelly sand to sand sand	-40.0 -41.0	1.00	101 106	6,420	3,643	3,830	1.34	1.00	450.89 388.67	0.739	0.787	0.524	N/A N/A	N/A N/A	NO N NO N		N/A N/A	N/A N/A	73.3 75.8	N/A N/A	0.000	0.00	0.00
55.50	682.62	4.38	0.64	gravelly sand to sand	-42.0	1.00	114	6,660	3,758	3,946	1.29	1.00	497.96	0.722	0.777	0.516	N/A	N/A	NO N	Ά	N/A	N/A	81.0	N/A	0.000	0.00	0.00
56.50 57.50	605.00 479.98	3.28 3.79	0.54	gravelly sand to sand	-43.0	1.00	101	6,780	3,816	4,003	1.27	1.00	438.00	0.714	0.772	0.511	N/A	N/A	NO N		N/A	N/A	71.3	N/A	0.000	0.00	0.00
57.50	421.85	5.01	0.79 1.19	gravelly sand to sand sand	-44.0 -45.0	1.00 1.00	80 84	6,900 7,020	3,874 3,931	4,061 4,118	1.46	1.00	344.89 300.89	0.706	0.768	0.507	N/A N/A	N/A N/A	NO N		N/A N/A	N/A N/A	56.1 58.8	N/A N/A	0.000	0.00	0.00
59.50	411.82	3.85	0.94	sand	-46.0	1.00	82	7,140	3,989	4,176	1.56	1.00	291.61	0.690	0.759	0.498	N/A	N/A	NO N	Ά	N/A	N/A	57.0	N/A	0.000	0.00	0.00
60.50 61.50	468.05 488.12	3.21 4.05	0.69	gravelly sand to sand gravelly sand to sand	-47.0 -48.0	1.00	78 81	7,260 7,380	4,046 4,104	4,234 4,291	1.43	1.00	329.06 340.75	0.682	0.754	0.493	N/A N/A	N/A N/A			N/A N/A	N/A N/A	53.6 55.5	N/A N/A	0.000	0.00	0.00
62.50	511.93	4.13	0.81	gravelly sand to sand	-49.0	1.00	85	7,500	4,162	4,349	1.46	1.00	354.89	0.665	0.746	0.483	N/A	N/A	NO N	Ά	N/A	N/A	57.9	N/A	0.000	0.00	0.00
63.50 64.50	427.88 490.93	4.10 5.00	0.96 1.02	sand sand	-50.0 -51.0	1.00 1.00	86 98	7,620 7,740	4,219 4,277	4,406 4.464	1.57	1.00	294.60 335.72	0.657	0.742 0.738	0.478	N/A N/A	N/A N/A	NO N NO N		N/A N/A	N/A N/A	57.7 65.7	N/A N/A	0.000	0.00	0.00
65.50	564.30	4.75	0.84	gravelly sand to sand	-51.0 -52.0	1.00	98	7,740	4,277	4,464	1.55	1.00	383.32	0.649	0.734	0.473	N/A	N/A N/A	NO N		N/A N/A	N/A N/A	62.6	N/A N/A	0.000	0.00	0.00
				#N/A																							
																					max= min=	1,200 680					

1,030 avg=

> CPT-12-07 Liquefaction Analysis.XLS Output Sheet

(Engineer: Curt Scheyhing)

PROJECT INFORMATION		
Project Name	Marina Del Mar - Parcel 44	
Project No.	LA-1049	
Location	Los Angeles	
Exploration No.	CPT-12-08	

GENERAL INPUT DATA		
Ground Surf. Elev. During Test	14.00 ft	
GWT Elev. During Test	8.00 ft	
GWT Elev. For Design	5.00 ft	
Total Soil Unit Weight, γ _t	120.00 pcf	
Earthquake Magnitude, Meq	6.80	
Peak Ground Acceleration, Amax	0.62 g	
Required Factor of Safety	1.30	

REFERENCES

Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and I.M. Idriss, 2001)

++ $CSR = 0.65 A_{max} (\sigma_v/\sigma_v') r_d$

++++F = CRF₃/CSR MSF K₀ K₀→∞ where CRR_{7,5} is evaluated from direct CPT data, K₀ = 1.0 and MSF = 1.28

Residual strength values of liquefied soils are evaluated from converted SPT blow counts using the median curve by Seed & Harder (1990)

Ground settlements are evaluated from converted SPT blow counts using the method developed by Tokimatsu and Seed (1987).

Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change.

GWT Depth During Test, Zw = GWT Depth For Design, Zwd = 6.00 ft below ground surface 9.00 ft below ground surface

*** SUMMARY OF RESULTS ***

4.00 feet Total Thickness of Liquefiable Soils = Earthquake-Induced Settlements:

- Liquefaction-Induced Settlement =

0.47 inches <--- Saturated Sands - Seismic Compaction Settlement = 0.00 inches <--- Dry or Unsaturated Sands

Total: 0.47 inches

	INPUT SOIL I	PROFILE (C	PT DATA)				SOIL LIQUER	ACTION	POTENTIAL AN	NALYSIS (1	996 NCEE	R & 1998 NO	EER/NSF V	VORKSHO	OPS) +				RESI	DUAL STRE	NGTH *		GROUNI	SETTLEN	IENT **	
																		Factor of								
	Average	Avonogo	Average					Total	Effective	Effective	Soil	***		Shear	Correction	Cyclic	a "	Safety	CDC DI	Fines	n	Fines	C11-			Cumulativ
Soil	Cone Tip	Average Sleeve	Friction		Bottom of	771 · V	Equiv. SPT	Vert. Stress	Vert. Stress	Vert. Stress	Behavior Type	Fines Correction	Corrected Tip		for High Overburden	Stress Ratio	Cyclic Res.	Against Liqefaction Lie	SPT Blov	v Corrected SPT Blow		Corrected SPT Blow	Cyclic Shear	Vol.	Layer Settlemen	e C ra
Depth During Test	Resistance	Friction	Ratio	Soil Behavior Type	Layer Elevation	Thin Layer Correction Factor	Blow Count	Stress	(Design)	(Test)	Index	Factor	Resistance		Stress	++	Ratio		? Correction		Strength	Count	Strain	Strain	t	Settlement Profile
(ft)	q _{t-avg} (tsf)	f _{s-avg} (tsf)			(ft)	(Lunne, et al., 1997)	N ₆₀ (blows/ft)	σ _v (psf)	σ _v (psf)	σ _v (psf)	I.	K.	\mathbf{q}_{c1Nes}	\mathbf{r}_{d}	K,	CSR	CRR,	FS	N _{corr.}	(N ₁) _{60es}	S _r (psf)	$(N_1)_{60cs}$	γ. (%)	E _v (%)	S _i (in.)	(in.)
0.50	100.55	0.84	0.84	sand to silty sand	13.0	1.00	25	60	60	60	1.34	1.00	580.53	0.999	N/A	0.403	N/A		O N/A	N/A	N/A	47.3	0.035	0.000	0.00	0.47
1.50	127.15	1.12	0.88	sand to silty sand	12.0	1.00	32	180	180	180	1.44	1.00	423.83	0.997	N/A	0.402	N/A		O N/A	N/A	N/A	59.1	0.056	0.000	0.00	0.47
2.50	96.10	0.90	0.94	sand to silty sand	11.0	1.00	24	300	300	300	1.60	1.00	248.13	0.994	N/A	0.401	N/A		O N/A	N/A	N/A	45.3	0.078	0.000	0.00	0.47
3.50	50.65	0.61	1.21	silty sand to sandy silt	10.0	1.66	28	420	420	420	1.62	1.00	183.00	0.992	N/A	0.400	N/A		O N/A	N/A	N/A	62.0	0.082	0.000	0.00	0.47
4.50 5.50	23.32 18.83	0.24 0.18	1.04 0.97	sandy silt to clayey silt sandy silt to clayey silt	9.0 8.0	1.00	9 8	540 660	540 660	540 660	2.20	1.67	74.94 63.90	0.990	N/A N/A	0.399	N/A N/A		O N/A O N/A	N/A N/A	N/A N/A	24.0 20.4	N/A N/A	N/A N/A	N/A N/A	0.47
6.50	9.42	0.10	3.19	silty clay to clay	7.0	1.00	6	780	780	749	2.80	N/A	N/A	0.985	N/A	0.398	N/A		O N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.47
7.50	21.03	0.87	4.13	silty clay to clay	6.0	1.00	14	900	900	806	2.64	N/A	N/A	0.983	N/A	0.396	N/A		O N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.47
8.50	21.23	0.52	2.44	clayey silt to silty clay	5.0	1.00	11	1,020	1,020	864	2.57	3.15	93.59	0.980	N/A	0.395	N/A		O N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.47
9.50 10.50	13.28 14.10	0.29	2.21	clayey silt to silty clay	4.0	1.00	7	1,140	1,109	922	2.67	N/A	N/A	0.978	N/A	0.405	N/A		O N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.47
10.50	11.97	0.36	2.59 3.07	clayey silt to silty clay silty clay to clay	3.0 2.0	1.00	8	1,260 1,380	1,166 1,224	979 1,037	2.71	N/A N/A	N/A N/A	0.976 0.973	N/A N/A	0.425	N/A N/A		O N/A O N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.47
12.50	9.47	0.27	2.83	silty clay to clay	1.0	1.00	6	1,500	1,282	1,094	2.90	N/A	N/A	0.971	N/A	0.458	N/A		O N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.47
13.50	11.03	0.25	2.23	clayey silt to silty clay	0.0	1.00	6	1,620	1,339	1,152	2.80	N/A	N/A	0.969	N/A	0.472	N/A	N/A N	O N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.47
14.50	10.48	0.21	1.98	clayey silt to silty clay	-1.0	1.00	5	1,740	1,397	1,210	2.80	N/A	N/A	0.966	N/A	0.485	N/A		O N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.47
15.50 16.50	9.72 10.58	0.19	1.92	clayey silt to silty clay	-2.0 -3.0	1.00	5	1,860 1,980	1,454 1,512	1,267	2.84	N/A N/A	N/A N/A	0.964	N/A N/A	0.497	N/A N/A		O N/A O N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.47
17.50	22.05	0.60	2.74	clayey silt to silty clay clayey silt to silty clay	-3.0	1.00	11	2,100	1,512	1,323	2.65	N/A N/A	N/A N/A	0.962	N/A N/A	0.507	N/A N/A		0 N/A	N/A	N/A	N/A	N/A N/A	N/A	N/A	0.47
18.50	20.73	0.39	1.87	sandy silt to clayey silt	-5.0	1.66	14	2,220	1,627	1,440	2.28	1.90	72.32	0.957	1.000	0.526	0.115	0.281 Y		19.0	1,079	24.4	N/A	1.210	0.15	
19.50	10.17	0.29	2.91	silty clay to clay	-6.0	1.00	7	2,340	1,685	1,498	2.97	N/A	N/A	0.955	N/A	0.534	N/A	N/A N	O N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.33
20.50	11.79	0.39	3.33	silty clay to clay	-7.0	1.00	8	2,460	1,742	1,555	2.96	N/A	N/A	0.952	N/A	0.542	N/A		O N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.33
21.50 22.50	23.73 20.55	0.68	2.88 3.74	clayey silt to silty clay silty clay to clay	-8.0 -9.0	1.00	12 14	2,580 2,700	1,800 1,858	1,613 1,670	2.67 2.80	N/A N/A	N/A N/A	0.950 0.948	N/A N/A	0.549	N/A N/A		O N/A O N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.33
23.50	14.70	0.67	4.56	clay	-10.0	1.00	15	2,820	1,915	1,728	2.99	N/A	N/A	0.945	N/A	0.561	N/A		O N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.33
24.50	13.03	0.38	2.94	silty clay to clay	-11.0	1.00	9	2,940	1,973	1,786	2.92	N/A	N/A	0.943	N/A	0.566	N/A		O N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.33
25.50	30.22	0.76	2.51	sandy silt to clayey silt	-12.0	1.00	12	3,060	2,030	1,843	2.58	3.22	96.57	0.941	0.996	0.571	0.164	0.367 Y		15.4	716	20.1	N/A	1.545	0.19	
26.50	59.30	0.97		silty sand to sandy silt	-13.0	1.00	20	3,180	2,088	1,901			102.30	0.938	0.986	0.576	0.180	0.395 Y		23.1		29.3	N/A	0.774	0.09	
27.50 28.50	157.37 259.50	0.75 0.75	0.48	sand gravelly sand to sand	-14.0 -15.0	1.00 1.00	43	3,300 3,420	2,146 2,203	1,958 2,016	1.57	1.00	151.93 247.24	0.936 0.934	0.972	0.580	0.406 N/A	0.875 Y N/A N	O N/A	31.8 N/A	1,200 N/A	31.8 43.1	N/A N/A	0.415	0.05	0.00
29.50	380.13	3.52	0.23	sand	-16.0	1.00	76	3,540	2,261	2,074	1.50	1.00	357.54	0.934	0.952	0.588	N/A		O N/A	N/A	N/A	74.7	N/A	0.000	0.00	0.00
30.50	456.05	3.58	0.79	gravelly sand to sand	-17.0	1.00	76	3,660	2,318	2,131	1.40	1.00	423.58	0.926	0.943	0.589	N/A		O N/A	N/A	N/A	73.6	N/A	0.000	0.00	0.00
31.50	479.36	1.62	0.34	gravelly sand to sand	-18.0	1.00	80	3,780	2,376	2,189	1.12	1.00	439.80	0.918	0.933	0.588	N/A		O N/A	N/A	N/A	76.4	N/A	0.000	0.00	0.00
32.50 33.50	475.63 578.03	2.21	0.46	gravelly sand to sand	-19.0 -20.0	1.00	79	3,900 4,020	2,434 2,491	2,246	1.22	1.00	431.18	0.909	0.925	0.587	N/A		O N/A	N/A	N/A	74.8	N/A	0.000	0.00	0.00
33.30	378.03	2.17	0.38	gravelly sand to sand #N/A	-20.0	1.00	96	4,020	2,491	2,304	1.10	1.00	517.92	0.901	0.916	0.586	N/A	N/A N	O N/A	N/A	N/A	89.8	N/A	0.000	0.00	0.00
				#N/A																						
				#N/A																						
				#N/A																						
				#N/A #N/A								-														
				#N/A	-																					
				#N/A																						
				#N/A																						
				#N/A	.															+						
				#N/A #N/A																						
				#N/A	•																					
				#N/A																						
				#N/A																						
				#N/A #N/A																						
				#N/A	-																					
				#N/A								1														
				#N/A																						
		-		#N/A				1							-						1					
		-	 	#N/A #N/A	-			-		-		-	-	-	-	-			-	-	 	-	-			
		1		#N/A #N/A	-					1		 			 	-					I					
				#N/A								1														
				#N/A																						
		1		#N/A	l		1			1		1									<u> </u>					
		1	l	#N/A	l L		_1	1	1	1		1	l	1	1	1		1 1		max=	1,200	1	l			
																				min=	716					

1.049 avg=

> CPT-12-08 Liquefaction Analysis.XLS Output Sheet

(Engineer: Curt Scheyhing)

Total Soil Unit Weight, Y.

Earthquake Magnitude, M.

Peak Ground Acceleration, A

Required Factor of Safety

PROJECT INFORMATION		
Project Name	Marina Del Mar - Parcel 44	
Project No.	LA-1049	
Location	Los Angeles	
Exploration No.	CPT-12-09	
GENERAL INPUT DATA		
Ground Surf. Elev. During Test	16.00 ft	
GWT Elev. During Test	2.00 ft	
GWT Elev. For Design	5.00 ft	

120.00 pcf

6.80

0.62 g

1.30

REFERENCES

Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and I.M. Idriss, 2001)

++ $CSR = 0.65 A_{max} (\sigma_v/\sigma_v') r_d$

+++ FS = (CRR_{7.5}/CSR) MSF $K_{\sigma}K_{\alpha \longrightarrow \infty}$ where CRR_{7.5} is evaluated from direct CPT data, K_{α} =1.0 and MSF = 1.28

Residual strength values of liquefied soils are evaluated from converted SPT blow counts using the median curve by Seed & Harder (1990)

** Ground settlements are evaluated from converted SPT blow counts using the method developed by Tokimatsu and Seed (1987).

Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change.

GWT Depth During Test, Zw = 14.00 ft below ground surface GWT Depth For Design, Zwd = 11.00 ft below ground surface

*** SUMMARY OF RESULTS ***

Total Thickness of Liquefiable Soils = 1.00 feet

Earthquake-Induced Settlements:

- Liquefaction-Induced Settlement = 0.10 inches <--- Saturated Sands - Seismic Compaction Settlement = 0.01 inches <--- Dry or Unsaturated Sands

Total: 0.12 inches

INPUT SOIL PROFILE (CPT DATA) SOIL LIQUEFACTION POTENTIAL ANALYSIS (1996 NCEER & 1998 NCEER/NSF WORKSHOPS) + RESIDUAL STRENGTH * GROUND SETTLEMENT ** Total Effective Effective Correction Cyclic Safety Fines Soil Average Average Average Vert. Vert. Vert. Rehavio Fines Correcte Stress for High Stress Cyclic Against SPT Blox Corrected Residual Corrected Cyclic Laver Bottom of e Cone Tip Sleeve Friction SPT Blow SPT Blow Vol. Depth Thin Layer Equiv SPT Stress Stress Stress Type Correction Tip Reduction Overburde Ratio Res. Ligefaction Count Shear Shear ettlemen Resistance Ratio Soil Behavior Type Blow Count (Design) (Test) Strain Strain **During Test** Friction Elevation Correction Factor Index Factor Resistanc Coeff. Stress ++ Ratio +++ Correction Count Strength Count Profile $f_{s-avg}(tsf)$ $R_{f-avg}(\%)$ CSR CRR. FS (ft) $q_{t-avg}(tsf)$ (Robertson et al., 1983) (ft) (Lunne, et al., 1997) N_{60} (blows/ft) K N $(N_1)_{60cs}$ $S_r(psf)$ $(N_1)_{60c}$ S_i (in.) (in.) σ_v (psf) $\sigma_{v'}$ (psf) σ_{v'} (psf) Y. (%) 5.50 10.0 1.00 0.398 N/A N/A 0.00 0.12 sand to silty sand 77.50 6.50 0.69 0.90 sand to silty sand 9.0 1.66 780 780 780 1.50 1.00 205.48 0.985 N/A N/A N/A NO N/A N/A N/A 56.3 0.113 0.000 0.00 0.12 N/A 7.50 34.78 0.48 1.37 silty sand to sandy silt 8.0 1.66 900 900 900 1.91 1.20 103.22 0.983 N/A 0.396 N/A N/A NO N/A N/A 39.3 0.136 0.104 0.01 0.10 NO 8.50 0.15 7.0 1 66 1.020 1,020 55.08 0.980 N/A 0.395 N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.10 clayey silt to silty clay 9.50 0.06 1.39 sensitive fine grained 6.0 1.00 1.140 1.140 1.140 3.05 N/A N/A 0.978 N/A 0.394 N/A N/A NO N/A N/A N/A N/A N/A N/A N/A 0.10 1,260 N/A N/A N/A N/A 11.50 16.97 0.82 4.80 4.0 1.00 1.380 1 349 1 380 2.85 N/A N/A 0.973 N/A 0.401 N/A N/A NO N/A N/A N/A N/A N/A N/A N/A 0.10 1,500 N/A N/A 0.10 1,406 1,500 0.971 N/A N/A 13.50 2.78 silty clay to clay 1.620 2 94 N/A N/A 0.969 N/A 0.432 N/A N/A NO N/A N/A N/A N/A N/A 0.10 14.50 0.33 2.99 silty clay to clay 1.0 1.00 1.740 1.709 2.91 N/A N/A 0.966 N/A 0.445 N/A N/A NO N/A N/A N/A N/A N/A N/A N/A 0.10 15.50 0.35 3.09 silty clay to clay 0.0 1.00 1.860 N/A N/A N/A 0.457 N/A N/A NO N/A N/A N/A N/A N/A N/A 0.10 16.50 12.85 0.43 3.35 silty clay to clay 1.00 1.980 1.637 1.824 2.91 N/A N/A 0.962 N/A 0.469 N/A N/A NO N/A N/A N/A N/A N/A N/A N/A 0.10 1,694 N/A N/A N/A silty clay to clay 18.50 7 47 0.17 silty clay to clay -3.0 1.00 1 939 3.03 N/A N/A 0.957 N/A 0.489 N/A N/A NO N/A N/A N/A N/A N/A N/A N/A 0.10 2,340 19.50 0.20 -4.0 1.00 1,810 1,997 N/A N/A 0.955 N/A N/A N/A NO N/A N/A N/A N/A N/A N/A N/A 0.10 clayey silt to silty clay 20.50 2.31 clayey silt to silty clay -5.0 N/A 2,460 N/A 0.506 N/A N/A NO N/A 0.10 21.50 0.25 1.84 clayey silt to silty clay -6.0 1.00 2.580 1.925 2.112 2.78 N/A N/A 0.950 N/A 0.513 N/A N/A NO N/A N/A N/A N/A N/A N/A N/A 0.10 clay N/A N/A 23.50 0.47 4.34 -8.0 1.00 2.820 2.040 3.11 N/A N/A 0.945 N/A 0.527 N/A NO N/A N/A N/A N/A N/A N/A 0.10 clayey silt to silty clay 25.50 24.88 N/A NO N/A 1.00 4.00 silty clay to clay 1.00 3.060 2 155 2 342 2.80 N/A N/A 0.941 N/A 0.538 N/A N/A N/A N/A N/A N/A N/A 0.10 26.50 3.51 -11.0 3,180 N/A silty clay to clay 27.50 16.92 0.64 3.79 silty clay to clay -12.0 1.00 3 300 2 270 2.458 2.93 N/A N/A 0.936 N/A 0.548 N/A N/A NO N/A N/Δ N/A N/A N/A N/A N/A 0.10 -13.0 2,328 0.553 N/A 28.50 13.93 3.21 3,420 2,515 2.97 NO N/A N/A N/A 0.10 0.45 silty clay to clay 1.00 N/A N/A 0.934 N/A N/A N/A N/A N/A N/A NO 29.50 18.67 0.54 2.88 clayey silt to silty clay -14.0 1.00 3 540 2 386 2 573 2.84 N/A N/A 0.931 N/Δ 0.557 N/A N/A N/A N/A N/A N/Δ N/A N/A N/A 0.10 2,443 0.559 30.50 18.38 0.52 2.82 clavev silt to silty clay -15.0 1.00 3,660 2,630 2.85 N/A N/A 0.926 N/A N/A N/A NO N/A N/A N/A N/A N/A N/A N/A 0.10 31.50 N/A N/A N/A 18.39 clayey silt to silty clay 1.00 N/A N/A N/A N/A 33.50 457.20 1.89 0.41 gravelly sand to sand -18.0 1.00 4.020 2.616 2.803 1.21 1.00 399.76 0.901 0.898 0.558 N/A N/A NO N/A N/A N/A 64.4 N/A 0.00 0.00 0.00 4,140 N/A 1.94 0.43 -19.0 1.00 1.00 N/A N/A 63.3 0.000 0.00 gravelly sand to sand 35.50 1.62 0.38 -20.0 1.00 4.260 2,918 1.00 362.77 0.885 0.883 0.556 N/A N/A NO N/A N/A 58.5 N/A 0.000 0.00 0.00 gravelly sand to sand 504.65 4.380 427.36 0.877 N/A NO N/A 0.000 0.00 0.00 36.50 3.49 0.69 gravelly sand to sand -21.01.00 84 2.789 1.35 1.00 0.875 0.555 N/A N/A N/A 69.0 N/A 501 93 3.15 0.63 1.00 84 4 500 2 846 3.034 1.00 420.74 0.869 0.868 0.553 N/A N/A NO N/A N/A N/A 67.9 N/A 0.000 0.00 0.00 gravelly sand to sand 38.50 808.70 6.56 0.81 gravelly sand to sand -23.0 1.00 135 4.620 2.904 3.091 1.30 1.00 671.13 0.861 0.861 0.552 N/A N/A NO N/A N/A N/A 108.4 N/A 0.000 0.00 0.00 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N// #N/A #N/A #NI/A #N/A 1.200 max=

max= 1,200 min= 1,200 avg= 1,200

(Engineer: Curt Scheyhing)

GWT Elev. For Design Total Soil Unit Weight, γ_t

PROJECT INFORMATION		
Project Name	Marina Del Mar - Parcel 44	
Project No.	LA-1049	
Location	Los Angeles	
Exploration No.	CPT-12-10	
GENERAL INPUT DATA		
Ground Surf. Elev. During Test	9.00 ft	
GWT Elev. During Test	-4.00 ft	

5.00 ft 120.00 pcf REFERENCES

Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and I.M. Idriss, 2001)

+ CSR = $0.65 A_{max} (\sigma_v/\sigma_v') r_d$

++++FS = (CRF₂/CSR) MSF K₀ K_{0→∞} where CRR_{7,5} is evaluated from direct CPT data, K₀ = 1.0 and MSF = 1.28

* Residual strength values of liquefied soils are evaluated from converted SPT blow counts using the median curve by Seed & Harder (1990)

** Ground settlements are evaluated from converted SPT blow counts using the method developed by Tokimatsu and Seed (1987).

Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change.

GWT Depth During Test, Zw = GWT Depth For Design, Zwd = 13.00 ft below ground surface 4.00 ft below ground surface

*** SUMMARY OF RESULTS ***

Earthquake Magni	tude, M _{eq}	6.80			*** SUMMARY	OF RESULTS ***									
Peak Ground Accel	eration, A _{max}	0.62	g		Total Thicknes	s of Liquefiable Soils =	4.00	feet					1		
Required Factor of	Safety	1.30	_		Earthquake-In	duced Settlements:									
		•			- Liquefaction	-Induced Settlement =	0.32	inches	< Saturated S	Sands					
					- Seismic Com	paction Settlement =	0.00	inches	< Dry or Uns	aturated Sa	nds				
						Total	: 0.32	inches	- •						
													-		
	INPUT SOIL I	ROFILE (C	PT DATA)				SOIL LIQUE	ACTION	POTENTIAL AN	VALVSIS (1	996 NCEEL	R & 1998 NO	TEER/NSE V	VORKSHO	PS) +
	Luci boili	HOTTEL (C	1 1 2 11 11 1				JOIL LIQUE		1012:(12:12:12	1	1	1,000,00	The state of the s	T T T T T T T T T T T T T T T T T T T	10,
								Total	Effective	Effective	Soil			Shear	Correc
Soil	Average	Average	Average		Bottom of			Vert.	Vert.	Vert.	Behavior	Fines	Corrected		for H
Depth	Cone Tip	Sleeve	Friction		Layer	Thin Layer	Equiv. SPT	Stress	Stress	Stress	Type	Correction		Reduction	
During Test	Resistance	Friction	Ratio	Soil Behavior Type	Elevation	Correction Factor	Blow Count	0.11	(Design)	(Test)	Index	Factor	Resistance		Stre
					(ft)						T	17			
(ft)	q _{t-avg} (tsf)		I-avg () -)			(Lunne, et al., 1997)	N ₆₀ (blows/ft)		σ _{v'} (psf)	$\sigma_{v'}$ (psf)	I,	N _c	$\mathbf{q}_{\scriptscriptstyle \mathrm{c1Nes}}$	$\mathbf{r}_{\scriptscriptstyle \mathrm{d}}$	K,
5.50	18.78	0.83	4.43	clay	3.0	1.00	19	660	566	660	2.59	3.25	157.09	0.987	1.00
6.50	13.53	0.43	3.22	silty clay to clay	2.0	1.00	9	780	624	780	2.62	N/A	N/A	0.985	N/A
7.50	9.62	0.25	2.64	silty clay to clay	1.0	1.00	6	900	682	900	2.70	N/A	N/A	0.983	N/A
8.50	9.00	0.28	3.12	silty clay to clay	0.0	1.00	6	1,020	739	1,020	2.80	N/A	N/A	0.980	N/A
9.50	9.85	0.31	3.15	silty clay to clay	-1.0	1.00	7	1,140	797	1,140	2.79	N/A	N/A	0.978	N/A

Depth	Cone Tip	Sleeve	Friction		Layer	Thin Layer	Equiv. SPT Stress	Stress	Stress	Type	Correction	Tip	Reduction	Overburden	Ratio	Res.	Liqefaction	Liquef	Count	SPT Blow	Shear	SPT Blow	Shear	Vol.	Settlemen	Settlement
During Test	Resistance	Friction	Ratio	Soil Behavior Type	Elevation	Correction Factor	Blow Count	(Design)	(Test)	Index	Factor	Resistance	Coeff.	Stress	++	Ratio	+++	v?	Correction	Count	Strength	Count	Strain	Strain	t	Profile
(ft)	$\mathbf{q}_{t\text{-avg}}\left(ts\mathbf{f}\right)$	f (tsf)	R _{f-avg} (%)		(ft)	(Lunne, et al., 1997)	N_{60} (blows/ft) σ_v (psf)	σ _{v'} (psf)	σ _{v'} (psf)	I	K.	$\mathbf{q}_{\mathrm{c1Nes}}$	\mathbf{r}_{d}	K,	CSR	CRR _{7.5}	FS		N _{corr.}	$(N_1)_{60cs}$	$S_r(psf)$	$(N_1)_{60cs}$	γ _c (%)	& _v (%)	S _i (in.)	(in.)
5.50	18.78	0.83	4.43	clay	3.0	1.00	19 660	566	660	2.59	3.25	157.09	0.987		0.464	0.441	1.221	VEC	5.0	36.9	1,200	N/A	N/A	0.000	0.00	0.32
6.50	13.53	0.43	3.22	silty clay to clay	2.0	1.00	9 780	624	780	2.62	N/A	N/A	0.985	N/A	0.496		N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.32
7.50	9.62	0.25	2.64	silty clay to clay	1.0	1.00	6 900	682	900	2.70	N/A	N/A	0.983	N/A	0.523	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.32
8.50	9.00	0.28	3.12	silty clay to clay	0.0	1.00	6 1.020	739	1,020	2.80	N/A	N/A	0.980	N/A	0.545		N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.32
9.50	9.85	0.31	3.15	silty clay to clay	-1.0	1.00	7 1,140	797	1,140	2.79	N/A	N/A	0.978	N/A	0.564		N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.32
10.50	13.20	0.38	2.87	clayey silt to silty clay	-2.0	1.00	7 1,260	854	1,260	2.68	N/A	N/A	0.976	N/A	0.580	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.32
11.50	11.82	0.35	2.93	silty clay to clay	-3.0	1.00	8 1,380	912	1,380	2.74	N/A	N/A	0.973	N/A	0.593	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.32
12.50	9.62	0.23	2.40	silty clay to clay	-4.0	1.00	6 1,500	970	1,500	2.78	N/A	N/A	0.971	N/A	0.605	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.32
13.50	11.40	0.17	1.51	clayey silt to silty clay	-5.0	1.00	6 1,620	1,027	1,589	2.62	N/A	N/A	0.969	N/A	0.616	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.32 0.32
14.50 15.50	14.87	0.34	2.33	clayey silt to silty clay	-6.0	1.00	7 1,740	1,085	1,646	2.64	N/A	N/A	0.966	N/A	0.625		N/A	NO		N/A	N/A	N/A	N/A	N/A	N/A	0.32
16.50	21.05 10.58	0.53	2.52 2.93	clayey silt to silty clay	-7.0 -8.0	1.00	11 1,860 7 1,980	1,142 1,200	1,704 1,762	2.56 2.86	3.09 N/A	98.90 N/A	0.964	1.000 N/A	0.632		0.345 N/A	YES NO	2.8 N/A	14.2 N/A	609 N/A	N/A N/A	N/A N/A	0.000 N/A	0.00 N/A	0.32
17.50	8.95	0.31	4.24	silty clay to clay clay	-9.0	1.00	9 2,100	1,258	1,762	3.04	N/A	N/A	0.962	N/A	0.639		N/A	NO	N/A N/A	N/A	N/A	N/A N/A	N/A N/A	N/A	N/A N/A	0.32
18.50	18.82	0.68	3.59	silty clay to clay	-10.0	1.00	13 2,220	1,315	1,877	2.74	N/A	N/A	0.957	N/A	0.651		N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.32
19.50	19.38	0.71	3.65	silty clay to clay	-11.0	1.00	13 2,340	1,373	1,934	2.74	N/A	N/A	0.955	N/A	0.656	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.32
20.50	19.86	0.90	4.53	clay	-12.0	1.00	20 2,460	1,430	1,992	2.81	N/A	N/A	0.952	N/A	0.660	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.32
21.50	13.25	0.52	3.94	clay	-13.0	1.00	13 2,580	1,488	2,050	2.92	N/A	N/A	0.950	N/A	0.664	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.32
22.50	23.90	0.81	3.38	clayey silt to silty clay	-14.0	1.00	12 2,700	1,546	2,107	2.68	N/A	N/A	0.948	N/A	0.667	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.32
23.50	51.67	1.58	3.05	sandy silt to clayey silt	-15.0	1.00	21 2,820	1,603	2,165	2.42	2.41	138.93	0.945	1.000	0.670	0.329	0.632	YES	2.8	22.7	1,200	28.8	N/A	0.867	0.10	0.22
24.50	54.90	1.51	2.74	sandy silt to clayey silt	-16.0	1.00	22 2,940	1,661	2,222	2.38	2.22	133.66	0.943	1.000	0.673	0.302	0.577	YES	2.8	23.6	1,200	30.0	N/A	0.732	0.09	0.13
25.50 26.50	99.30	1.03	1.04	sand to silty sand	-17.0	1.00	25 3,060	1,718	2,280	1.90		127.52	0.941	1.000	0.675	0.273	0.519	YES	1.3	24.6	1,200	26.9	N/A	1.059	0.13	0.00
26.50	258.83 474.33	0.74 2.94	0.29	gravelly sand to sand gravelly sand to sand	-18.0 -19.0	1.00 1.00	43 3,180 79 3,300	1,776 1,834	2,338 2,395	1.23	1.00	274.67 495.39	0.938	1.000	0.677		N/A N/A	NO NO	N/A	N/A N/A	N/A N/A	39.9 72.2	N/A N/A	0.002	0.00	0.00
28.50	435.13	1.73	0.62	gravelly sand to sand	-19.0	1.00	73 3,420	1,834	2,393	1.16	1.00	493.39	0.936	1.000	0.679	N/A N/A	N/A N/A	NO	N/A N/A	N/A	N/A	65.5	N/A N/A	0.000	0.00	0.00
29.50	542.80	2.72	0.40	gravelly sand to sand	-21.0	1.00	90 3,540	1,949	2,510	1.17	1.00	549.88	0.934	1.000	0.682		N/A	NO	N/A	N/A	N/A	80.7	N/A	0.000	0.00	0.00
30.50	660.30	2.61	0.40	gravelly sand to sand	-22.0	1.00	110 3,660	2,006	2,568	1.05	1.00	659.25	0.926	0.999	0.681		N/A	NO		N/A	N/A	97.1	N/A	0.000	0.00	0.00
20.00				#N/A		-100		2,000	-,	-1.00		007.120	0.5.20	*****	0.000									0.000	0.00	
				#N/A																						
				#N/A																						
				#N/A																						
				#N/A																						
				#N/A																						
				#N/A																						
				#N/A #N/A																						
				#N/A																						
				#N/A																						
				#N/A																						
				#N/A																						
				#N/A																						
				#N/A																						
		1		#N/A								1	1					\perp				1				
				#N/A	<u> </u>				1		1		1					1			-	+				
				#N/A #N/A	-				-		-		+	1		 		+			-	1	-	 		
		-		#N/A					+		1	-	+					+			-	1	-	 		
		1		#N/A					1			1	+					+			 	1	l			
				#N/A									1													
				#N/A																						
				#N/A																						
				#N/A																						
		1		#N/A								1	1					\perp				1				
		1	1	#N/A	-				1	-	1	1	1	1				+			ļ	1	ļ	1		
				#N/A #N/A	-				-		-		+	1		 		+			-	1	-	 		
				#N/A #N/A	-				-		-		+	1		 		+			-	1	-	 		
		1		#N/A						-	1	1	1					+				1				
				#N/A			+ + + + + + + + + + + + + + + + + + + +		+		+		+	1				+ +			-	+		!		
				#N/A														+								
				#N/A							1		1													
				#N/A		_																				
				#N/A																		1				

1.200 max= 1.082

min= avg=

RESIDUAL STRENGTH *

Corrected

Residual

SPT Blow

Correction

for High

Cyclic

Stress

Cyclic

Safety

Against

GROUND SETTLEMENT **

Layer

Cyclic

Corrected

(Engineer: Curt Scheyhing)

PROJECT INFORMATION		
Project Name	Marina Del Mar - Parcel 44	
Project No.	LA-1049	
Location	Los Angeles	
Exploration No.	CPT-12-11	
GENERAL INPUT DATA		
Ground Surf. Elev. During Test	12.00 ft	

GENERAL INPUT DATA		
Ground Surf. Elev. During Test	12.00 ft	
GWT Elev. During Test	7.00 ft	
GWT Elev. For Design	5.00 ft	
Total Soil Unit Weight, γ _t	120.00 pcf	
Earthquake Magnitude, Meq	6.80	
Peak Ground Acceleration, Amax	0.62 g	
Required Factor of Safety	1.30	

REFERENCES

Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and I.M. Idriss, 2001)

+ CSR = 0.65 A_{max} (σ_v/σ_v') r_d

++++F = CRF₃/CSR MSF K₀ K₀→∞ where CRR_{7,5} is evaluated from direct CPT data, K₀ = 1.0 and MSF = 1.28

Residual strength values of liquefied soils are evaluated from converted SPT blow counts using the median curve by Seed & Harder (1990)

Ground settlements are evaluated from converted SPT blow counts using the method developed by Tokimatsu and Seed (1987).

Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change.

GWT Depth During Test, Zw = GWT Depth For Design, Zwd = 5.00 ft below ground surface 7.00 ft below ground surface

*** SUMMARY OF RESULTS ***

Total Thickness of Liquefiable Soils = 1.00 feet

Earthquake-Induced Settlements: - Liquefaction-Induced Settlement = - Seismic Compaction Settlement =

0.17 inches <--- Saturated Sands 0.00 inches <--- Dry or Unsaturated Sands

Total: 0.17 inches

No. Prince Prin																												
		INPUT SOIL P	ROFILE (CP	T DATA)				SOIL LIQUEF	ACTION P	OTENTIAL AN	ALYSIS (19	996 NCEE	R & 1998 NO	EER/NSF W	ORKSHO	PS) +				1	RESIDU	JAL STREN	NGTH *		GROUND	SETTLEM	ENT **	
March Marc									Total	Effective	Effective	Soil			Shear	Correction	Cyclic					Fines		Fines				المال
Probability	Soil	Average	Average	Average		Rottom of							Fines	Corrected				Cyclic		SPT	Blow		Residual		Cyclic		Layer	
Box Quarter		Cone Tip	Sleeve	Friction			Thin Layer	Equiv. SPT	Stress			Type		Tip					~			SPT Blow	Shear	SPT Blow				
Column C	During Test	Resistance	Friction	Ratio	Soil Behavior Type	Elevation	Correction Factor	Blow Count		(Design)	(Test)	Index		Resistance	Coeff.					y? Corr	rection		Strength	Count	Strain	Strain	-	Profile
100	()											·						- 13										
1.50		28.13																										
100																												
10	3.50	10.05	0.46	4.59	clay	8.0	1.00	10	420	420	420	2.72	N/A	N/A	0.992	N/A	0.400	N/A	N/A I	NO N	i/A	N/A	N/A	N/A	N/A	N/A	N/A	0.17
\$\chick{\chiik{\chick{\chick{\chick{\chiik{\chick{\chiikk{\chiik{\chiik{\chiik{\chiik{\chiik{\chiik{\chiik{\chiik{\chiik{\chiik{\chiik{\chiik																												
1450 1450																												
1.50	7.50	14.50	0.80	5.48	clay	4.0	1.00	15	900	869	744	2.84	N/A	N/A	0.983	N/A	0.410	N/A	N/A	NO N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.17
1800 0.52 3.48 chg c																												
11 12								7																				
15.50			0.22		clay			7						N/A				N/A	N/A				N/A	N/A		N/A	N/A	
14:00																											N/A	
15:00 16:07 16:07 16:08 16:09 16:09 16:09 16:09 16:00 13:00 12:0																												
17:00 13:00 0.33 2.55 clayey at the subject of the subje																												
18.50 10.52 0.27 2.60 siby top orday 3.70 1.100 7 2220 1.278 1.288 2.89 NA NA 0.957 NA 0.570 NA NA NA NA NA NA NA N								7																				
19-50 10-33 0.39 3.70 cfay 5.00 10-30 10-30 11 2.340 1.550 1.435 3.00 1.84 1.050 5.00 1.050								7																				
21.50	19.50	10.53	0.39	3.70	clay	-8.0	1.00		2,340	1,560	1,435	3.00	N/A	N/A	0.955	N/A	0.577	N/A	N/A	NO N	V/A	N/A	N/A	N/A	N/A	N/A	N/A	0.17
22.50 37.02 158 4.26 sity day to day 22.50 17.33 1.288 2.63 N/A NA 0.948 NA 0.955 NA 0.80 NA																												
24.50 16.22 0.45 2.74 claysy site oslig clay -1.30 1.90 8 2.940 1.484 1.723 2.811 NA NA 0.948 NA 0.948 NA 0.965 NA NA NA NA NA NA NA N																												
25.50																												
25.9																												
27.50																												
29.50 475.60 1.49 0.31 gravelly sand to sand gravelly sand gravelly sand to sand gravelly sand																												
BNA																												
NNA	27.30	475.00	1.47	0.51		-10.0	1.00	- "	3,340	2,130	2,011	1.00	1.00	400.21	0.731	0.774	0.022	14/24	IVA .	10	V/A	IVA	17/24	77.0	11/21	0.000	0.00	0.00
SNA																												'
BNA																												
SNA																												
#N/A # #N/A ##N/A # #N/A ##N/A																												
#N/A #N/A # #N/A ##N/A # #N/A ##N/A																												
#N/A #N/A # #N/A # # # # # # # # # # # # # # # # # # #					#N/A																							
#N/A # # # # # # # # # # # # # # # # # # #																												⊢——
#N/A # # # # # # # # # # # # # # # # # # #																												
#N/A #N/A # #N/A # # # # # # # # # # # # # # # # # # #																												
#N/A #N/A # # # # # # # # # # # # # # # # # # #																												⊢— '
#N/A #N/A # #N/A # # # # # # # # # # # # # # # # # # #													-															
#N/A #N/A # #N/A # # # # # # # # # # # # # # # # # # #																												
#N/A #N/A # #N/A # # # # # # # # # # # # # # # # # # #																												├
#N/A # #N/A # # # # # # # # # # # # # # # # # # #																												
#N/A #N/A																												
#N/A													-															├
#N/A																												
#N/A #N/A													-															⊢— ′
#N/A #N/A																				_								
#N/A #N/A																												
#N/A #N/A													-															├
#NA #NA																												
max = 912 min = 912					<u>-</u>			<u></u>															912					

912 912 avg=

> CPT-12-11 Liquefaction Analysis.XLS Output Sheet

(Engineer: Curt Scheyhing)

GWT Elev. For Design

Total Soil Unit Weight, Y.

Earthquake Magnitude, Meg

Peak Ground Acceleration, A

Required Factor of Safety

6.50

8.50

9.50

10.50

11.50

13.50 14.50

15.50

16.50

18.50

20.50

21.50

23.50

24.50

25.50

26.50

30.50

31.50

33.50

34.50

36.50

37.50

38.50

39.50

40.50

41.75

6.92

17.98

14.50

7.60

5.18 8.02

9.08

9.17

12.36

20.67

20.18

20.32

213.15

350.87

493.11

558 93

575.72

274.98

462.32 329.55

355.45

436.57

PROJECT INFORMATION		
Project Name	Marina Del Mar - Parcel 44	
Project No.	LA-1049	
Location	Los Angeles	
Exploration No.	CPT-12-12	
GENERAL INPUT DATA		
Ground Surf. Elev. During Test	14.00 ft	
GWT Elev. During Test	-1.00 ft	

5.00 ft

120,00 pcf

0.62 g

1.30

0.77 2.26

4.18

5.50

4.90

4.95

3.28 2.85

2.68

2.75

1.73

2.50

3 19

2.65

3.14

3.69

0.96

0.58

0.42

0.39

0.97 0.46

1.63 0.46

3.09 0.63

1.61 0.59

0.32

0.16

0.37

0.99

0.71

0.38

0.17

0.25

0.16

0.46

0.66

0.68

0.75

0.69

2.88 0.52

1.37

1.37

2.41 0.55

0.54

6.80

REFERENCES

Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and I.M. Idriss, 2001)

++ $CSR = 0.65 A_{max} (\sigma_v/\sigma_v') r_d$

+++ FS = (CRR_{7.5}/CSR) MSF $K_{\sigma}K_{\alpha \longrightarrow \infty}$ where CRR_{7.5} is evaluated from direct CPT data, K_{α} =1.0 and MSF = 1.28

Residual strength values of liquefied soils are evaluated from converted SPT blow counts using the median curve by Seed & Harder (1990)

** Ground settlements are evaluated from converted SPT blow counts using the method developed by Tokimatsu and Seed (1987).

Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change.

GWT Depth During Test, Zw = 15.00 ft below ground surface GWT Depth For Design, Zwd = 9.00 ft below ground surface

*** SUMMARY OF RESULTS ***

Total Thickness of Liquefiable Soils = 3.00 feet

Earthquake-Induced Settlements: - Liquefaction-Induced Settlement =

0.34 inches <--- Saturated Sands

- Seismic Compaction Settlement = 0.05 inches <--- Dry or Unsaturated Sands Total: 0.39 inches INPUT SOIL PROFILE (CPT DATA) SOIL LIQUEFACTION POTENTIAL ANALYSIS (1996 NCEER & 1998 NCEER/NSF WORKSHOPS) + Average Average Soil Average Cone Tip Sleeve Friction Depth $\begin{array}{c|c} \mathbf{f}_{s\text{-avg}} \text{ (tsf)} & \mathbf{R}_{f\text{-avg}} \text{ (%)} & \text{Soil Behavior Type} \\ \hline 0.89 & 1.79 & \text{silv con}^{4}. \end{array}$ Resistance **During Test** q_{t-avg} (tsf) 49.63 23.03 (ft) 0.50 0.78 3.37 clayey silt to silty clay 2.50 1.71 49.13 0.84 silty sand to sandy silt 3.50 69.33 0.57 0.83 sand to silty sand 4.50 44,70 0.53 1.19 silty sand to sandy silt

silty sand to sandy silt

silty sand to sandy silt

silty clay to clay

clay

clay

silty clay to clay

clayey silt to silty clay

silty clay to clay clayey silt to silty clay

clayey silt to silty clay

clayey silt to silty clay

clayey silt to silty clay

clavev silt to silty clay

silty clay to clay

sand to silty sand

gravelly sand to sand

gravelly sand to sand gravelly sand to sand

gravelly sand to sand

gravelly sand to sand

sand

gravelly sand to sand

gravelly sand to sand

gravelly sand to sand #N/A #N/A #N/A #N/A #N/A #N/A #NI/A #N/A #N/A

gravelly sand to sand

3.08 clayey silt to silty clay

	Bottom of Layer Elevation	Thin Layer Correction Factor	Equiv. SPT Blow Count	Total Vert. Stress	Effective Vert. Stress (Design)	Effective Vert. Stress (Test)	Soil Behavior Type Index	Fines Correction Factor	Corrected Tip Resistance	Shear Stress Reduction Coeff.	Correction for High Overburden Stress	Cyclic Stress Ratio ++	Cyclic Res. Ratio	Safety Against Liqefaction	Liquef y?	SPT Blow Count Correction	Fines Corrected SPT Blow Count	Residual Shear Strength	Fines Corrected SPT Blow Count	Cyclic Shear Strain	Vol. Strain	Layer Settlemen t	Cumulativ e Settlement Profile
)	(ft)	(Lunne, et al., 1997)	N ₆₀ (blows/ft)		$\sigma_{v'}(psf)$	$\sigma_{v'}$ (psf)	I _c	K,	$\mathbf{q}_{\mathrm{c1Nes}}$	$\mathbf{r}_{\scriptscriptstyle \mathrm{d}}$	K_{σ}	CSR	CRR _{7.5}	FS		$N_{corr.}$	$(N_1)_{60cs}$	$S_r(psf)$	$(N_1)_{60cs}$	γ _c (%)	E _v (%)	S _i (in.)	(in.)
-	13.0	1.66	27 12	60 180	60 180	60 180	1.48 2.36	1.00 2.16	474.46 165.78	0.999	N/A N/A	0.403	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	60.9 N/A	0.032 N/A	0.000 N/A	0.00 N/A	0.39
+	11.0	1.00	16	300	300	300	2.00	1.30	164.33	0.997	N/A	0.402	N/A	N/A	NO	N/A	N/A	N/A	38.4	0.082	0.065	0.01	0.39
+	10.0	1.00	17	420	420	420	1.72	1.05	159.13	0.992	N/A	0.400	N/A	N/A	NO	N/A	N/A	N/A	33.4	0.101	0.003	0.01	0.37
T	9.0	1.00	15	540	540	540	2.01	1.31	113.11	0.990	N/A	0.399	N/A	N/A	NO	N/A	N/A	N/A	35.4	0.112	0.097	0.01	0.36
_	8.0	1.00	12	660	660	660	2.06	1.39	90.14	0.987	N/A	0.398	N/A	N/A	NO	N/A	N/A	N/A	30.4	0.129	0.134	0.02	0.34
1	7.0	1.66	23	780	780	780	1.68	1.00	110.69	0.985	N/A	0.397	N/A	N/A	NO	N/A	N/A	N/A	49.3	0.118	0.000	0.00	0.34
4	6.0	1.00	5	900	900	900	2.86	N/A	N/A	0.983	N/A	0.396	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.34
+	5.0	1.00	9 18	1,020 1,140	1,020	1,020 1,140	2.97 2.83	N/A N/A	N/A N/A	0.980 0.978	N/A N/A	0.395	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.34
┪	3.0	1.00	15	1,260	1,166	1,260	2.88	N/A	N/A	0.976	N/A	0.425	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.34
7	2.0	1.00	8	1,380	1,224	1,380	3.12	N/A	N/A	0.973	N/A	0.442	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.34
_	1.0	1.00	6	1,500	1,282	1,500	3.18	N/A	N/A	0.971	N/A	0.458	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.34
4	0.0	1.00	5	1,620	1,339	1,620	3.19	N/A	N/A	0.969	N/A	0.472	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.34
4	-1.0	1.00	5	1,740	1,397	1,740	2.99	N/A	N/A	0.966	N/A	0.485	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.34
4	-2.0 -3.0	1.00	6	1,860 1,980	1,454 1,512	1,829 1,886	2.83 2.96	N/A N/A	N/A N/A	0.964 0.962	N/A N/A	0.497	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.34
,	-4.0	1.00	5	2.100	1,512	1,880	2.88	N/A N/A	N/A N/A	0.962	N/A	0.517	N/A N/A	N/A N/A	NO	N/A	N/A	N/A	N/A N/A	N/A	N/A	N/A	0.34
7	-5.0	1.00	5	2,220	1,627	2,002	2.87	N/A	N/A	0.957	N/A	0.526	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.34
	-6.0	1.00	7	2,340	1,685	2,059	2.84	N/A	N/A	0.955	N/A	0.534	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.34
I	-7.0	1.00	12	2,460	1,742	2,117	2.97	N/A	N/A	0.952	N/A	0.542	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.34
4	-8.0 -9.0	1.00 1.00	18 10	2,580	1,800	2,174	2.89	N/A	N/A	0.950	N/A	0.549	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.34
-	-9.0	1.00	10	2,700 2,820	1,858 1,915	2,232	2.76 2.73	N/A N/A	N/A N/A	0.948 0.945	N/A N/A	0.555	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.34
,	-11.0	1.00	11	2,940	1,973	2,347	2.75	N/A	N/A	0.943	N/A	0.566	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.34
7	-12.0	1.00	14	3,060	2,030	2,405	2.83	N/A	N/A	0.941	N/A	0.571	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.34
/	-13.0	1.00	11	3,180	2,088	2,462	2.75	N/A	N/A	0.938	N/A	0.576	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.34
1	-14.0	1.00	23	3,300	2,146	2,520	1.99	1.29	115.94	0.936	0.976	0.580	0.225	0.486	YES	1.3	22.1	1,200	24.3	N/A	1.244	0.15	0.19
4	-15.0	1.00	30	3,420	2,203	2,578	1.86	1.15	132.84	0.934	0.963	0.584	0.298	0.631	YES	1.3	28.0	1,200	30.5	N/A	0.632	0.08	0.12
4	-16.0	1.00	43	3,540 3,660	2,261	2,635	1.46	1.00	200.48	0.931	0.952	0.588	N/A	N/A	NO	N/A	N/A	N/A	37.1	N/A	0.048	0.01	0.11
+	-17.0 -18.0	1.00	58 82	3,660	2,318 2,376	2,693 2,750	1.31	1.00	325.88 452.42	0.926 0.918	0.943	0.589	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	50.4 70.1	N/A N/A	0.000	0.00	0.11
+	-19.0	1.00	93	3,900	2,434	2,808	1.21	1.00	506.70	0.909	0.925	0.587	N/A	N/A	NO	N/A	N/A	N/A	78.6	N/A	0.000	0.00	0.11
7	-20.0	1.00	96	4,020	2,491	2,866	1.24	1.00	515.85	0.901	0.916	0.586	N/A	N/A	NO	N/A	N/A	N/A	80.2	N/A	0.000	0.00	0.11
	-21.0	1.66	114	4,140	2,549	2,923	1.01	1.00	605.82	0.893	0.908	0.585	N/A	N/A	NO	N/A	N/A	N/A	94.3	N/A	0.000	0.00	0.11
4	-22.0	1.00	34	4,260	2,606	2,981	1.59	1.00	150.83	0.885	0.900	0.583	0.399	0.791	YES	0.0	28.2	1,200	28.2	N/A	0.927	0.11	0.00
4	-23.0 -24.0	1.00	55 77	4,380 4,500	2,664 2,722	3,038 3,096	1.48	1.00	238.26 396.32	0.877 0.869	0.892 0.884	0.581	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	44.6 61.9	N/A N/A	0.000	0.00	0.00
+	-24.0	1.00	55	4,500	2,722	3,154	1.28	1.00	279.56	0.861	0.884	0.577	N/A N/A	N/A N/A	NO	N/A	N/A	N/A	43.7	N/A	0.000	0.00	0.00
+	-26.0	1.00	59	4,740	2,837	3,211	1.28	1.00	298.46	0.852	0.870	0.574	N/A	N/A	NO	N/A	N/A	N/A	46.8	N/A	0.000	0.00	0.00
_	-27.0	1.00	73	4,860	2,894	3,269	1.33	1.00	362.90	0.844	0.863	0.571	N/A	N/A	NO	N/A	N/A	N/A	56.9	N/A	0.000	0.00	0.00
I																							
4				1																			
+	\vdash			+-+		-								—									
+	\vdash		<u> </u>	1		-	-						-	 									
+																							
_																							
4																							
+																							
+				1 1		l	-						-										
7																							
]																							
4	\vdash																						
4	\vdash			\vdash																			
+	\vdash																						
+						l																	
1																							
_			1				1						1										

max= 1,200 min= 1,200 avg= 1,200

RESIDUAL STRENGTH *

Factor of

GROUND SETTLEMENT **

CPT-12-12 Liquefaction Analysis.XLS Output Sheet

(Engineer: Curt Scheyhing)

PROJECT INFORMATION		
Project Name	Marina Del Mar - Parcel 44	
Project No.	LA-1049	
Location	Los Angeles	
Exploration No.	CPT-12-13	

GENERAL INPUT DATA		
Ground Surf. Elev. During Test	13.00 ft	
GWT Elev. During Test	-0.10 ft	
GWT Elev. For Design	5.00 ft	
Total Soil Unit Weight, γ _t	120.00 pcf	
Earthquake Magnitude, Meq	6.80	
Peak Ground Acceleration, Amax	0.62 g	
Required Factor of Safety	1.30	

REFERENCES

Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and I.M. Idriss, 2001)

++ CSR = 0.65 $A_{max} (\sigma_v/\sigma_v') r_d$

++++FS = (CRF₄/CSR) MSF K_σ K_{σ→∞} where CRR₇₅ is evaluated from direct CPT data, K_σ =1.0 and MSF = 1.28

* Residual strength values of liquefied soils are evaluated from converted SPT blow counts using the median curve by Seed & Harder (1990)

** Ground settlements are evaluated from converted SPT blow counts using the method developed by Tokimatsu and Seed (1987).

Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change.

GWT Depth During Test, Zw = GWT Depth For Design, Zwd = 13.10 ft below ground surface 8.00 ft below ground surface

*** SUMMARY OF RESULTS ***

Total Thickness of Liquefiable Soils = 5.00 feet

Earthquake-Induced Settlements:

- Liquefaction-Induced Settlement = 1.03 inches <--- Saturated Sands - Seismic Compaction Settlement = 0.02 inches <--- Dry or Unsaturated Sands

Total: 1.05 inches

Factor of State of St		INPUT SOIL	PROFILE (C	PT DATA)		T [SOIL LIQUE	FACTION	POTENTIAL AN	JAI VSIS (1	006 NCFF	D & 1008 NO	TED/NSE U	ODKSHO	NPS) ±				DESII	OUAL STRE	NCTH*		CPOUNT	SETTLEN	AFNT **	
Second Control Processor Control Process		IN CI SOIL	KOTILE (C	II DAIA)				SOIL LIQUE					K & 1770 M	EER/NOT V						KESH		TOTAL		GROUNE	SETTLES	112.11	$\overline{}$
Part	~ "	Average	Average	Average									Fines	Compated				Cvolio		CDT Plow		Docidual		Cvelie		Loven	Cumulativ
Description Section							Thin I over	Equiv. SPT																	Vol.		
Decolar Control Cont		Resistance	Friction	Ratio	Soil Behavior Type										Coeff.			Ratio			Count	Strength	Count	Strain	Strain	t	
According Acco	(ft)	$\mathbf{q}_{t\text{-avg}}(\mathbf{tsf})$	f _{s-avg} (tsf)	$R_{\text{f-avg}}(\%)$		(ft)	(Lunne, et al., 1997)	N ₆₀ (blows/ft)	σ _v (psf)	$\sigma_{v'}$ (psf)	$\sigma_{v'}$ (psf)	I _c	K _c	$\mathbf{q}_{\mathrm{c1Nes}}$	\mathbf{r}_{d}	Kσ	CSR	CRR _{7.5}	FS	N _{corr.}	$(N_1)_{60cs}$	$S_r(psf)$	$(N_1)_{60cs}$	γ _c (%)	E _v (%)	S _i (in.)	(in.)
1-02			0.47	1.61				12												N/A							
150			0.00	0.00			-100								01771												
1-10	3.50	120.30	0.62	0.51	sand	9.0	1.00	24	420	420	420	1.40	1.00	262.52	0.992	N/A	0.400	N/A	N/A NO	N/A	N/A	N/A	40.9	0.095	0.000	0.00	1.03
6.50 6.15														212.59													
1.50																			N/A NO								
150																											
10 10 10 10 10 10 10 10								7																			
1.50	10.50	8.40	0.28	3.31	clay	2.0	1.00	8	1,260	1,104	1,260	2.95	N/A	N/A	0.976		0.449		N/A NO		N/A	N/A	N/A	N/A		N/A	1.03
15.00 11.00 15.00 12.00 12.00 12.00 15.00 12.0								6																			
15 10 11 10 12 12 12 12 12								6																			
1.50								-																			
17-09 13-40 13-50 13-50 13-50 14-5				1.07			1.00	-				2.01					0.01/						14/11			14/11	
Prop	10.50	13.40		-10/				7_																			
25.00 13.07								7																			
21.50																					N/A						
25.00 25.71 0.06 0.55 3.35 clypy at to only clypy 1.10 1.00 14 2.200 1.581 2.171 2.06 N.A. N.A. 0.045 N.A. 0.080 N.A.					silty clay to clay								N/A	N/A				N/A		N/A	N/A	N/A		N/A	N/A		
24.50 21.55 0.75 0.45 0.90 227 0.90 0.90 0.90 227 0.90																									211.00		
25.00 3.60	24.50	21.55	0.75	3.45	clayey silt to silty clay	-12.0			2,940	1,910	2,229	2.78	N/A	N/A	0.943	N/A		N/A	N/A NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.57
1.50																											
28.50 133.22 0.93 0.75 used 1.60 1.00 25 3.40 2.141 2.69 178 100 1.000 0.001 0.014 0.076 0.001 0.244 0.992 YES 0.00 22.2 NA 1.395 0.17 0.00 0.001 0.					and and the stary of and																						
20.50 544.30 2-20					sand																						
31.50																											
33.50 422.53 197 0.47 greefly and to sand 34.00 72.46 2.25 1.00 75 4.160 5.26 2.46 2.86 2.85 1.41 1.00 30.77 0.993 0.07 0.995 0.60 NA 0.00 0.00		495.04						83		2,314																	
34.50 342.05 2.11 0.62 gravely sand to sand 5.50 1.00 6.1 4.26 2.54 1.20 2.5																											
36.50 596.02 3.61 0.61 gravelly sand to sand 24.0 1.00 99 4.380 2.602 2.902 1.25 1.00 522.88 0.877 0.900 0.955 N/A																											
37.50 694.00 5.20 0.75 gravelly and to sand 2.50 1.00 116 4.500 2.659 2.977 1.30 1.00 501.86 0.869 0.892 0.972 N.A N.A NO N.A N.A 94.8 N.A 0.000 0.00 0.00 39.50 42.48 1.41 0.33 gravelly and to sand 2.70 1.00 70 4.740 2.774 3.093 1.18 1.00 538.55 1.29 1.00 1.0																											
38.59 588.15 3.87 0.66 gravelly sand to sand 2-6.0 1.00 98 4.620 2.717 3.035 1.29 1.00 59.46.3 0.861 0.885 0.990 N.A. N.A. N.A. N.A. N.A. N.A. N.A. 79.6 N.A. 0.000 0.00 0																											
## 4.50 384-95 1.29 0.34 gravelly sand to sand 2.80 1.00 64 4.860 2.832 3.150 1.22 1.00 323.50 0.844 0.870 0.584 N/A N/A	38.50	588.15	3.87	0.66	gravelly sand to sand	-26.0	1.00	98	4,620	2,717	3,035	1.29	1.00	504.63	0.861	0.885	0.590	N/A	N/A NO	N/A	N/A	N/A	79.6	N/A	0.000	0.00	0.00
41.50 349.96 2.54 0.72 gravelly sand to sand 42.90 1.00 58 4.980 2.890 3.208 1.48 1.00 29.15 0.836 0.863 0.881 N/A																											
42.50 389.30 2.01 0.52 gravelly sand to sand 3.00 1.00 65 5.100 2.947 3.265 1.34 1.00 320.70 0.828 0.856 0.577 N/A N/A N/A N/A N/A S/8 N/A 0.000 0.0				0.00																							
44.50					gravelly sand to sand	-30.0		65		2,947				320.70				N/A	N/A NO	N/A	N/A	N/A	50.8	N/A			
45.50 425.65 2.37 0.56 gravely sand to sand 45.50 375.28 2.280 0.75 gravely sand to sand 3.40 1.00 63 5.580 3.178 3.496 1.48 1.00 2773 0.795 0.831 0.563 N/A N/A N/A N/A N/A N/A 47.3 N/A 0.000 0.00 0.00 0.00 4.750 421.02 2.83 0.67 gravely sand to sand 3.50 1.00 70 5.700 3.235 3.553 1.42 1.00 331.03 0.787 0.825 0.559 N/A																											
47.50 421.02 2.83 0.67 gravely sand to sand 48.50 1.00 70 5.700 3.235 3.553 1.42 1.00 313.03 0.787 0.825 0.559 N/A N/A N/A N/A N/A N/A S0.6 N/A 0.000 0.00 0.00 49.50 445.62 2.75 0.62 gravely sand to sand 5.60 1.00 68 5.820 3.293 3.611 1.45 1.00 318.35 0.779 0.819 0.555 N/A	45.50	425.65	2.37	0.56	gravelly sand to sand	-33.0	1.00	71	5,460	3,120	3,438	1.35	1.00	340.80	0.804	0.837	0.567	N/A	N/A NO	N/A	N/A	N/A	54.1	N/A	0.000	0.00	0.00
48.50								63																			
50.50 328.55 2.39 0.73 gravelly sand to sand 38.01 1.00 55 6.060 3.408 3.726 1.52 1.00 251.69 0.763 0.808 0.547 N/A N/		408.48	2.95		gravelly sand to sand			68		3,293							0.555										
51.50 363.18 2.54 0.70 gravelly sand to sand 39.0 1.00 61 6.180 3.466 3.784 1.48 1.00 275.90 0.755 0.803 0.542 N/A																											
\$2.50																											
54.50 365.12 4.03 1.10 sand 4.20 1.00 73 6.540 3.638 3.957 1.64 1.00 27070 0.730 0.787 0.529 N/A	52.50	422.44	3.30	0.78	gravelly sand to sand	-40.0	1.00	70	6,300	3,523	3,841	1.48	1.00	318.29	0.747	0.797	0.538	N/A	N/A NO	N/A	N/A	N/A	50.8	N/A	0.000	0.00	0.00
55.50 387.10 3.94 1.02 sand 43.0 1.00 77 6.660 3.696 4.014 1.60 1.00 284.76 0.722 0.782 0.524 N/A N/A NO N/A N/A N/A NO N/A N/A N/A 54.6 N/A 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0																											
56.50 506.82 3.42 0.67 gravelly sand to sand 57.50 557.47 3.38 0.61 gravelly sand to sand 4.0 1.00 84 6.780 3.754 4.072 1.39 1.00 436.95 0.714 0.777 0.520 N/A										3,696																	
58.50	56.50	506.82	3.42	0.67	gravelly sand to sand	-44.0	1.00	84	6,780	3,754	4,072	1.39	1.00	369.95	0.714	0.777	0.520	N/A	N/A NO	N/A	N/A	N/A	59.2	N/A	0.000	0.00	0.00
59.50 383.92 4.97 1.29 sand #N/A #N/A 1.29 sand #N/A #N/A 1.00 77 7,140 3,926 4,245 1.69 1.03 282.23 0.690 0.764 0.505 N/A N/A N/A N/A N/A N/A N/A N/A 52.7 N/A 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0																											
max= 1,200					sand																						
$_{ m max} = 1,200$			1			 			1																	-	-
		1	1	1	#14/P	1	1		1	1	1	1	1	1		1	1	1	1 1	1	max=		1			1	

679 avg=

> CPT-12-13 Liquefaction Analysis.XLS Output Sheet

Earthquake Magnitude, Meq

Peak Ground Acceleration, An

Required Factor of Safety

PROJECT INFORMATION		
Project Name	Marina Del Mar - Parcel 44	
Project No.	LA-1049	
Location	Los Angeles	
Exploration No.	CPT-12-14	
GENERAL INPUT DATA		
Ground Surf. Elev. During Test		
Ground Burn Elev. During Test	10.00 ft	
GWT Elev. During Test	2.50 ft	
GWT Elev. During Test	2.50 ft	

6.80

0.62 g

1.30

REFERENCES

Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and I.M. Idriss, 2001)

++ CSR = 0.65 $A_{max} (\sigma_v/\sigma_v') r_d$

++++FS = (CRF₄/CSR) MSF K_σ K_{σ→∞} where CRR₇₅ is evaluated from direct CPT data, K_σ =1.0 and MSF = 1.28

* Residual strength values of liquefied soils are evaluated from converted SPT blow counts using the median curve by Seed & Harder (1990)

** Ground settlements are evaluated from converted SPT blow counts using the method developed by Tokimatsu and Seed (1987).

Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change.

GWT Depth During Test, Zw = GWT Depth For Design, Zwd = 7.50 ft below ground surface 5.00 ft below ground surface

*** SUMMARY OF RESULTS ***

Total Thickness of Liquefiable Soils = 5.00 feet

Earthquake-Induced Settlements:

- Liquefaction-Induced Settlement = 0.66 inches <--- Saturated Sands - Seismic Compaction Settlement = 0.00 inches <--- Dry or Unsaturated Sands

Total: 0.66 inches

	INPUT SOIL I	PROFILE (C	PT DATA)				SOIL LIQUE	FACTION I	POTENTIAL A	NALYSIS (1	996 NCEE	R & 1998 NO	EER/NSF W	ORKSHO	OPS) +					RESID	UAL STRE	NGTH *		GROUNE	SETTLEN	IENT **	
								Total	Effective	Effective	Soil			Shear	Correction	Cyclic		Factor of Safety			Fines		Fines				C
Soil	Average	Average	Average		Bottom of			Vert.	Vert.	Vert.	Behavior	Fines	Corrected	Stress	for High	Stress	Cyclic	Against		SPT Blow	Corrected		Corrected	Cyclic		Layer	Cumulativ e
Depth	Cone Tip Resistance	Sleeve Friction	Friction Ratio		Layer	Thin Layer	Equiv. SPT	Stress	Stress (Design)	Stress (Test)	Type	Correction Factor	Tip Resistance	Reduction Coeff.	Overburden		Res. Ratio	Liqefaction		Count Correction	SPT Blow Count	Shear	SPT Blow Count	Shear Strain	Vol. Strain	Settlemen t	Settlement
During Test (ft)	q _{t-avg} (tsf)	f _{s-avg} (tsf)		Soil Behavior Type (Robertson et al., 1983)	Elevation (ft)	Correction Factor (Lunne, et al., 1997)	Blow Count N ₆₀ (blows/ft)	σ _v (psf)	σ _{v'} (psf)	σ _{v'} (psf)	Index I	K _c	q _{c1Ncs}	r _d	Stress K _o	CSR	CRR _{7.5}	FS	у?	N _{corr}	(N ₁) _{60cs}	Strength S _r (psf)	$(N_1)_{60cs}$	γ _c (%)	& _v (%)	S _i (in.)	Profile (in.)
5.50	11.37	0.30	2.63	silty clay to clay	4.0	1.00	8	660	629	660	2.62	N/A	N/A	0.987	N/A	0.418	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.66
6.50 7.50	9.67 8.23	0.50	5.09 4.43	clay	3.0	1.00	10 8	780	686	780	2.89	N/A	N/A	0.985	N/A	0.451	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.66
7.50 8.50	7.20	0.37	2.11	clay silty clay to clay	2.0	1.00	5	900 1,020	744 802	900 958	2.93 2.80	N/A N/A	N/A N/A	0.983	N/A N/A	0.479	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.66
9.50	9.10	0.17	1.90	clayey silt to silty clay	0.0	1.00	5	1,140	859	1,015	2.71	N/A	N/A	0.978	N/A	0.523	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.66
10.50 11.50	10.73 20.52	0.20	1.83	clayey silt to silty clay sandy silt to clayey silt	-1.0 -2.0	1.00	5	1,260 1,380	917 974	1,073	2.66	N/A 2.78	N/A 81.81	0.976	N/A 1.000	0.540	N/A 0.131	N/A 0.303	NO YES	N/A 2.8	N/A 13.7	N/A 568	N/A 18.1	N/A N/A	N/A 1.690	N/A 0.20	0.66
12.50	46.23	0.29	0.63	sand to silty sand	-3.0	1.00	12	1,500	1,032	1,188	1.95	1.24	79.93	0.971	1.000	0.569	0.127	0.288	YES	1.3	16.3	806	18.2	N/A	1.682	0.20	0.25
13.50 14.50	42.83 13.08	0.41	0.96 2.36	silty sand to sandy silt clayey silt to silty clay	-4.0 -5.0	1.66 1.00	24 7	1,620 1,740	1,090 1,147	1,246 1,303	1.79 2.71	1.10 N/A	105.42 N/A	0.969	1.000 N/A	0.580	0.189 N/A	0.418 N/A	YES NO	2.8 N/A	32.8 N/A	1,200 N/A	40.9 N/A	N/A N/A	0.000 N/A	0.00 N/A	0.25
15.50	13.07	0.27	2.04	clayey silt to silty clay	-6.0	1.00	7	1,860	1,205	1,361	2.69	N/A	N/A	0.964	N/A	0.600	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.25
16.50 17.50	13.17 15.63	0.28	2.13	clayey silt to silty clay sandy silt to clayey silt	-7.0 -8.0	1.00	7	1,980 2,100	1,262 1,320	1,418	2.71	N/A 3.31	N/A 70.68	0.962	N/A 1.000	0.608	N/A 0.113	N/A 0.236	NO YES	N/A 2.8	N/A 10.1	N/A 316	N/A 13.7	N/A N/A	N/A 2.018	N/A 0.24	0.25
18.50	11.22	0.40	3.51	silty clay to clay	-9.0	1.00	7	2,220	1,378	1,534	2.93	N/A	N/A	0.957	N/A	0.621	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.01
19.50 20.50	13.82 22.64	0.45	3.22 3.34	silty clay to clay clayey silt to silty clay	-10.0 -11.0	1.00	9	2,340 2,460	1,435 1,493	1,591 1,649	2.84	N/A N/A	N/A N/A	0.955	N/A N/A	0.627	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.01
21.50	19.33	0.65	3.36	clayey silt to silty clay	-12.0	1.00	10	2,580	1,550	1,706	2.75	N/A	N/A	0.950	N/A	0.637	N/A	N/A	NO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.01
22.50 23.50	19.52 71.13	0.54 1.06	2.76	clayey silt to silty clay silty sand to sandy silt	-13.0 -14.0	1.00	10 24	2,700 2,820	1,608 1,666	1,764	2.71 2.11	N/A 1.47	N/A 114.77	0.948	N/A 1.000	0.641	N/A 0.221	N/A 0.439	NO YES	N/A 2.8	N/A 27.6	N/A 1,200	N/A 34.8	N/A N/A	N/A 0.099	N/A 0.01	
24.50	284.05	3.98	1.40	sand	-15.0	1.00	57	2,940	1,723	1,879	1.69	1.03	314.73	0.943	1.000	0.648	N/A	N/A	NO	N/A	N/A	N/A	58.6	N/A	0.000	0.00	0.00
25.50 26.50	221.17 347.78	1.61 1.46	0.73 0.42	sand gravelly sand to sand	-16.0 -17.0	1.00 1.00	44 58	3,060 3,180	1,781 1,838	1,937 1,994	1.54 1.24	1.00 1.00	234.38 362.75	0.941	1.000	0.651 0.654	N/A N/A	N/A N/A	NO NO	N/A N/A	N/A N/A	N/A N/A	44.9 58.0	N/A N/A	0.000	0.00	0.00
27.50	372.13	1.32	0.35	gravelly sand to sand	-17.0	1.00	62	3,300	1,896	2,052	1.18	1.00	382.20	0.936	1.000	0.656	N/A	N/A	NO	N/A	N/A	N/A	61.2	N/A	0.000	0.00	0.00
28.50	553.42	1.46	0.26	gravelly sand to sand #N/A	-19.0	1.00	92	3,420	1,954	2,110	0.97	1.00	559.95	0.934	1.000	0.659	N/A	N/A	NO	N/A	N/A	N/A	89.8	N/A	0.000	0.00	0.00
				#N/A																							
				#N/A																						<u> </u>	
				#N/A #N/A																							
				#N/A																						<u> </u>	
				#N/A #N/A	-																						
				#N/A																							
				#N/A #N/A	-																						
				#N/A																							
				#N/A #N/A																							\vdash
				#N/A																							
				#N/A #N/A																							\vdash
				#N/A																							
				#N/A #N/A																							\vdash
				#N/A																							
				#N/A #N/A	l		-			1																	\vdash
				#N/A																							
				#N/A #N/A	 		+	-		1		-									-	-					$\overline{}$
				#N/A																							
				#N/A #N/A	l																						-
				#N/A																							
				#N/A #N/A						1																	
				#N/A #N/A	l 			1		1		 									1						
				#N/A #N/A																							
				#N/A	 		+			1																	
				#N/A																						-	
		1		#N/A	L L			1		1	l	L	l		1	1	l	1	1		max=	1,200			l		
																					min=	316					

818 avg=

> CPT-12-14 Liquefaction Analysis.XLS Output Sheet

EVALUATION OF LIQUEFACTION POTENTIAL AND EARTHQUAKE-INDUCED GROUND SETTLEMENTS USING SPT DATA

<< GENE	RAL INPUT DATA	>><
Project Name	Marina Del Rey - Parcel 44	+ Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and I.M. Idriss, 2001)
Location	Marina Del Rey	++ Combination of corrrection factors for hammer energy ratio (C E), borehole diameter (C B), rod length (C R), and sampling method (C S). Correction Factor = C E C R C S
GDC Project Number	LA-1049	$+++$ CSR = $0.65 \text{ A}_{\text{max}} (\sigma_{\text{v}}/\sigma_{\text{v}}) \text{ r}_{\text{d}}$
Exploration No.	R-12-15	* FS = (CRR $_{7.5}$ /CSR) MSF K $_{\sigma}$ K $_{\alpha}$ where K $_{\alpha}$ =1.0 and MSF = 1.28
Ground Surf. Elevation	10.00 ft	** S _r value based on extrapolated median curve and limited to a maximum value of 1,200 psf (Seed & Harder, 1990)
GWT Depth During Testing, $Z_{\rm w}$	13.00 ft	*** Based on Tokimatsu and Seed (1987) and Pradel (1998).
GWT Depth for Design, Zwd	5.00 ft	Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change.
Soil Unit Weight, γ _t	120.00 pcf	
Earthquake Magnitude, M eq	6.80	<
Peak Ground Acceelration, A max	0.62 g	Total Thickness of Liquefiable Soils = 5.00 feet
Required FS	1.30	Earthquake-Induced Settlements:
		- Liquefaction-Induced Settlement = 0.74 inches < Saturated Sands
		- Seismic Compaction Settlement = 0.00 inches < Dry or Unsaturated Sands
		Total: 0.74 inches

	INP	UT SOIL P	ROFILE					SOIL L	IQUEFACTI	ON POTEN	TIAL ANAL	YSIS (1996 !	NCEER & 1	998 NCEER/N	SF WORK	SHOPS) +			RESIDU.	AL STREN	GTH **	GROUNI	SETTLE	MENT ***
Soil Depth Z (ft)	Layer Thickness H (ft)	USCS Soil Type	Equivalent SPT Blow Count N (blows/ft)	Fines Content FC (%)	Combined SPT Correction Factor ++ C		Total Vert. Stress (Design) σ_v (psf)	Vert. Stress (Design) $\sigma_{v'}$ (psf)	Effective Vert. Stress (Testing) $\sigma_{v'}$ (psf)	SPT Stress Correction Factor+ C _N	Count	Fines Corrected SPT Blow Count (N ₁) _{60cs}	Coeff.+	$\begin{array}{c} \text{Correction} \\ \text{for High} \\ \text{Overburden} \\ \text{Stress+} \\ K_{\sigma} \end{array}$	Ratio++ CSR	Cyclic Res. Ratio CRR _{7.5}			$\begin{array}{c} \text{SPT Blow} \\ \text{Count} \\ \text{Correction} \\ N_{\text{corr.}} \end{array}$	Fines Corrected SPT Blow Count $(N_1)_{60cs}$	$\begin{aligned} & Residual \\ & Shear \\ & Strength \\ & S_r(psf) \end{aligned}$	Cyclic Shear Strain ** γ_c (%)	** & _v (%)	$Layer \\ Settlement \\ ** \\ S_i(in.)$
10.00	5	SM/ML	14.7	15	1.09	-2.5	1200	888	1200	1.291	20.7	24.2	0.977	1.000	0.532	0.277	0.668	YES	1.3	22.0	1,200	N/A	1.233	0.740

EVALUATION OF LIQUEFACTION POTENTIAL AND EARTHQUAKE-INDUCED GROUND SETTLEMENTS USING SPT DATA

- GENERAL INPUT DATA ------- REFERENCES ---+ Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and L.M. Idriss, 2001) Marina Del Rey - Parcel 44 Project Name Location Marina Del Rey ++ Combination of corrrection factors for hammer energy ratio (C E), borehole diameter (C B), rod length (C R), and sampling method (C S). Correction Factor = C E C R C R C S GDC Project Number LA-1049 +++ $CSR = 0.65 A_{max} (\sigma_v/\sigma_v') r_d$ Exploration No. R-12-16 * FS = (CRR $_{7.5}$ /CSR) MSF K $_{\sigma}$ K $_{\alpha}$ where K $_{\alpha}$ =1.0 and MSF = 1.28 **Ground Surf. Elevation** 16.00 ft ** Sr value based on extrapolated median curve and limited to a maximum value of 1,200 psf (Seed & Harder, 1990) GWT Depth During Testing, $\boldsymbol{Z}_{\boldsymbol{w}}$ 14.00 ft *** Based on Tokimatsu and Seed (1987) and Pradel (1998). Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change. GWT Depth for Design, Z_{wd} 11.00 ft Soil Unit Weight, yt 120.00 pcf Earthquake Magnitude, M eq 6.80 ---- SUMMARY OF RESULTS ----Total Thickness of Liquefiable Soils = Peak Ground Acceelration, A max 0.62 g 13.50 feet Required FS 1.30 Earthquake-Induced Settlements: - Liquefaction-Induced Settlement = 1.34 inches <--- Saturated Sands - Seismic Compaction Settlement = 0.00 inches <--- Dry or Unsaturated Sands 1.34 inches Total:

	INPU	T SOIL P	ROFILE					SOIL LI	QUEFACTI	ON POTEN	TIAL ANAL	YSIS (1996 !	NCEER & 1	998 NCEER/N	SF WORK	SHOPS) +			RESIDU	AL STREN	GTH **	GROUNI	SETTLE	MENT ***
Soil Depth Z (ft)	Layer Thickness H (ft)	USCS Soil Type	Equivalent SPT Blow Count N (blows/ft)		Combined SPT Correction Factor ++	Bottom of Layer Elevation (ft)	Total Vert. Stress (Design) σ_v (psf)	Effective Vert. Stress (Design) $\sigma_{v'}$ (psf)	Effective Vert. Stress (Testing) $\sigma_{v'}$ (psf)	SPT Stress Correction Factor+ C _N	$\begin{array}{c} Stress\\ Corrected\\ SPT\\ Blow\\ Count\\ (\hbox{N_1})_{60} \end{array}$	Fines Corrected SPT Blow Count (N ₁) _{60cs}	Shear Stress Reduction Coeff.+ \mathbf{r}_{d}	$\begin{array}{c} \text{Correction} \\ \text{for High} \\ \text{Overburden} \\ \text{Stress+} \\ K_{\sigma} \end{array}$	Cyclic Stress Ratio++ CSR	Cyclic Res. Ratio CRR _{7.5}	Factor of Safety Against Liqefaction * FS	Liquefy?		Fines Corrected SPT Blow Count (N ₁) _{60cs}	$\begin{aligned} & Residual \\ & Shear \\ & Strength \\ & S_r(psf) \end{aligned}$	Cyclic Shear Strain ** γ_c (%)	Vol. Strain ** & (%)	$Layer \\ Settlement \\ ** \\ S_i(in.)$
12.75	3.5	SP/SC	19.4	16	1.09	1.5	1530	1421	1530	1.143	24.2	28.2	0.970	1.000	0.421	0.379	1.155	YES	1.4	25.6	1,200	N/A	0.318	0.134
20.00	5	SC	14.1	36	1.22	-6.5	2400	1838	2026	0.994	17.1	25.5	0.953	1.000	0.502	0.302	0.774	YES	2.9	20.0	1,183	N/A	1.111	0.667
30.00	5	SP-SM	25.0	5	1.29	-16.5	3600	2414	2602	0.877	28.3	28.3	0.930	0.928	0.559	0.380	0.810	YES	0.5	28.8	1,200	N/A	0.902	0.541

EVALUATION OF LIQUEFACTION POTENTIAL AND EARTHQUAKE-INDUCED GROUND SETTLEMENTS USING SPT DATA

GENERAL INPUT DATA ------ REFERENCES ---+ Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops (Edited by: T.L. Youd and L.M. Idriss, 2001) Marina Del Rey - Parcel 44 Project Name Location Marina Del Rey ++ Combination of corrrection factors for hammer energy ratio (C E), borehole diameter (C B), rod length (C R), and sampling method (C S). Correction Factor = C E C R C R C S GDC Project Number LA-1049 +++ $CSR = 0.65 A_{max} (\sigma_v/\sigma_v') r_d$ Exploration No. R-12-17 * FS = (CRR $_{7.5}$ /CSR) MSF K $_{\sigma}$ K $_{\alpha}$ where K $_{\alpha}$ =1.0 and MSF = 1.28 **Ground Surf. Elevation** 18.00 ft ** Sr value based on extrapolated median curve and limited to a maximum value of 1,200 psf (Seed & Harder, 1990) *** Based on Tokimatsu and Seed (1987) and Pradel (1998). GWT Depth During Testing, $\boldsymbol{Z}_{\boldsymbol{w}}$ 16.00 ft GWT Depth for Design, Z_{wd} 13.00 ft Note: This analysis asssumes level ground condition and depth of liquefiable soils does not change. Soil Unit Weight, yt 120.00 pcf Earthquake Magnitude, M eq 6.80 ---- SUMMARY OF RESULTS ---Total Thickness of Liquefiable Soils = Peak Ground Acceelration, A max 0.62 g 4.50 feet Required FS 1.30 Earthquake-Induced Settlements: - Liquefaction-Induced Settlement = 0.81 inches <--- Saturated Sands - Seismic Compaction Settlement = 0.00 inches <--- Dry or Unsaturated Sands 0.81 inches Total:

	INPU	JT SOIL P	ROFILE					SOIL LI	QUEFACT	ION POTEN	TIAL ANAL	YSIS (1996 !	NCEER & 1	998 NCEER/N	SF WORK	SHOPS) +			RESIDU	AL STREN	GTH **	GROUNI	SETTLE	MENT ***
Soil Depth Z (ft)	Layer Thickness H (ft)	USCS Soil Type	Equivalent SPT Blow Count N (blows/ft)		Combined SPT Correction Factor ++ C	Bottom of Layer Elevation (ft)	Stress (Design)	Effective Vert. Stress (Design) $\sigma_{v'}$ (psf)	Effective Vert. Stress (Testing) $\sigma_{v'}$ (psf)	$SPT \\ Stress \\ Correction \\ Factor+ \\ C_{\scriptscriptstyle N}$	Count	Fines Corrected SPT Blow Count (N ₁) _{60cs}	Shear Stress Reduction Coeff.+ \mathbf{r}_{d}	$\begin{array}{c} \text{Correction} \\ \text{for High} \\ \text{Overburden} \\ \text{Stress+} \\ K_{\sigma} \end{array}$	Cyclic Stress Ratio++ CSR	Cyclic Res. Ratio CRR _{7.5}	Factor of Safety Against Liqefaction *	Liquefy?	SPT Blow Count Correction N _{corr.}	Fines Corrected SPT Blow Count (N ₁) _{60cs}	$\begin{aligned} & Residual \\ & Shear \\ & Strength \\ & S_r(psf) \end{aligned}$	Cyclic Shear Strain ** γ_c (%)	Vol. Strain ** &\varepsilon_{v}(\(^{\sqrt{v}}\))	$Layer \\ Settlement \\ ** \\ S_i(in.)$
15.25	4.5	SC	12.7	16	1.22	0.5	1830	1690	1830	1.045	16.2	19.8	0.964	1.000	0.421	0.213	0.651	YES	1.4	17.6	-758	N/A	1.494	0.807

September 19, 2012 J2602Br5

SPECIALISTS

Pacific Marina Venture, LLC °/0 Pacific Ocean Management, LLC 13737 Fiji Way

621 Via Alondra

Marina Del Rey, CA - 90292

Suite 610

Camarillo, California 93012

Attn: Mr. Mike Selden

TEL: 805.987.5356

Tel: (949) 644-4465

FAX: 805.987.3968

Email: mseldon@pom-ndr.com

methanespecialists.com

Subj: Site Methane Investigation Report for Proposed Construction project at:

Parcel 44 13433 Fiji Way, Marina Del Rey, CA - 90292

Methane Specialists has completed a methane investigation to determine the measurable level of methane of the proposed site at 13433 Fiji Way, Marina Del Rey, CA – 90292

The investigation is for the construction of a commercial establishment, along Pier 44, around Basin G, to be built completely on-grade. A "Geotechnical Engineering Report" of Parcel 44, identified as GDC Project No. LA-1049, dated June 01, 2012, conducted by Group Delta Consultant, Inc., has been provided to us. Said Report recorded ground water at a depth of 5' above Mean Sea Level (MSL). Methane Specialists found the ground water level to be approximately 4 to 6 feet below surface grade (bsg), probably due to time and Tidal differences.

The area of interest is reported to be approximately 445,600 square feet. Methane Specialists bored forty-three (43) shallow methane monitoring probe wells at 4 feet, bsg, and twenty-three (23) deeper wells at 5 to 7 feet, bsg. Refusal was not met at any probe depth. (See typical multistage monitoring well detail attached). The probe-sets were temporary, and may now be destroyed (See attached Probe Location Maps).

As per the California Department of Conservation, through it's Division of Oil, Gas and Geothermal Resources (DOGGR) Online Mapping System (DOMS), no oil well is shown to be close enough to the project to impact the construction of this project (See attached DOMS map).

Each of the probes was monitored with a portable combustible methane gas detector and pressure-tested with a magnehelic gauge. Monitoring took place on two occasions with a minimum 24-hour interval between events during periods of falling barometric pressure. The methane test results are attached.

Methane Investigation Report for J2602B: 13433 Bali Way, Marina Del Rey, CA - 90292

In summary, at one of the probes, a methane gas *quantity* was detected at SP-45, on August 1, 2012, as high as the 60,000 ppmv (parts per million by volume) level, which is 6% by volume, 120% of the Lower Explosive Limit (LEL) of methane, and 40% of the Upper Explosive Limit (UEL) of methane, but no significant methane gas *pressures* were detected at *any* of the probes (see attached Gas Monitoring Log sheets). The next highest reading was 3,000 ppmv.

According to the Section 110.4, Title 26, Volume 1, of the California Building Code, of the Los Angeles County Code, new methane mitigation is required only for new buildings or structures to be located "within 25 feet on an active, abandoned, or idle oil or gas well(s)". The entire parcel is located at least 200 feet from all such wells, as shown on the DOMS (see attached DOMS Oil Well Location Map).

Based on the results of the site investigation, DOGGR map research and the Los Angeles County Methane requirements, additional mitigation of the proposed project is not required. The preliminary project plans supplied by the client do not fall within 25 feet of an abandoned oil well or within 200 feet of an active oil well.

Methane Specialists also recommends soil gas monitoring during excavation.

All discussion in this report is based on information provided by the client, as well as data and conditions, as they existed at the time and date of testing at the site. Should any detail, or condition, change from that original information, then, re-consideration of the conclusions in this report could become justified. Methane Specialists cannot be held accountable for relevant information not provided. Nor can Methane Specialists be held accountable for the consequences of changes in the project scope, or of project site conditions.

This report has been prepared for the sole use of the client, exclusively, for the completion of the subject project, alone. No other application, or interpretation, of this report is to be granted, or implied, or otherwise made, without first obtaining direct, written permission, exclusively from Methane Specialists.

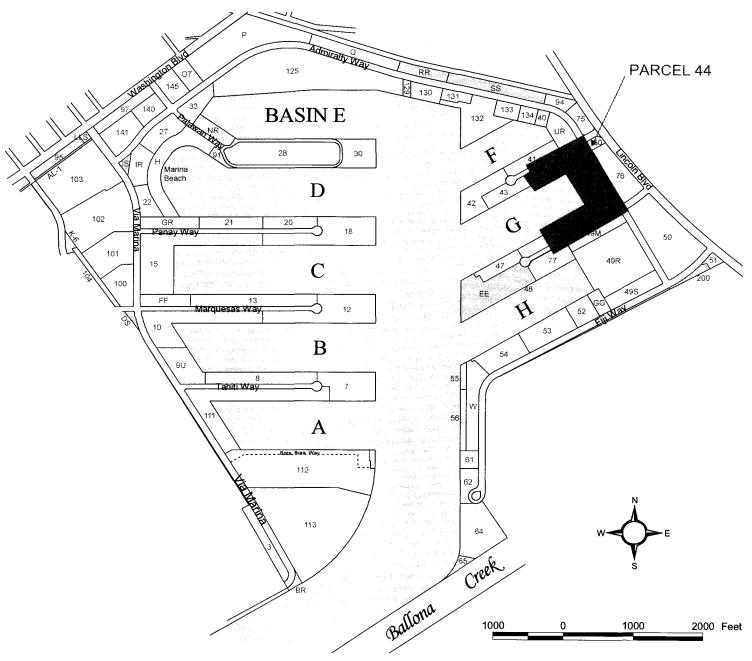
Respectfully, Methane Specialists

Kirby N. Arriola, P.E. (C-31416)

INDEX OF ENCLOSURES

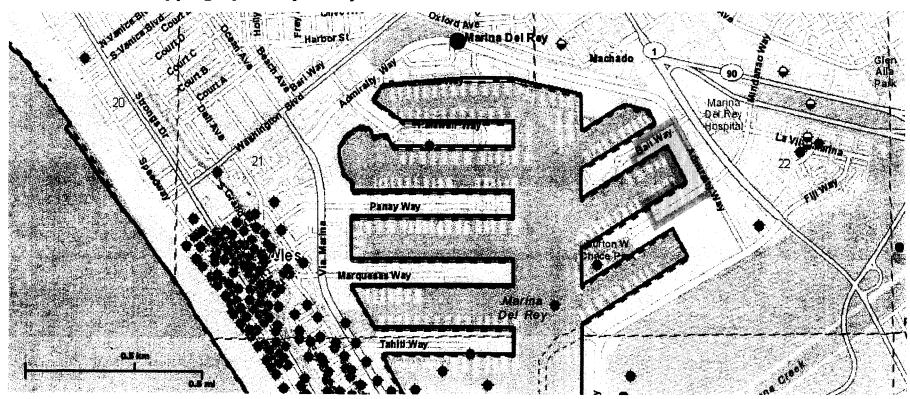
MARINA DEL REY PARCEL MAP

OIL WELL LOCATION MAP


NORTHEASTERLY METHANE PROBE LOCATION MAP PORTION

SOUTHWESTERLY METHANE PROBE LOCATION MAP PORTION

TYPICAL METHANE PROBE SET DETAIL

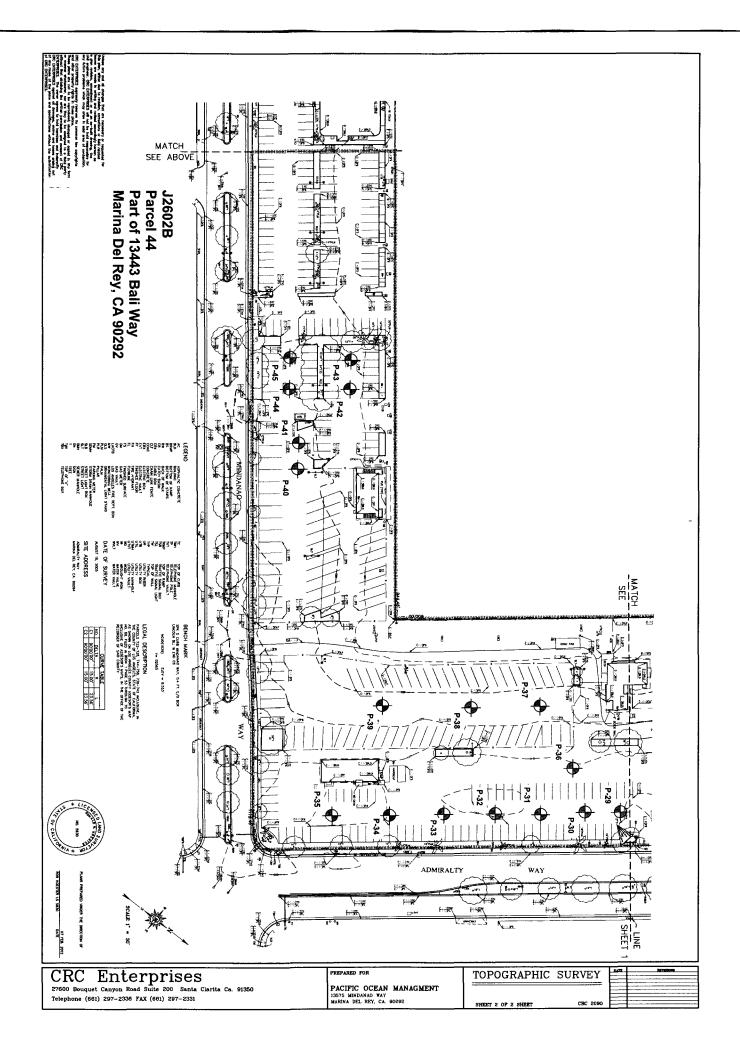

METHANE TEST RESULTS LOG (6 PAGES)

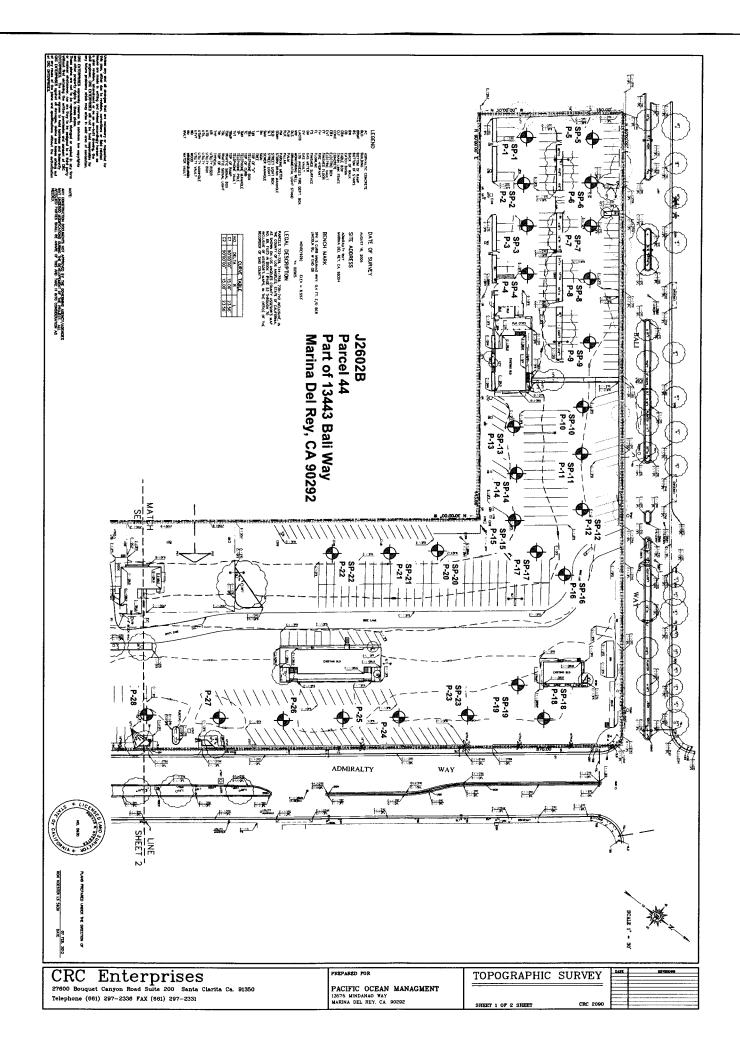
Marina del Rey Lease Parcel Areas

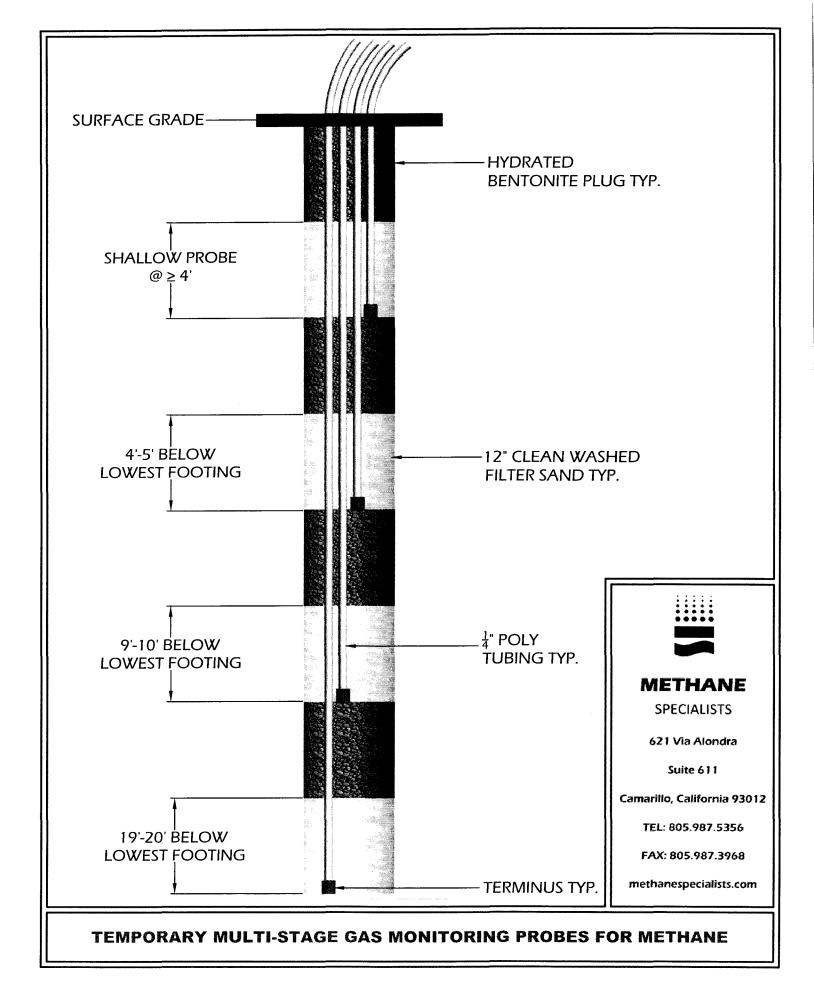
Map March 2007 by Chris Sellers, Los Angeles County Department of Beaches and Harbors

DOGGR Online Mapping System (DOMS)

Disclaimer: The well information and data represented on this site varies in accuracy, scale, origin and completeness and may be changed at any time without notice. While the California Department of Conservation, Division of Oil, Gas and Geothermal Resources (DOC) makes every effort to provide accurate information, DOC makes no warranties as to the suitability of this product for any particular purpose. Any use of this information is at the user's own risk.


For further information or suggestions regarding the data on this site, please contact the Division of Oil, Gas, and Geothermal Resources, Technical Services Unit at 801 K St, MS 20-20, Sacramento, CA, 95814 or email doggreebmaster@conservation.ca.gov.


California Department of Conservation, Division of Oil, Gas and Geothermal Resources.


Printed on: Jul 26 - 4:09:49 PM

URL - http://maps.conservation.ca.gov/doms/

Sheet 1 of 6

PROJECT ADDRESS: Parcel 44 (Admiralty Way and Mindinao))

JOB NUMBER: J2602B

REASON FOR TESTING::

OIL WELL(S) NEARBY Χ

METHANE ZONE **BUFFER ZONE**

LANDFILLFORMER LIVESTOCK AREACONTAMINATED SITE

TESTER: DR

PROBE	DEPTH FT.	DATE	TIME	CH4 % LEL	O2 % VOL	H2S PPM	CO/CO2 % VOL	GAS PRESS. IN H2O	PEAK READING
P-1	5	8/1/2012	1:35	ND	18.8%	<0.1	2.8%	<0.1	
SP-1	4	8/1/2012	1:40	1% LEL	20.9%	<0.1	0.6%	<0.1	
P-2	6	8/1/2012	1:50	1% LEL	20.8%	<0.1	0.8%	<0.1	
SP-2	4	8/1/2012	1:55	ND	20.9%	<0.1	0.2%	<0.1	
P-3	7	8/1/2012	2:15	LF					LOW FLOW
SP-3	4	8/1/2012	2:20	1% LEL	20.7%	<0.1	0.5%	<0.1	
P-4	6	8/1/2012	2:30	1% LEL	19.7%	<0.1	2.8%	<0.1	
SP-4	4	8/1/2012	2:40	1% LEL	20.9%	<0.1	0.2%	<0.1	
P-5	6	8/2/2012	12:20	2% LEL	17.9%	<0.1	5.3%	<0.1	
SP-5	4	8/2/2012	12:25	ND	19.4%	<0.1	1.6%	<0.1	
P-6	6	8/2/2012	12:30	1% LEL	19.2%	<0.1	1.8%	<0.1	
SP-6	4	8/2/2012	12:40	ND	18.3%	<0.1	4.5%	<0.1	
P-7	6	8/2/2012	12:45	ND	18.7%	<0.1	4.0%	<0.1	1
SP-7	4	8/2/2012	12:50	ND	20.9%	<0.1	1.2%	<0.1	
P-8	6	8/2/2012	12:55	1% LEL	18.3%	<0.1	5.1%	<0.1	
SP-8	4	8/2/2012	1:00	ND	18.4%	<0.1	4.3%	<0.1	
P-9	6	8/2/2012	1:15	ND	20.6%	<0.1	9.4%	<0.1	
SP-9	4	8/2/2012	1:20	ND	16.1%	<0.1	9.2%	<0.1	
P-10	6	8/2/2012	2:15	ND	201.%	<0.1	2.4%	<0.1	CH4-3% LEL
SP-10	4	8/2/2012	2:20	ND	20.2%	<0.1	4.0%	<0.1	
P-11	6	8/2/2012	2:50	ND	11.4%	<0.1	18.7%	<0.1	
SP-11	4	8/2/2012	2:55	1% LEL	11.9%	<0.1	16.2%	<0.1	
P-12	6	8/2/2012	3:10	ND	12.6%	<0.1	16.2%	<0.1	
SP-12	4	8/2/2012	3:15	ND	12.2%	<0.1	16.9%	<0.1	
P-13	6	8/2/2012	1:30	ND	16.1%	<0.1	2.4%	<0.1	
SP-13	4	8/2/2012	1:35	ND	20.9%	<0.1	1.4%	<0.1	CH4-3% LEL
P-14	6	8/2/2012	1:40	LF					LOW FLOW
SP-14	4	8/2/2012	1:42	ND	20.9%	<0.1	2.0%	<0.1	
P-15	6	8/2/2012	1:55	ND	13.3%	<0.1	6.0%	<0.1	
SP-15	4	8/2/2012	2:00	ND	17.9%	<0.1	6.0%	<0.1	

INSTRUMENT CALIBRATION RECORD							
DATE: 8/1/12	TIME:9:00	INT:DR					
DATE: 8/2/12	TIME:7:00	INT:DR					
DATE:	TIME:	INT:					

WATER ENCOUNTERD? (Y) (N)	DEPTH:7'							
REFUSAL? (Y) (N) DEPTH:								
COMMENTS:								

Sheet 2 of 6

PROJECT ADDRESS: Parcel 44 (Admiralty Way and Mindinao))

JOB NUMBER: J2602B

REASON FOR TESTING::

X OIL WELL(S) NEARBY

METHANE ZONE

BUFFER ZONE CONTAMINATED SITE

LANDFILL
FORMER LIVESTOCK AREA
CONTAMINATED SITE

TESTER: DR

PROBE	DEPTH FT.	DATE	TIME	CH4 % LEL	O2 % VOL	H2S PPM	CO/CO2 % VOL	GAS PRESS. IN H2O	PEAK READING
P-16	6	8/3/2012	8:45	2% LEL	19.8%	<0.1	1.9%	<0.1	
SP-16	4	8/3/2012	8:50	1% LEL	20.1%	<0.1	1.3%	<0.1	
P-17	6	8/3/2012	8:58	ND	20.9%	<0.1	0.7%	<0.1	
SP-17	4	8/3/2012	9:03	ND	20.9%	<0.1	0.4%	<0.1	
P-18	6	8/3/2012	9:10	ND	18.4%	<0.1	1.2%	<0.1	
SP-18	4	8/3/2012	9:15	ND	19.8%	<0.1	1.6%	<0.1	
P-19	6	8/3/2012	9:30	1% LEL	18.4%	<0.1	0.9%	<0.1	
SP-19	4	8/3/2012	9:35	ND	20.7%	<0.1	1.2%	<0.1	
P-20	6	8/3/2012	9:40	ND	17.1%	<0.1	0.9%	<0.1	
SP-20	4	8/3/2012	9:45	ND	18.1%	<0.1	3.0%	<0.1	
P-21	6	8/3/2012	9:56	ND	14.7%	<0.1	8.3%	<0.1	
SP-21	4	8/3/2012	10:01	ND	20.9%	<0.1	0.6%	<0.1	
P-22	6	8/3/2012	10:13	1% LEL	18.6%	<0.1	2.5%	<0.1	
SP-22	4	8/3/2012	10:17	ND	21.2%	<0.1	ND	<0.1	
P-23	6	8/3/2012	1:05	1% LEL	11.4%	<0.1	11.4%	<0.1	
SP-23	4	8/3/2012	1:10	ND	12.5%	<0.1	8.4%	<0.1	
SP-24	4	8/3/2012	1:25	1% LEL	12.0%	<0.1	7.4%	<0.1	
SP-25	4	8/3/2012	1:38	ND	20.4%	<0.1	4.0%	<0.1	
SP-26	4	8/3/2012	1:46	1% LEL	10.6%	<0.1	12.4%	<0.1	
SP-27	4	8/3/2012	1:57	ND	13.0%	<0.1	9.8%	<0.1	
SP-28	4	8/3/2012	2:07	ND	17.3%	<0.1	6.1%	<0.1	
SP-29	4	8/3/2012	2:25	1% LEL	14.4%	<0.1	9.0%	<0.1	
SP-30	4	8/3/2012	2:35	1% LEL	9.0%	<0.1	20.0%	<0.1	
SP-31	4	8/6/2012	11:00	4% LEL	10.1%	<0.1	15.0%	<0.1	
SP-32	4	8/6/2012	11:10	ND	17.0%	<0.1	5.7%	<0.1	
SP-33	4	8/6/2012	11:15	ND	22.4%	<0.1	0.6%	<0.1	
SP-34	4	8/6/2012	11:20	ND	20.9%	<0.1	1.2%	<0.1	
SP-35	4	8/6/2012	11:27	4% LEL	13.2%	<0.1	12.5%	<0.1	CH4-20% LEI
SP-36	4	8/6/2012	11:33	ND	3.2%	<0.1	20.0%	<0.1	
SP-37	4	8/6/2012	11:46	1% LEL	20.9%	<0.1	7.6%	<0.1	CH4-65% LE

INSTRUMENT CALIBRATION RECORD						
DATE: 8/3/12	TIME:8:40	INT:DR				
DATE: 8/6/12	тіме:10::55	INT:DR_				
DATE:	TIME:	INT:				

WATER ENCOUNTERD? (Y) (N)	DEPTH:						
REFUSAL? (Y) (N) DEPTH:							
COMMENTS:							

Sheet 3 of 6

PROJECT ADDRESS: Parcel 44 (Admiralty Way and Mindinao))

JOB NUMBER: J2602B

REASON FOR TESTING::

OIL WELL(S) NEARBY METHANE ZONE

BUFFER ZONE

LANDFILL

FORMER LIVESTOCK AREA
CONTAMINATED SITE

TESTER: DR

PROBE	DEPTH FT.	DATE	TIME	CH4 % LEL	O2 % VOL	H2S PPM	CO/CO2 % VOL	GAS PRESS. IN H2O	PEAK READING
SP-38	4	8/6/2012	11:55	LF					LOW FLOW
SP-39	4	8/6/2012	12:00	ND	20.9%	<0.1	0.4%	<0.1	
SP-40	4	8/6/2012	12:10	5% LEL	1.4%	<0.1	20.0%	<0.1	
SP-41	4	8/6/2012	12:15	1% LEL	15.2%	<0.1	6.4%	<0.1	
SP-42	4	8/6/2012	12:30	1% LEL	16.5%	<0.1	9.0%	<0.1	
SP-43	4	8/6/2012	12:20	ND	14.4%	<0.1	15.6%	<0.1	
SP-44	4	8/6/2012	2:00	LF					LOW FLOW
SP-45	4	8/6/2012	2:30	6.0% VOL.	0.2%	<0.1	20.0%	<0.1	
							-, -		
						!			
								- 115	

INSTRUMENT CALIBRATION RECORD WATER ENCOUNTERD? (Y) (N) DEPTH:				
	DATE: 8/6/12	TIME:11:50	INT:DR	REFUSAL? (Y) (N) DEPTH:

Sheet 4 of 6

PROJECT ADDRESS: Parcel 44 (Admiralty Way and Mindinao))

JOB NUMBER: J2602B

REASON FOR TESTING::

OIL WELL(S) NEARBY Х

METHANE ZONE **BUFFER ZONE**

ELANDFILL
FORMER LIVESTOCK AREA
FORMALIVESTOCK AREA

TESTER: DR

PROBE	DEPTH FT.	DATE	TIME	CH4 % LEL	O2 % VOL	H2S PPM	CO/CO2 % VOL	GAS PRESS. IN H2O	PEAK READINGS
P-1	5	8/8/2012	7:25	ND	18.6%	<0.1	3.3%	<0.1	
SP-1	4	8/8/2012	7:30	ND	20.7%	<0.1	0.9%	<0.1	
P-2	6	8/8/2012	7:40	ND	20.0%	<0.1	1.8%	<0.1	
SP-2	4	8/8/2012	7;45	ND	20.5%	<0.1	1.1%	<0.1	
P-3	7	8/8/2012	7:53	LF					LOW FLOW
SP-3	4	8/8/2012	7:54	ND	20.4%	<0.1	1.2%	<0.1	
P-4	6	8/8/2012	8:00	ND	19.0%	<0.1	2.8%	<0.1	
SP-4	4	8/8/2012	8:05	ND	20.5%	<0.1	0.9%	<0.1	
P-5	6	8/8/2012	8:10	ND	19.0%	<0.1	2.6%	<0.1	
SP-5	4	8/8/2012	8:15	1% LEL	19.0%	<0.1	2.3%	<0.1	
P-6	6	8/8/2012	8:20	ND	18.0%	<0.1	5.7%	<0.1	
SP-6	4	8/8/2012	8:30	ND	18.7%	<0.1	2.6%	<0.1	
P-7	6	8/8/2012	8:38	2% LEL	18.9%	<0.1	2.4%	<0.1	
SP-7	4	8/8/2012	8:43	1% LEL	20.9%	<0.1	0.1%	<0.1	
P-8	6	8/8/2012	8:50	ND	17.4%	<0.1	6.6%	<0.1	
SP-8	4	8/8/2012	8:55	ND	17.8%	<0.1	5.5%	<0.1	
P-9	6	8/8/2012	9:05	ND	15.3%	<0.1	12.2%	<0.1	
SP-9	4	8/8/2012	9:10	ND	14.6%	<0.1	13.2%	<0.1	
P-10	6	8/8/2012	9:27	ND	17.8%	<0.1	5.4%	<0.1	
SP-10	4	8/8/2012	9:33	ND	14.9%	<0.1	4.9%	<0.1	
P-11	6	8/8/2012	9:40	ND	12.1%	<0.1	17.3%	<0.1	
SP-11	4	8/8/2012	9:45	ND	13.1%	<0.1	13.3%	<0.1	-
P-12	6	8/8/2012	9:54	ND	14.2%	<0.1	13.1%	<0.1	
SP-12	4	8/8/2012	10:00	ND	18.7%	<0.1	14.2%	<0.1	
P-13	6	8/8/2012	10:05	LF				17 for all 1000s	LOW FLOW
SP-13	4	8/8/2012	10:10	LF				· · · · · · · · · · · · · · · · · · ·	LOW FLOW
P-14	6	8/8/2012	10:12	LF					LOW FLOW
SP-14	4	8/8/2012	10:15	ND	7.9%	<0.1	20.0%	<0.1	
P-15	6	8/8/2012	10:20	ND	18.6%	<0.1	7.2%	<0.1	
SP-15	4	8/8/2012	10:25	ND	20.2%	<0.1	8.0%	<0.1	

INSIRC	DIMENT CALIBRATION REC	עאט	WATER ENCOUN
DATE: 8/8/12	TIME:7:20	INT:DR	
DATE:	TIME:	INT:	REFUSAL7 (Y) (*
DATE:	TIME:	INT:	COMMENTS:
D/ 11 C.	1 HVIL.	1141.	

WATER ENCOUNTERD? (Y) (N)	DEPTH:
REFUSAL? (Y) (N) DEPTH:	**************************************
COMMENTS:	

Sheet 5 of 6

PROJECT ADDRESS: Parcel 44 (Admiralty Way and Mindinao))

JOB NUMBER: J2602B

REASON FOR TESTING::

OIL WELL(S) NEARBY METHANE ZONE

BUFFER ZONE

LANDFILL
FORMER LIVESTOCK AREA
CONTAMINATED SITE

TESTER: DR

PROBE	DEPTH FT.	DATE	TIME	CH4 % LEL	O2 % VOL	H2S PPM	CO/CO2 % VOL	GAS PRESS. IN H2O	PEAK READINGS
P-16	6	8/8/2012	10:28	LF					LOW FLOW
SP-16	4	8/8/2012	10:30	ND	19.8%	<0.1	1.9%	<0.1	
P-17	6	8/8/2012	10:38	ND	20.0%	<0.1	1.4%	<0.1	
SP-17	4	8/8/2012	10:43	ND	20.4%	<0.1	0.9%	<0.1	
P-18	6	8/8/2012	10:50	ND					LOW FLOW
SP-18	4	8/8/2012	10:55	ND					LOW FLOW
P-19	6	8/8/2012	11:06	ND	19.2%	<0.1	0.2%	<0.1	
SP-19	4	8/8/2012	11:05	ND	9.9%	<0.1	18.6%	<0.1	
P-20	6	8/8/2012	12:18	2% LEL	1.6%	<0.1	20.0%	<0.1	
SP-20	4	8/8/2012	12:23	ND	3.6%	<0.1	20.0%	<0.1	***
P-21	6	8/8/2012	12:27	ND	19.2%	<0.1	1.7%	<0.1	
SP-21	4	8/8/2012	12:33	ND	17.6%	<0.1	2.4%	<0.1	
P-22	6	8/8/2012	12:35	2% LEL	11.1%	<0.1	13.6%	<0.1	
SP-22	4	8/8/2012	12:40	ND	22.4%	<0.1	ND	<0.1	
P-23	6	8/8/2012	12:45	ND	12.9%	<0.1	5.7%	<0.1	
SP-23	4	8/8/2012	12:50	ND	14.2%	<0.1	5.2%	<0.1	
SP-24	4	8/8/2012	12:55	ND	16.3%	<0.1	3.8%	<0.1	
SP-25	4	8/8/2012	1:00	ND	18.0%	<0.1	6.2%	<0.1	
SP-26	4	8/8/2012	1:05	1% LEL	7.6%	<0.1	19.8%	<0.1	
SP-27	4	8/8/2012	1:15	ND	13.4%	<0.1	9.9%	<0.1	
SP-28	4	8/8/2012	1:23	ND	13.5%	<0.1	12.6%	<0.1	· · · · · · · · · · · · · · · · · · ·
SP-29	4	8/8/2012	1:38	1% LEL	17.6%	<0.1	5.7%	<0.1	
SP-30	4	8/8/2012	1:30	1% LEL	8.5%	<0.1	20.0%	<0.1	
SP-31	4	8/8/2012	2:05	ND	9.0%	<0.1	20.0%	<0.1	
SP-32	4	8/8/2012	1:42	1% LEL	17.2%	<0.1	5.6%	<0.1	
SP-33	4	8/8/2012	1:47	LF					LOW FLOW
SP-34	4	8/8/2012	1:50	ND	19.8%	<0.1	2.2%	<0.1	
SP-35	4	8/8/2012	1:57	22% LEL	4.9%	<0.1	20.0%	<0.1	CH4-60% LEI
SP-36	4	8/8/2012	2:13	ND	0.9%	<0.1	20.0%	<0.1	
SP-37	4	8/8/2012	2:20	2% LEL	20.7%		4.2%		LOW FLOW
SP-38	4	8/8/2012	2:25	LF		-		···········	LOW FLOW

INSTRUMENT CALIBRATION RECORD					
DATE: 8/8/12	TIME:7:20	INT:DR			
DATE:	TIME:	INT:			
DATE:	TIME:	INT:			

WATER ENC	OUNTER	D? (Y) (N)	DEPTH:	
REFUSAL?	(Y) (N)	DEPTH:		
COMMENTS	:			
				_

Sheet 6 of 6

PROJECT ADDRESS: Parcel 44 (Admiralty Way and Mindinao))

JOB NUMBER: J2602B

REASON FOR TESTING:

OIL WELL(S) NEARBY

METHANE ZONE **BUFFER ZONE**

LANDFILL
FORMER LIVESTOCK AREA
CONTAMINATED SITE

TESTER: DR

PROBE	DEPTH FT.	DATE	TIME	CH4 % LEL	O2 % VOL	H2S PPM	CO/CO2 % VOL	GAS PRESS. IN H2O	PEAK READING
SP-39	4	8/8/2012	2:32	ND	19.7%	<0.1	4.0%	<0.1	
SP-40	4	8/8/2012	2:47	16% LEL	20.8%	<0.1	20.0%	<0.1	1
SP-41	4	8/8/2012	2:52	ND	20.9%	<0.1	10.7%	<0.1	
SP-42	4	8/8/2012	3:00	ND	20.9%	<0.1	8.0%	<0.1	
SP-43	4	8/8/2012	3:05	1% LEL	17.4%	<0.1	13.1%	<0.1	
SP-44	4	8/8/2012	3:15	6% LEL	0.4%	<0.1	20.0%	<0.1	
SP-45	4	8/8/2012	3:20	LF					LOW FLOW
								-	
								y- 1414 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
- 1									

INSTRUMENT CALIBRAT DATE: 8/8/12TIME:7:20 DATE:TIME: DATE:TIME:	0 INT:DR INT:
--	------------------

Dist. Office	С
	GEOT
Sheet 1 of 1	

County of Los Angeles Department of Public Works FECHNICAL AND MATERIALS ENGINEERING DIVISION

		DISTRIBUTION
	1	_ Dist. Office
		Geologist
	1	Soils Engineer
Ξ	1	GMED File
		LDD - Grading

Sheet 1 of 1	900 So. Fremont	iC REVIEW SHEET Ave., Alhambra, CA 91 (626) 458-4925	803	Geologist Soils Engineer GMED File LDD - Grading
Tract / Parcel M	lap	Lot(s)		
Parent Tract	-	Location	Marina Del Re	y
	1344 3 Bali Way and 13650 Mindanao Wa		4224-008-901 & 4224	-010-900
Geologist		Developer/Owner _	LA County Dept. of Bea	
Soils Engineer	Group Delta Consultants	Engineer/Arch.	Breen Engine	ering, Inc.
CUP No. Geologic Report Soils Engineerin Geology and Soi Additional Repor	(s) Dated g Report(s) Dated 6/16/14, 5/15/14, 3/1 Is Engineering Report(s) Dated	1/14, 6/1/12		
Remarks/Condi	tions:			
The Soils Engine	eering review dated 7/15/14 is attac	ched.		
	•			
	•			
			11/1	

Prepared by

Ricardo Lopez-Maldonado

Reviewed by

Charles Nestle

Date 7 July 2014

COUNTY OF LOS ANGELES DEPARTMENT OF PUBLIC WORKS GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION

SOILS ENGINEERING REVIEW SHEET

Address: Telephone: Fax:	900 S. Fremont Ave., Alhambra, CA 91803 (626) 458-4925 (626) 458-4913	District Office PCA Sheet 1 of 1	n/a LX000135
•	t of Parcel 44 in Marina del Rey	DISTRIBI Drain Grad	nage ling
Location	Marina del Rey – Parcel 44		Soils Central File
Developer/Own Engineer/Archit		_	ict Engineer ogist
Soils Engineer	Group Delta Consultants		Engineer
Geologist		_	neer/Architect
Conditional Use	e Permit No. <u>201300166</u>		
Review of:			
•	ng Report Dated <u>6/16/14, 5/15/14, 3/11/14, 6/1/12</u> w Sheet Dated <u>5/28/14</u>		

At the grading/building plan stage, submit two sets of plans to the Soils Section for verification of compliance with County codes and policies.

> NO. 76607 Date 7/15/14 Erick del Bosque

REMARK:

Prepared by

1983 West 190th Street, Suite 200 Torrance, Ca. 90504

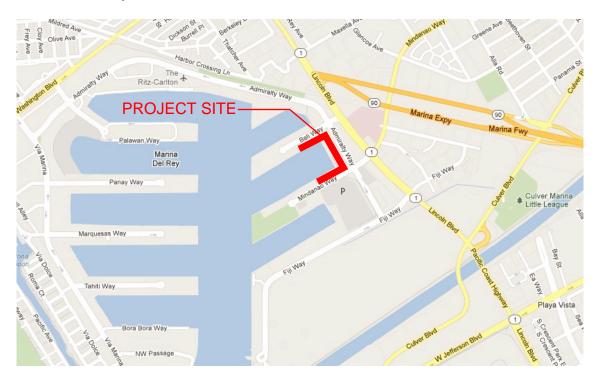
Tel: 310-464-8404 • **Fax:** 310-464-8408

www.breeneng.com

DRAINAGE CONCEPT for PARCEL 44 at MARINA DEL REY COUNTY OF LOS ANGELES

BEI PROJECT #187-07-003C

CUP 201300166



Date: June 13th, 2014

1.0 INTRODUCTION

1.1 GEOGRAPHIC SETTING

The project area is 8.40 acres and is located in the Marina Del Rey area of Unincorporated Los Angeles County. The project is located on Admiralty Way, between Bali Way and Mindanao Way.

1.2 PURPOSE OF THIS REPORT

The purpose of this report is to accomplish the following:

- Demonstrate a drainage solution which will provide suitable flood protection for the proposed structures and prevent any diversions or impacts to adjacent public and private properties.
- Provide Q25 urban flood peak discharge rates per the 2006 County of Los Angeles Public Works Hydrology Manual
- Provide peak mitigated discharge rates per the County of Los Angeles Public Works MS4 Permit requirements and per Los Angeles County LID Manual.
- Support preparation of the environmental assessment.

1.3 REFERENCES

- Los Angeles County 2006 Hydrology Manual
- Los Angeles County TC Calculator
- Los Angeles County MS4 Permit
- Los Angeles County LID Manual

2.0 EXISTING TOPOGRAPHIC AND HYROLOGIC CONDITIONS

The existing site is currently developed for boat and vehicle parking, and includes six small office structures. The site is currently 94% impervious. Planters currently surround the perimeter of the site and are spread throughout the parking lot. The entire site sheet flows towards the marina where it is diverted to catch basins along the sea wall. There is no form of pre-treatment or storage for the existing site runoff conditions. The grated catch basins along the sea wall collect water and are diverted to a 60-in reinforced concrete pipe storm drain, which enters the site at the east corner between Admiralty Way and Mindanao Way and exits through the sea wall. The 60-in RCP is owned and maintained by the County of Los Angeles Flood Control District. (Per CDR 433.007)

3.0 PROPOSED STORM DRAIN FACILITIES

The existing site structures will be demolished. The new commercial development will consist of a grocery store, 2 retail/restaurant combination store locations, a 2-story office building, yacht club, and 3 public restooms. A new boat yard and launching platform will be located on the northwest portion of the site. New surface parking lots will also be provided throughout the site. A new promenade will accommodate a bicycle path and pedestrian walk and will be located adjacent to the sea wall.

New catch basins and storm drains on site will collect and convey stormwater away from structures. Two single connections to the 60" LA County storm drain are proposed. One of the connections will be coming from the north part of the site to accommodate the drainage from the north/northeast part of the site; the other connection is for the southern portion of the site. All other drains will convey runoff through the sea wall, utilizing the preconstruction design methods for drainage.

Groundwater in this location is tide dependent and during exploration it was observed to be between elevations of +2 to -3 MSL. Additionally, historical groundwater information indicates that the groundwater table has been as high as +5.0 MSL, which is less than 3ft below finished grade. According to the County of Los Angeles, Low Impact Development Standards Manual (LID), January 2009, the design requirements state "infiltration (onsite) may not be possible in all development scenarios. Exceptions may include, 'where

187-07-003C 2 Parcel 44

seasonal high ground water is within 10 feet of surface," (for LID Compliance see below). Therefore, on-site infiltration is not a feasible option at this site.

As required by the LID design requirements, the next stormwater management option is storage and reuse. The proposed new development will not have an adequate amount of landscaping to support a storage and reuse system, therefore making this option infeasible.

The last method of LID design requires the site to manage stormwater through water conservation use. LID BMPs that percolate runoff through engineered soil and allow it to discharge downstream slowly shall be implemented. Two forms of BMP's will be implemented to meet this requirement: planted paving surface with stormwater subbase and flow through planters. The site is graded to sheet flow runoff to the planted pavement, where it will be treated through biofiltration, then infiltrate to the stormwater sub-base, lined with an impermeable liner. The remaining site will divert runoff to catchbasins and roof drains throughout the site, where it will be collected and diverted to the flow through planters, lined with an impermeable liner, to be treated through bio-filtration. This will allow for stormwater detention and an achievable discharge rate. Treated runoff will slowly be released to the existing 60" RCP County storm drain that runs through the site.

This is the only feasible option for stormwater management.

4.0 HYDROLOGY STUDY

4.1 STORM FREQUENCY

The urban flood (Q_{25}) storm frequency is a sizing guideline that was used to determine the hydrologic capacity of all onsite storm drain systems. See TC Calculator results for each sub-area in Appendix 2.

4.2 METHODOLOGY

The Q₂₅ was determined using the Los Angeles County Public Works TC Calculator and 2006 Hydrology Manual. The existing site was divided up into 4 separate sub-areas to determine the peak discharge rate for the existing condition. The developed site condition was separated into 5 similar main sub-areas dependent on proposed grading and stormwater treatment locations. See Drainage Concept Map, Exhibit A, in Appendix 3.

The 85th percentile storm water quality design volume (SWQDv) was used to determine the runoff volumes for the proposed development.

187-07-003C 3 Parcel 44

4.3 RESULTS

EXISTING DRAINAGE SUB -	AREA (ACRES)	T (MINI)	V (ET3)	O (CES)
	(ACKES)	$T_{C}(MIN.)$	V_{M} (FT ³)	Q ₂₅ (CFS)
AREA				
1	2.48	5	-	5.88
2	4.27	5	-	10.45
3	0.77	5	-	1.88
4	0.95	5	-	2.33
	$\Sigma A = 8.47$			$\Sigma (Q_{25}) = 20.5$

PROPOSED DRAINAGE SUB- AREA	AREA (ACRES)	T _C (MIN.)	SWQDv (FT³)	Q ₂₅ (CFS)
1	1.89	5	6,079	4.63
2	1.20	5	3,738	2.94
3	1.84	5	6,093	4.50
4	2.01	5	6,401	4.92
5	1.53	5	4,920	3.75
	$\Sigma A = 8.47$		$\Sigma(SWQDv) = 27,231$	$\Sigma (Q_{25}) = 20.7$

5.0 SIZING OF BMPS

5.1 METHODOLOGY

All BMPs will be sized to treat 1-1/2 times the 85th percentile storm water quality design (SWQDv) of rainfall for the post-developed condition as described in the LID Manual.

6.0 SIZING OF CATCH BASINS

6.1 METHODOLOGY

All proposed and existing catch basin upgrades will be sized based on the LA County Hydrology Manual's Q25.

7.0 CONCLUSION

Since the existing site was previously developed and mostly impervious, the proposed development will not result in a runoff increase. New BMP's will treat and mitigated runoff from the site and will be in accordance with the new LA County MS4 Permit requirements.

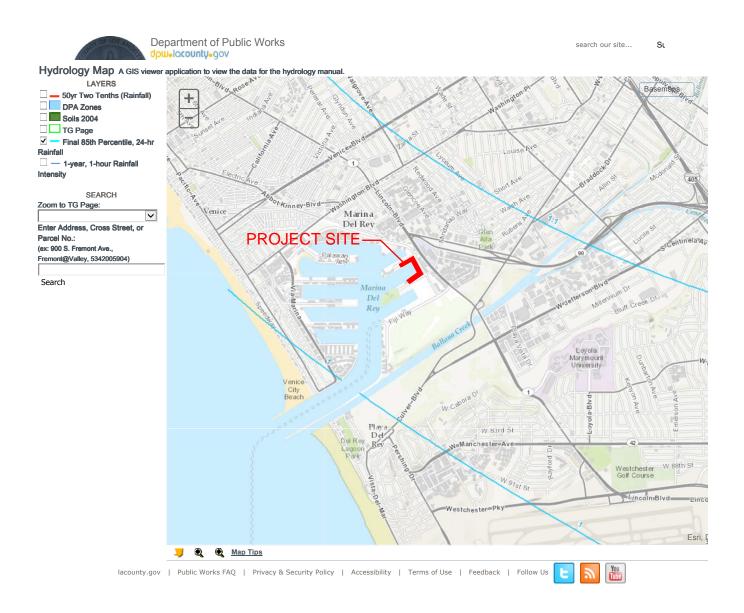
In closing, site drainage can and will be managed such that surrounding properties and marine environments will not be adversely affected by the development. This will be accomplished while meeting all County, State and Federal statutes and ordinances.

187-07-003C 4 Parcel 44

8.0 APPENDICES

Appendix 1 85th Percentile Volume Based BMPs

Appendix 2 Q₂₅ Hydrology Study

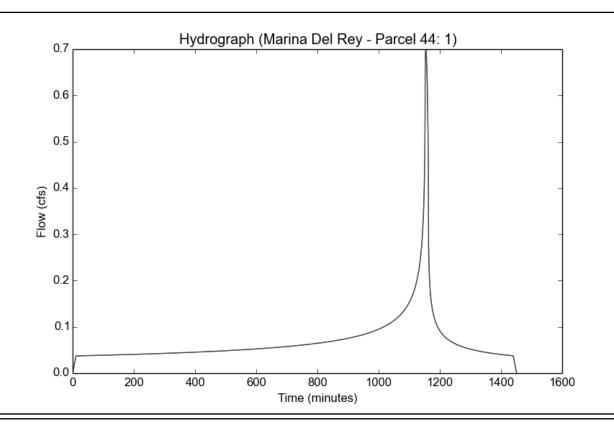

Appendix 3 Existing and Developed Site Drainage Map

Appendix 4 Preliminary Grading Plan

Appendix 1

85th Percentile Volume Based BMPs

Hydrology Map Page 1 of 1

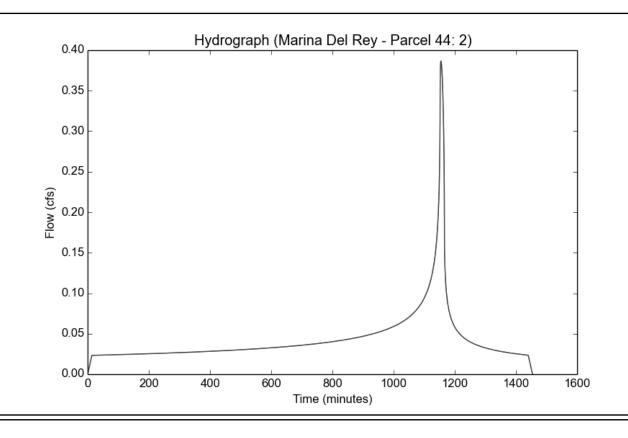


File location: H:/Projects/187 Gold Coast Villag, LLC/-07-003C-Parcel 44/Docs/Calculations and Reports/Drainage Concept/hydo-calc.pdf Version: HydroCalc 0.2.0-beta

Input I	Paramo	eters
---------	--------	-------

Project Name	Marina Del Rey - Parcel 44
Subarea ID	1
Area (ac)	1.89
Flow Path Length (ft)	150.0
Flow Path Slope (vft/hft)	0.01
85th Percentile Rainfall Depth (in)	1.1
Percent Impervious	0.89
Soil Type	16
Design Storm Frequency	85th percentile storm
Fire Factor	0
LID	True

Modeled (85th percentile storm) Rainfall Depth (in)	1.1
Peak Intensity (in/hr)	0.4531
Undeveloped Runoff Coefficient (Cu)	0.1483
Developed Runoff Coefficient (Cd)	0.8173
Time of Concentration (min)	11.0
Clear Peak Flow Rate (cfs)	0.6999
Burned Peak Flow Rate (cfs)	0.6999
24-Hr Clear Runoff Volume (ac-ft)	0.1395
24-Hr Clear Runoff Volume (cu-ft)	6078.7285

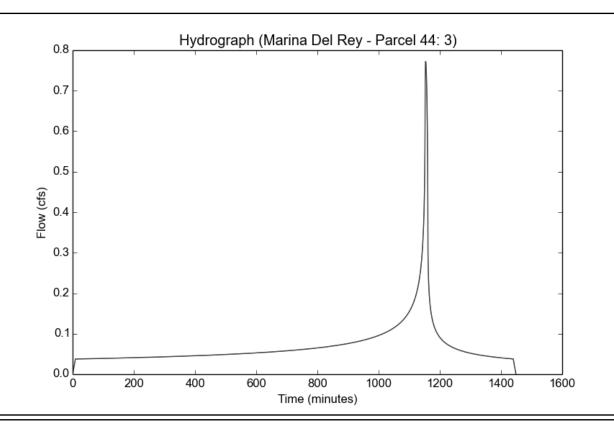


File location: H:/Projects/187 Gold Coast Villag, LLC/-07-003C-Parcel 44/Docs/Calculations and Reports/Drainage Concept/hydo-calc.pdf Version: HydroCalc 0.2.0-beta

Input	Param	eters
-------	--------------	-------

Project Name	Marina Del Rey - Parcel 44
Subarea ID	2
Area (ac)	1.2
Flow Path Length (ft)	250.0
Flow Path Slope (vft/hft)	0.016
85th Percentile Rainfall Depth (in)	1.1
Percent Impervious	0.87
Soil Type	16
Design Storm Frequency	85th percentile storm
Fire Factor	0
LID	True

output itoodito	
Modeled (85th percentile storm) Rainfall Depth (in)	1.1
Peak Intensity (in/hr)	0.4045
Undeveloped Runoff Coefficient (Cu)	0.1041
Developed Runoff Coefficient (Cd)	0.7965
Time of Concentration (min)	14.0
Clear Peak Flow Rate (cfs)	0.3866
Burned Peak Flow Rate (cfs)	0.3866
24-Hr Clear Runoff Volume (ac-ft)	0.0868
24-Hr Clear Runoff Volume (cu-ft)	3782.6357
,	

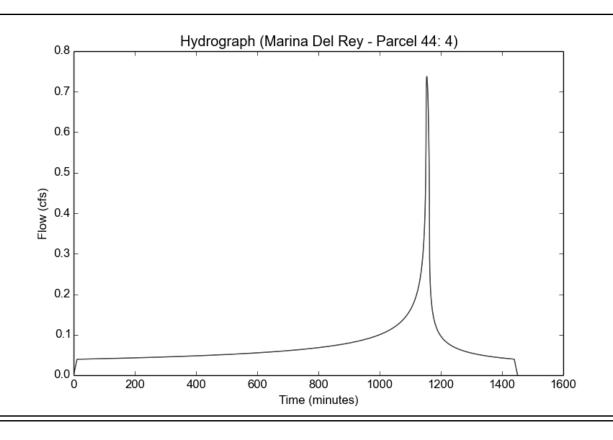


File location: H:/Projects/187 Gold Coast Villag, LLC/-07-003C-Parcel 44/Docs/Calculations and Reports/Drainage Concept/hydo-calc.pdf Version: HydroCalc 0.2.0-beta

Input	Parameters
-------	-------------------

Project Name	Marina Del Rey - Parcel 44
Subarea ID	3
Area (ac)	1.84
Flow Path Length (ft)	150.0
Flow Path Slope (vft/hft)	0.027
85th Percentile Rainfall Depth (in)	1.1
Percent Impervious	0.92
Soil Type	16
Design Storm Frequency	85th percentile storm
Fire Factor	0
LID	True

o atpat i too allo	
Modeled (85th percentile storm) Rainfall Depth (in)	1.1
Peak Intensity (in/hr)	0.4979
Undeveloped Runoff Coefficient (Cu)	0.189
Developed Runoff Coefficient (Cd)	0.8431
Time of Concentration (min)	9.0
Clear Peak Flow Rate (cfs)	0.7724
Burned Peak Flow Rate (cfs)	0.7724
24-Hr Clear Runoff Volume (ac-ft)	0.1399
24-Hr Clear Runoff Volume (cu-ft)	6093.4193

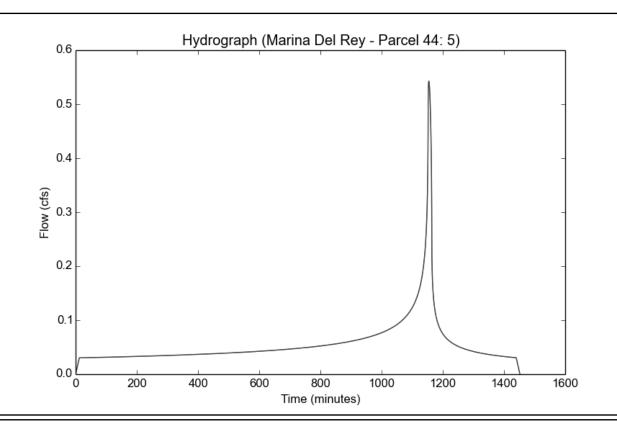


File location: H:/Projects/187 Gold Coast Villag, LLC/-07-003C-Parcel 44/Docs/Calculations and Reports/Drainage Concept/hydo-calc.pdf Version: HydroCalc 0.2.0-beta

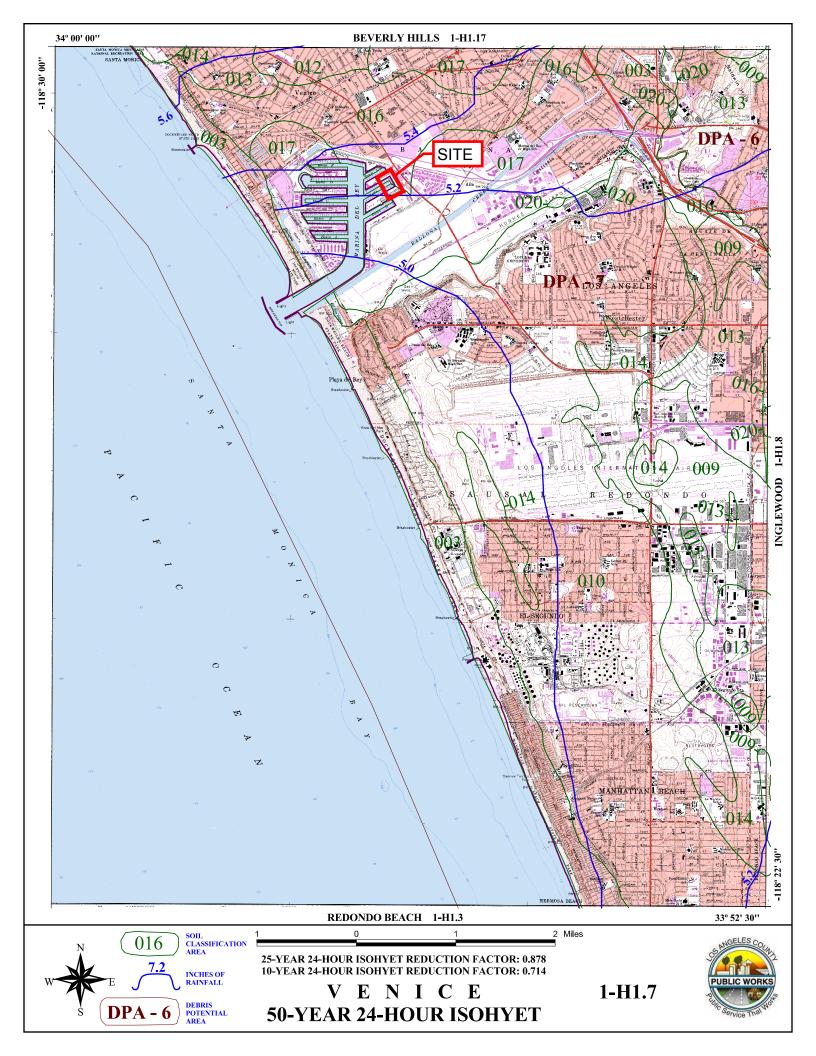
Input	Param	eters
-------	--------------	-------

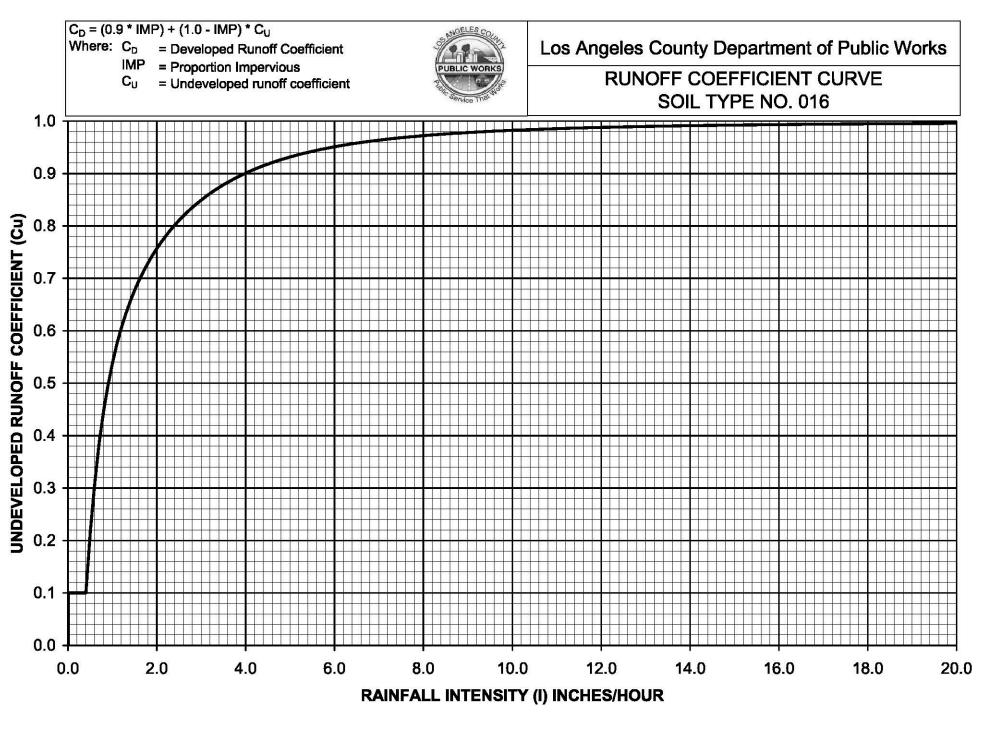
Project Name	Marina Del Rey - Parcel 44
Subarea ID	4
Area (ac)	2.01
Flow Path Length (ft)	180.0
Flow Path Slope (vft/hft)	0.022
85th Percentile Rainfall Depth (in)	1.1
Percent Impervious	0.88
Soil Type	16
Design Storm Frequency	85th percentile storm
Fire Factor	0
LID	True

o atpat i too allo	
Modeled (85th percentile storm) Rainfall Depth (in)	1.1
Peak Intensity (in/hr)	0.4531
Undeveloped Runoff Coefficient (Cu)	0.1483
Developed Runoff Coefficient (Cd)	0.8098
Time of Concentration (min)	11.0
Clear Peak Flow Rate (cfs)	0.7374
Burned Peak Flow Rate (cfs)	0.7374
24-Hr Clear Runoff Volume (ac-ft)	0.1469
24-Hr Clear Runoff Volume (cu-ft)	6401.1367
'	



File location: H:/Projects/187 Gold Coast Villag, LLC/-07-003C-Parcel 44/Docs/Calculations and Reports/Drainage Concept/hydo-calc.pdf Version: HydroCalc 0.2.0-beta


Input	Parameters	S
-------	-------------------	---


Project Name	Marina Del Rey - Parcel 44
Subarea ID	5
Area (ac)	1.53
Flow Path Length (ft)	180.0
Flow Path Slope (vft/hft)	0.011
85th Percentile Rainfall Depth (in)	1.1
Percent Impervious	0.89
Soil Type	16
Design Storm Frequency	85th percentile storm
Fire Factor	0
LID	True

Modeled (85th percentile storm) Rainfall Depth (in)	1.1
Peak Intensity (in/hr)	0.4349
Undeveloped Runoff Coefficient (Cu)	0.1317
Developed Runoff Coefficient (Cd)	0.8155
Time of Concentration (min)	12.0
Clear Peak Flow Rate (cfs)	0.5426
Burned Peak Flow Rate (cfs)	0.5426
24-Hr Clear Runoff Volume (ac-ft)	0.113
24-Hr Clear Runoff Volume (cu-ft)	4920.4177

Appendix 2 Q25 Hydrology Study

EXISTING SITE

Tc Calculator
Subarea Parameters Manual Input Subarea Pire Factor Number SUB AREA-1 Area (Acres) Proportion Impervious 2.48 Rainfall Flow Path Isohyet (in.) Length (ft.) Area (Acres) Subarea Parameters Selected Subarea Number 1a ▼ 0 Area (Acres) Proportion Impervious 2.48 Rainfall Flow Path Flow Path Isohyet (in.) Length (ft.) Slope 4.56 340 O.028
Input File Check Here If Subarea Parameters Are Defined In An Input File Import "tcdata.xls" File Calculate Single Tc From Subarea Parameters Provided In Input File Calculate Tc's For Multiple Subareas And Create Tc Results File
Calculation Results Undeveloped Developed Runoff Runoff Coefficient Coefficient (Cd) Number SUB AREA- To Equation Undeveloped Developed Runoff Coefficient Coefficient (Cd) Calculate Runoff Volume Calculate Tc Cancel
Tc=(10)^-0.507*(Cd*I)^-0.519*(L)^0.483*(S)^-0.135 Peak Flow Rate (cfs) Burned Peak Flow 24-Hour Runoff Volume (acre-ft) Tc Value (min.) 6 n/a 0.77

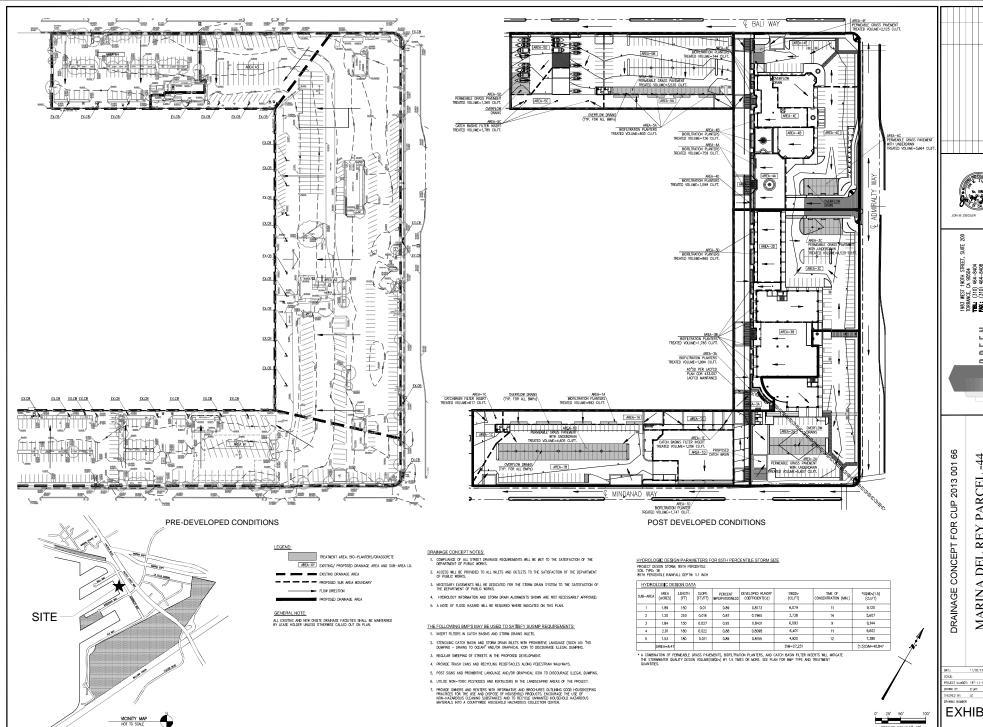
Tc Calculator
Subarea Parameters Manual Input Subarea Rire Factor Number SUB AREA-2 Area (Acres) Proportion Impervious 4.27 Rainfall Flow Path Isohyet (in.) Length (ft.) Subarea Parameters Selected Subarea Number 1a ▼ 0 Area (Acres) Proportion Impervious 4.27 Rainfall Flow Path Isohyet (in.) Length (ft.) Soil Type 4.27 Rainfall Flow Path Isohyet (in.) Length (ft.) Soil Type 4.27 Rainfall Flow Path Isohyet (in.) Length (ft.) Slope 4.56 300 0.033
Input File Check Here If Subarea Parameters Are Defined In An Input File Import "tcdata.xls" File Calculate Single Tc From Subarea Parameters Provided In Input File Calculate Tc's For Multiple Subareas And Create Tc Results File
Calculation Results Undeveloped Developed Runoff Runoff Coefficient Coefficient (Cd) Subarea Number SUB AREA-2 Tc Equation Tc=(10)^-0.507*(Cd*I)^-0.519*(L)^0.483*(S)^-0.135 Undeveloped Runoff Coefficient (Cd) Calculate Runoff Volume Calculate Tc Cancel
Peak Flow Rate Burned Peak Flow 24-Hour Runoff Tc Value (min.) (cfs) Rate (cfs) Volume (acre-ft) [5] [10.45] [n/a] [1.4]

Tc Calculator	
Subarea Parameters Manual Input Subarea Number SUB AREA-3 Area (Acres) Proportion Impervious Impervious Inpervious Inpervious Impervious Imper	
Input File Check Here If Subarea Parameters Are Defined In An Input File Import "tcdata.xls" File Calculate Single Tc From Subarea Parameters Provided In Input File Calculate Tc's For Multiple Subareas And Create Tc Results File	
Calculation Results Undeveloped Developed Runoff Runoff Coefficient Coefficient (Cd) SUB AREA-: To Equation Undeveloped Developed Runoff Calculate Runoff Volume One Calculate To Cancel	
Tc=(10)^-0.507*(Cd*I)^-0.519*(L)^0.483*(S)^-0.135 Peak Flow Rate (cfs) Burned Peak Flow 24-Hour Runoff Volume (acre-ft) Tc Value (min.) Rate (cfs) Volume (acre-ft) 1.88 n/a 0.25	

Tc Calculator
Subarea Parameters Manual Input Subarea Parameters Manual Input Subarea Parameters Selected
Input File Check Here If Subarea Parameters Are Defined In An Input File Import "tcdata.xls" File Calculate Single Tc From Subarea Parameters Provided In Input File Calculate Tc's For Multiple Subareas And Create Tc Results File
Calculation Results Undeveloped Developed Runoff Runoff Coefficient Coefficient (Cd) SUB AREA-2 To Equation Undeveloped Developed Runoff Calculate Runoff Volume Calculate Tc Cancel
Tc=(10)^-0.507*(Cd*I)^-0.519*(L)^0.483*(S)^-0.135 Peak Flow Rate (cfs) Burned Peak Flow 24-Hour Runoff Volume (acre-ft) Tc Value (min.) Rate (cfs) Volume (acre-ft) 5 2.3 n/a 0.3

PROPOSED SITE

Tc Calculator					
Subarea Paramete Subarea Number SUB AREA-1 Area (Acres) 1.89 Rainfall Isohyet (in.)	Fire Factor O Proportion Impervious .89 Flow Path Length (ft.)	Soil Type 16 Flow Path Slope .01	Subarea Paramet Subarea Number 1a Area (Acres) 1.89 Rainfall Isohyet (in.) 4.56	Fire Factor O Proportion Impervious 0.89 Flow Path Length (ft.)	Soil Type 16 Flow Path Slope 0.01
Calculate Tc's	Import "to gle Tc From Suba For Multiple Sub	cdata.xls" File rea Parameters	Provided In Input File		
Subarea Number SUB AREA-' Tc Equation Tc=(10)^-0.507	Intensity 2.72	(Cu) 0.83	Developed Runofient Coefficient (Cd) 0.89	Calculate Run	е Тс
Tc Value (min.)	Peak Flow Rati (cfs) 4.58	e Burned F Rate (cfs n/a	Peak Flow 24-Hour (c) Volume (


Tc Calculator
Subarea Parameters Manual Input Subarea Parameters Selected Subarea Number SUB AREA-2 Area (Acres) Proportion Impervious 1.2 Rainfall Flow Path Isohyet (in.) Length (ft.) Subarea Parameters Selected Subarea Number 1a Proportion Impervious Area (Acres) Proportion Impervious 1.2 Rainfall Flow Path Flow Path Isohyet (in.) Length (ft.) Slope 4.56 250 O.016
Input File Check Here If Subarea Parameters Are Defined In An Input File Import "tcdata.xls" File Calculate Single Tc From Subarea Parameters Provided In Input File Calculate Tc's For Multiple Subareas And Create Tc Results File
Calculation Results Undeveloped Developed Runoff Runoff Coefficient Coefficient (Cd) SUB AREA-2 Tc Equation Undeveloped Developed Runoff Calculate Runoff Volume Runoff Coefficient Coefficient (Cd) Calculate Tc Cancel
Tc=(10)^-0.507*(Cd*I)^-0.519*(L)^0.483*(S)^-0.135 Peak Flow Rate Tc Value (min.) Burned Peak Flow Rate (cfs) 24-Hour Runoff Volume (acre-ft) 5 2.9 n/a 0.37

Tc Calculator
Subarea Parameters Manual Input Subarea Parameters Manual Input Subarea Parameters Selected Number 1a
Input File Check Here If Subarea Parameters Are Defined In An Input File Import "tcdata.xls" File Calculate Single Tc From Subarea Parameters Provided In Input File Calculate Tc's For Multiple Subareas And Create Tc Results File
Calculation Results Undeveloped Developed Runoff Runoff Coefficient Coefficient (Cd) SUB AREA-: To Equation Undeveloped Developed Runoff Calculate Runoff Volume Runoff Coefficient Coefficient (Cd) Calculate Tc Cancel
Tc=(10)^-0.507*(Cd*I)^-0.519*(L)^0.483*(S)^-0.135 Peak Flow Rate (cfs) Burned Peak Flow 24-Hour Runoff Volume (acre-ft) Tc Value (min.) Rate (cfs) Volume (acre-ft) 5 1.445 1.7a 0.59

Tc Calculator
Subarea Parameters Manual Input Subarea Rire Factor Number SUB AREA-4 O Area (Acres) Proportion Impervious 2.01 Rainfall Isohyet (in.) Length (ft.) Slope 4.56 Subarea Parameters Selected Subarea Number 1a O Area (Acres) Proportion Impervious 2.01 Rainfall Isohyet (in.) Length (ft.) Slope 4.56 Subarea Parameters Selected Parameters Selected Parameters
Input File Check Here If Subarea Parameters Are Defined In An Input File Import "tcdata.xls" File Calculate Single Tc From Subarea Parameters Provided In Input File Calculate Tc's For Multiple Subareas And Create Tc Results File
Calculation Results Undeveloped Developed Runoff Runoff Coefficient Coefficient (Cd) SUB AREA-2 Tc Equation Undeveloped Developed Runoff Calculate Runoff Volume (Cu) Calculate Tc Cancel
Tc=(10)^-0.507*(Cd*I)^-0.519*(L)^0.483*(S)^-0.135 Peak Flow Rate (cfs) Burned Peak Flow 24-Hour Runoff Volume (acre-ft) Tc Value (min.) Rate (cfs) Volume (acre-ft) 5 4.87 n/a 0.61

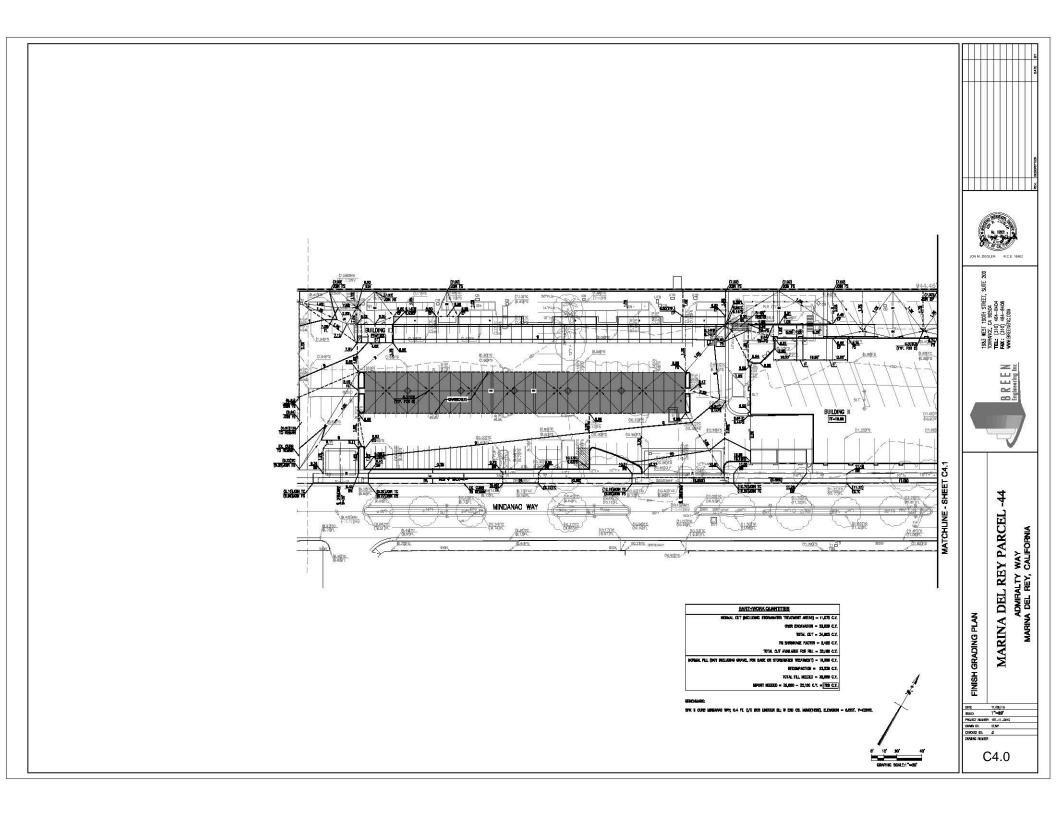
Tc Calculator	
Subarea Parameters Manual Input Subarea Number SUB AREA-5 Area (Acres) Proportion Impervious 1.53 Rainfall Isohyet (in.) Area (Acres) Rainfall Isohyet (in.) Area (Acres) Subarea Parameters Selected Subarea Number 1a Proportion Impervious 1.53 Rainfall Isohyet (in.) Area (Acres) Rainfall Isohyet (in.) Flow Path Isohyet (in.) Area (Acres) Rainfall Isohyet (in.) Flow Path Isohyet (in.) Area (Acres) Area (Acres) Fire Factor 1a Area (Acres) Fire Factor 1a Area (Acres) Flow Path Isohyet (in.) Flow Path Isohyet (in.) Area (Acres) 1.53 Rainfall Isohyet (in.) Flow Path Isohyet (in.) Area (Acres) 1.53 Rainfall Isohyet (in.) Area (Acres) Area (Ac	
Input File Check Here If Subarea Parameters Are Defined In An Input File Import "tcdata.xls" File Calculate Single Tc From Subarea Parameters Provided In Input File Calculate Tc's For Multiple Subareas And Create Tc Results File	
Calculation Results Undeveloped Developed Runoff Runoff Coefficient Coefficient (Cd) Subarea Number SUB AREA-! 2.72 To Equation Tc=(10)^-0.507*(Cd*I)^-0.519*(L)^0.483*(S)^-0.135 Calculate Runoff Volume Calculate Tc Cancel	
Peak Flow Rate (cfs) Peak Flow Rate (cfs) Solution (n/a) Peak Flow Rate (cfs) Peak Flow Rate (cfs) Nolume (acre-ft) O.47	

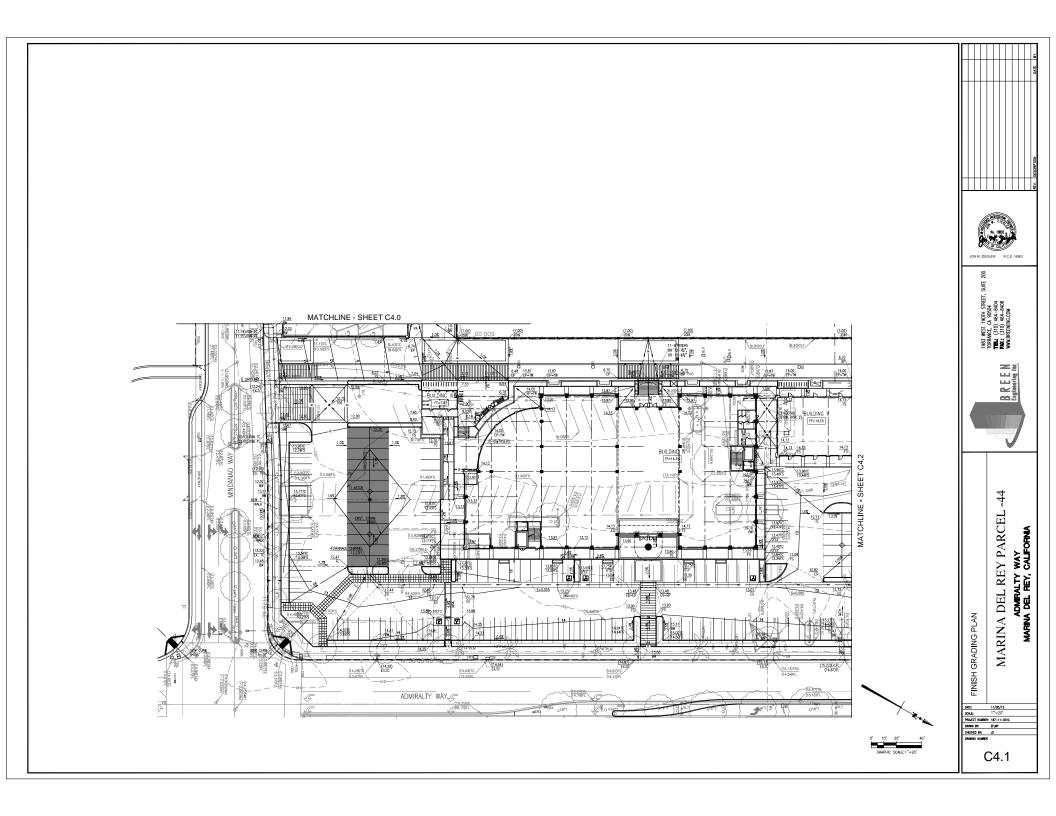
Appendix 3 Existing and Developed Site Drainage Map

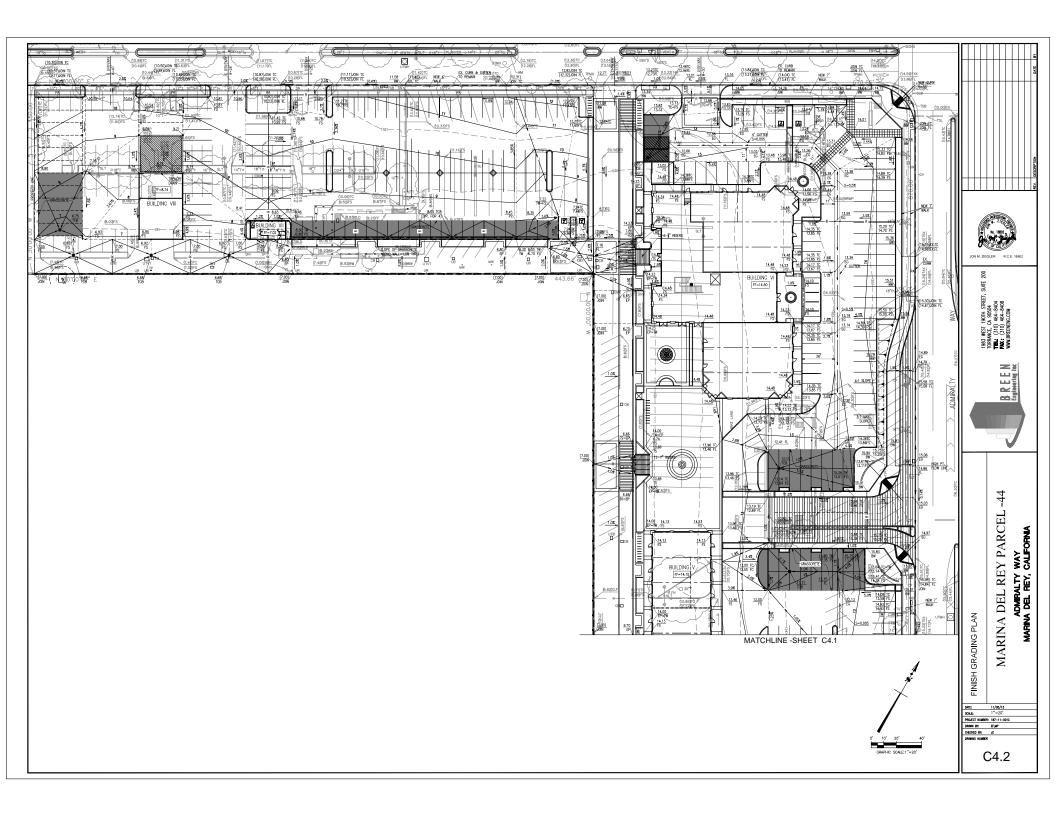
1983 TORRA

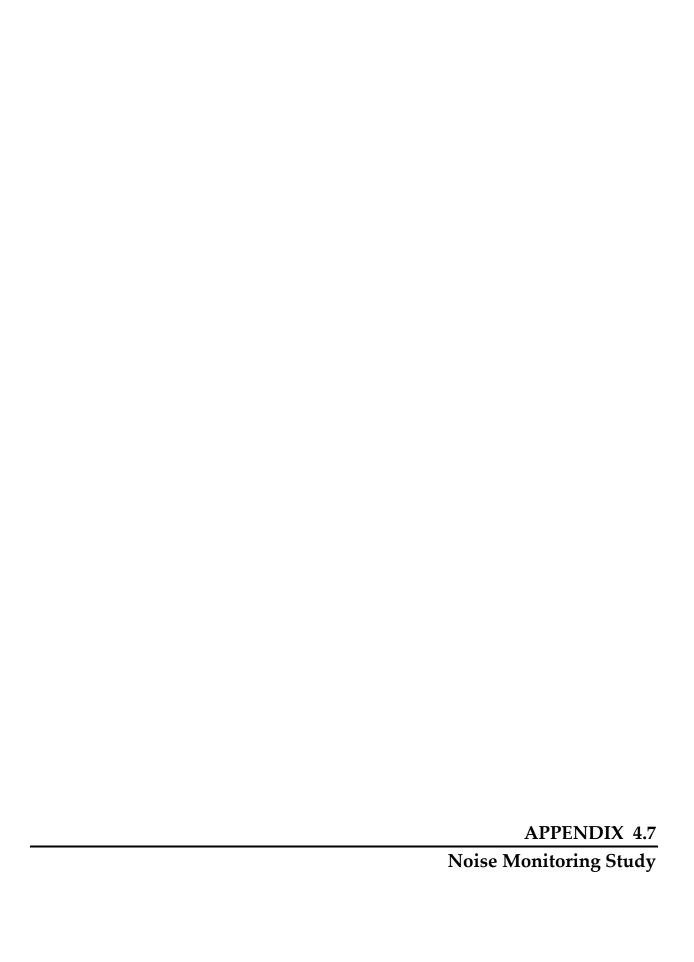
2 3 چ س ۋىس وُعم <u>ت</u>

REY PARCEL DEL I MARINA


WAY


ADMIRALTY (


PROJECT NUMBER: 187-11-001C


EXHIBIT-A

Appendix 4 Preliminary Grading Plan

2 NOISE LEVEL CONTOURS - Existing Plus Project Weekday Off-Site ADT Volumes

					Design	Dist. from		Barrier	Vehic	le Mix
ROADWAY NAME			Median	ADT	Speed	Center to	Alpha	Attn.	Medium	Heavy
Segment	Land Use	Lanes	Width	Volume	(mph)	Receptor	actor (1	dB(A)	Trucks	Trucks
Lincoln n/o Venice										
Existing 2010		6	0	18,717	40	<i>75</i>	0	0	1.8%	0.7%
2020 W/OP		6	0		40	<i>75</i>	0	0	1.8%	0.7%
2020 W/P		6	0		40	<i>75</i>	0	0	1.8%	0.7%
2030 W/OP - 1		6	0		40	<i>75</i>	0	0	1.8%	0.7%
2030 W/P - 1		6	0		40	<i>7</i> 5	0	0	1.8%	0.7%
2030 W/OP - 2		6	0		40	<i>75</i>	0	0	1.8%	0.7%
2030 W/P - 2]	6	0		40	<i>75</i>	0	0	1.8%	0.7%
Lincoln s/o Venice										
Existing 2010		6	0	19,817	40	<i>7</i> 5	0	0	1.8%	0.7%
2020 W/OP		6	0		40	<i>7</i> 5	0	0	1.8%	0.7%
2020 W/P	1	6	0		40	<i>75</i>	0	0	1.8%	0.7%
2030 W/OP - 1		6	0		40	<i>7</i> 5	0	0	1.8%	0.7%
2030 W/P - 1		6	0		40	<i>7</i> 5	0	0	1.8%	0.7%
2030 W/OP - 2	1	6	0		40	<i>75</i>	0	0	1.8%	0.7%
2030 W/P - 2	1	6	0		40	<i>75</i>	0	0	1.8%	0.7%
Venice elo Lincoln										
Existing 2010		7	0	14,982	40	<i>7</i> 5	0	0	1.8%	0.7%
2020 W/OP	1	7	0	0	40	<i>75</i>	0	0	1.8%	0.7%
2020 W/P	1	7	0	0	40	<i>75</i>	0	0	1.8%	0.7%
2030 W/OP - 1	1	7	0	0	40	<i>75</i>	0	0	1.8%	0.7%
2030 W/P - 1		7	0	0	40	<i>7</i> 5	0	0	1.8%	0.7%
2030 W/OP - 2		7	0	0	40	<i>7</i> 5	0	0	1.8%	0.7%
2030 W/P - 2	1	7	0	0	40	<i>7</i> 5	0	0	1.8%	0.7%
Venice wlo Lincoln										
Existing 2010		7	0	12,672	40	<i>7</i> 5	0	0	1.8%	0.7%
2020 W/OP	1	7	0		40	<i>75</i>	0	0	1.8%	0.7%
2020 W/P	1	7	0		40	<i>7</i> 5	0	0	1.8%	0.7%
2030 W/OP - 1	1	7	0		40	<i>7</i> 5	0	0	1.8%	0.7%
2030 W/P - 1	1	7	0		40	<i>75</i>	0	0	1.8%	0.7%
2030 W/OP - 2	1	7	0		40	<i>75</i>	0	0	1.8%	0.7%
2030 W/P - 2	1	7	0		40	<i>75</i>	0	0	1.8%	0.7%

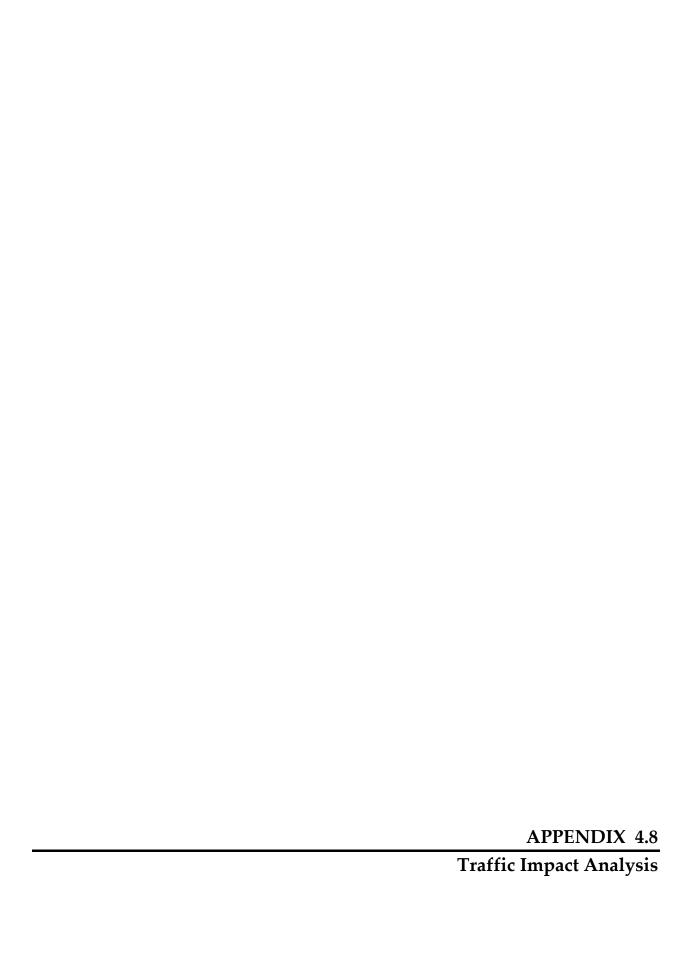
⁽¹⁾ Alpha Factor: Coefficient of absorption relating to the effects of the ground surface. An alpha factor of 0 indicates that the site is an acoustically "hard" site such as aspalt. An alpha factor of 0.5 indicates that the site is an acoustically "soft" site such as vegetative ground cover.

Assumed 24-Hour Traffic Distribution:	Day Evening	Night
Total ADT Volumes	77.70% 12.70%	9.60%
Medium-Duty Trucks	87.43% 5.05%	7.52%
Heavy-Duty Trucks	89.10% 2.84%	8.06%

2
NOISE LEVEL CONTOURS - Existing Plus Project Weekday Off-Site ADT Volumes

					Design Vist. from			Barrier	Vehicle Mix	
ROADWAY NAME			Median	ADT	Speed	Center to	Alpha	Attn.	Medium	Heavy
Segment	Land Use	Lanes	Width	Volume	(mph)	Receptor	actor (1	dB(A)	Trucks	Trucks
Pacific n/o Washington										
Existing 2010		4	0	7,101	40	<i>7</i> 5	0	0	1.8%	0.7%
2020 W/OP		4	0		40	<i>7</i> 5	0	0	1.8%	0.7%
2020 W/P		4	0		40	<i>7</i> 5	0	0	1.8%	0.7%
2030 W/OP - 1		4	0		40	<i>7</i> 5	0	0	1.8%	0.7%
2030 W/P - 1		4	0		40	<i>7</i> 5	0	0	1.8%	0.7%
2030 W/OP - 2		4	0		40	<i>7</i> 5	0	0	1.8%	0.7%
2030 W/P - 2		4	0		40	<i>75</i>	0	0	1.8%	0.7%
Pacific slo Washington										
Existing 2010		4	0	2,186	40	<i>7</i> 5	0	0	1.8%	0.7%
2020 W/OP		4	0		40	<i>7</i> 5	0	0	1.8%	0.7%
2020 W/P		4	0		40	<i>7</i> 5	0	0	1.8%	0.7%
2030 W/OP - 1		4	0		40	<i>7</i> 5	0	0	1.8%	0.7%
2030 W/P - 1		4	0		40	<i>7</i> 5	0	0	1.8%	0.7%
2030 W/OP - 2		4	0		40	<i>7</i> 5	0	0	1.8%	0.7%
2030 W/P - 2		4	0		40	<i>75</i>	0	0	1.8%	0.7%
Washington elo Pacific										
Existing 2010		4	0	8,118	45	<i>7</i> 5	0	0	1.8%	0.7%
2020 W/OP		4	0		45	<i>7</i> 5	0	0	1.8%	0.7%
2020 W/P		4	0		45	<i>7</i> 5	0	0	1.8%	0.7%
2030 W/OP - 1		4	0		45	<i>7</i> 5	0	0	1.8%	0.7%
2030 W/P - 1		4	0		45	<i>7</i> 5	0	0	1.8%	0.7%
2030 W/OP - 2		4	0		45	<i>7</i> 5	0	0	1.8%	0.7%
2030 W/P - 2		4	0		4 5	<i>7</i> 5	0	0	1.8%	0.7%
Washington wlo Pacific										
Existing 2010		4	0	963	45	<i>7</i> 5	0	0	1.8%	0.7%
2020 W/OP		4	0		45	<i>75</i>	0	0	1.8%	0.7%
2020 W/P		4	0		45	<i>75</i>	0	0	1.8%	0.7%
2030 W/OP - 1		4	0		45	<i>7</i> 5	0	0	1.8%	0.7%
2030 W/P - 1		4	0		45	<i>7</i> 5	0	0	1.8%	0.7%
2030 W/OP - 2		4	0		45	<i>75</i>	0	0	1.8%	0.7%
2030 W/P - 2		4	0		4 5	<i>75</i>	0	0	1.8%	0.7%

⁽¹⁾ Alpha Factor: Coefficient of absorption relating to the effects of the ground surface. An alpha factor of 0 indicates that the site is an acoustically "hard" site such as aspalt. An alpha factor of 0.5 indicates that the site is an acoustically "soft" site such as vegetative ground cover.


Assumed 24-Hour Traffic Distribution:	Day Evening	Night
Total ADT Volumes	77.70% 12.70%	9.60%
Medium-Duty Trucks	87.43% 5.05%	7.52%
Heavy-Duty Trucks	89.10% 2.84%	8.06%

2 NOISE LEVEL CONTOURS - Existing Plus Project Weekday Off-Site ADT Volumes

					Design Vist. from		Barrier Vehicle Mix			
ROADWAY NAME			Median	ADT		Center to		Attn.	Medium	Heavy
Segment	Land Use	Lanes	Width	Volume		Receptor		dB(A)	Trucks	Trucks
Via Dolce n/o Washington						-				
Existing 2010		4	0	655	40	<i>75</i>	0	0	1.8%	0.7%
2020 W/OP		4	0		40	<i>7</i> 5	0	0	1.8%	0.7%
2020 W/P		4	0		40	<i>75</i>	0	0	1.8%	0.7%
2030 W/OP - 1		4	0		40	<i>75</i>	0	0	1.8%	0.7%
2030 W/P - 1		4	0		40	<i>75</i>	0	0	1.8%	0.7%
2030 W/OP - 2		4	0		40	<i>75</i>	0	0	1.8%	0.7%
2030 W/P - 2	_	4	0		40	<i>75</i>	0	0	1.8%	0.7%
Via Dolce slo Washington										
Existing 2010		4	0	2,622	40	<i>7</i> 5	0	0	1.8%	0.7%
2020 W/OP		4	0		40	<i>75</i>	0	0	1.8%	0.7%
2020 W/P		4	0		40	<i>75</i>	0	0	1.8%	0.7%
2030 W/OP - 1		4	0		40	<i>7</i> 5	0	0	1.8%	0.7%
2030 W/P - 1		4	0		40	<i>75</i>	0	0	1.8%	0.7%
2030 W/OP - 2		4	0		40	<i>75</i>	0	0	1.8%	0.7%
2030 W/P - 2		4	0		40	75	0	0	1.8%	0.7%
Washington elo Via Dolce					4					
Existing 2010		4	0	8,993	40	<i>7</i> 5	0	0	1.8%	0.7%
2020 W/OP		4	0		40	<i>75</i>	0	0	1.8%	0.7%
2020 W/P		4	0		40	<i>75</i>	0	0	1.8%	0.7%
2030 W/OP - 1		4	0		40	<i>75</i>	0	0	1.8%	0.7%
2030 W/P - 1		4	0		40	<i>75</i>	0	0	1.8%	0.7%
2030 W/OP - 2		4	0		40	<i>75</i>	0	0	1.8%	0.7%
2030 W/P - 2]	4	0		40	<i>75</i>	0	0	1.8%	0.7%
Washington wlo Via Dolce										
Existing 2010		4	0	8,371	40	<i>75</i>	0	0	1.8%	0.7%
2020 W/OP		4	0		40	<i>75</i>	0	0	1.8%	0.7%
2020 W/P		4	0		40	75	0	0	1.8%	0.7%
2030 W/OP - 1		4	0		40	75	0	0	1.8%	0.7%
2030 W/P - 1		4	0		40	75	0	0	1.8%	0.7%
2030 W/OP - 2		4	0		40	75	0	0	1.8%	0.7%
2030 W/P - 2		4	0		40	<i>75</i>	0	0	1.8%	0.7%

⁽¹⁾ Alpha Factor: Coefficient of absorption relating to the effects of the ground surface. An alpha factor of 0 indicates that the site is an acoustically "hard" site such as aspalt. An alpha factor of 0.5 indicates that the site is an acoustically "soft" site such as vegetative ground cover.

Assumed 24-Hour Traffic Distribution:	Day Evening	Night
Total ADT Volumes	77.70% 12.70%	9.60%
Medium-Duty Trucks	87.43% 5.05%	7.52%
Heavy-Duty Trucks	89.10% 2.84%	8.06%

TRAFFIC IMPACT ANALYSIS REPORT

Proposed Commercial Redevelopment of Parcel 44 on Admiralty Way between Bali Way and Mindanao Way in Marina del Rey, California

Prepared for:

Pacific Ocean Management, LLC 13575 Mindanao Way Marina del Rey, California 90292

Prepared by:

EXECUTIVE SUMMARY

The project under consideration is the proposed redevelopment of the landside uses occupying Parcel 44, a u-shaped site located within the Marina del Rey area of Los Angeles County, along the west side of Admiralty Way between Bali Way and Mindanao Way and surrounding the eastern portion of Basin G of the Marina. The landside portion of Parcel 44 is currently developed with a number of small one and two-story structures housing a total of approximately 14,724 square feet of commercial, retail, and marine-related uses, including an approximately 7,844 square foot boat sales facility ("Boat Brokers"), a total of approximately 4,216 square feet of office space, an approximately 1,000 square foot boat repair operation ("Seamark"), an approximately 1,080 square foot yacht club, an approximately 111-space dry boat storage facility, and an approximately 584 square foot boater bathroom facility, as well as surface parking lots surrounding and serving each of these uses. However, the majority of the site is currently utilized as boat parking/storage for the boat sales and/or boat repair businesses. Additionally, the Marvin Braude Bike Path, which traverses the east side of Marina del Rey and connects the bicycle lanes on Washington Boulevard with the bike facilities along Fiji Way, runs north-south through the on-site parking and boat storage lots to the east of Basin G. A private anchorage containing total of approximately 205 existing boat berthing spaces (boat slips) is also located on the waterside portion of Parcel 44.

The proposed project will remove all of the existing development on Parcel 44, including the surface parking lots, to construct five new commercial buildings (plus three small buildings housing boater restroom facilities) containing a total of approximately 83,253 square feet of visitor-serving and/or marine-related retail (including a supermarket), restaurant/dining facilities, and general and governmental office space. Specifically, the new development is proposed to contain a total of approximately 13,795 square feet of general visitor-serving retail space, approximately 25,000 square feet of marine-related retail, an approximately 13,625 square foot specialty market, approximately 9,855 total square feet of restaurant space (providing approximately 382 total seats, including outdoor dining), a 700 square foot boat repair office (with associated open air service yard), a mast-up/dry stack boat storage facility housing up to approximately 69 boats, a total of approximately 16,588 total square feet of office space (including general office, Marine Administrative Offices, and boat sales offices), an approximately 1,150 square foot yacht club, an 840 square foot community room/boater lounge, and 1,700 square feet of boater support facilities including bathrooms and laundry rooms.

Additionally, while the project application does not include redevelopment of the waterside portion of the parcel, the existing private boat anchorage, which currently provides a total of approximately 205 boat slips will be redeveloped by the project applicant at or around the same time as the landside redevelopment of Parcel 44 pursuant to a previous land use approval granted by the California Coastal Commission (Coastal Development Permit No. 5-11-131). This prior approval allows for the redevelopment of the waterside portion of the parcel with a total of approximately 148 boat slips, which will replace and upgrade the existing boat slips. Therefore, in order to appropriately account for the effects of this previously-approved reduction in the number of boat slips located on the waterside portion of the Parcel 44 project site, this change has also been included as part of the overall traffic analyses for the proposed project.

The proposed project will also provide approximately 477 on-site vehicular parking spaces and 76 bicycle parking spaces to serve the site (including both the new landside development and the redeveloped waterside boat berthing spaces), located in a series of surface parking lots adjacent to or surrounding each of the new buildings. The proposed total of 477 vehicular parking spaces is approximately seven (7) spaces fewer than the 484 vehicular parking spaces required for the project under the provisions of the current Los Angeles County Zoning Code. However, a detailed "shared parking" analysis prepared for the proposed project indicates that, once consideration is given to the hourly variability of the parking demands for the various uses proposed, the actual maximum parking demand is expected to be approximately 457 spaces on typical weekdays, and approximately 398 spaces on weekends. Therefore, the project's proposed vehicular parking supply is adequate to accommodate the anticipated peak demands of the site at all times, and no on-site project-related parking shortages are anticipated.

Vehicular access to the project's parking facilities will be provided by driveways located along each of the project's frontages, including three driveways on Mindanao Way, four driveways on Bali Way, and a single driveway on Admiralty Way. Each of these roadways exhibit raised median islands adjacent to the project frontages. Both Bali Way and Mindanao Way currently provide openings in the median islands to permit left-turns into and out of the Parcel 44 site, although some modification of the locations and/or sizes of these existing median openings will be necessary in order to align with the proposed new project driveways. Admiralty Way also provides an opening in the raised median island adjacent to the project's proposed driveway location. However, this opening is currently configured with only a southbound left-turn pocket, to allow access into an existing medical/office complex driveway on the east side of the street approximately opposite the proposed project driveway; no northbound left-turn lane is provided

at this location, since there is no driveway on the west side of Admiralty Way opposite the median opening. Therefore, in order to enhance access to the Parcel 44 site, the project proposes to construct a new northbound left-turn lane at this existing median opening to allow vehicles to enter the site from that direction of Admiralty Way. However, although both northbound left-turn and southbound right-turn entry is proposed for this site driveway, it is anticipated that this driveway be restricted to right-turn only exits, prohibiting access from this driveway to northbound Admiralty Way, in order to minimize potential site access conflicts and reduce the potential for vehicular queues along Admiralty Way. The project will also construct a deceleration lane on the Admiralty Way approach to the site driveway, to minimize disruptions to southbound through traffic flows from project-related traffic slowing to enter the new driveway.

In addition to the deceleration lane and other site access-related median island modifications (including new northbound left-turn lane on Admiralty Way at the new site driveway), the Department of Beaches and Harbors has indicated that the proposed project will be required to improve Mindanao Way to provide a second westbound travel lane along the full length of the project site's frontage, in order to accommodate the additional traffic anticipated to be generated by the proposed new development. This improvement will require the project to reduce the width of the existing Mindanao Way median islands along their northern sides by approximately two feet (from the existing six feet to four feet), and to stripe westbound Mindanao Way to provide two 10-foot westbound lanes along the project's entire frontage. The eastbound roadway of Mindanao Way will also be striped to provide two 10-foot travel lanes between the project's western boundary and Admiralty Way, although this improvement will not require any further median island modifications. Further, the proposed project will also be required to widen the south side of Mindanao Way west of its intersection with Admiralty Way in order to install a new eastbound shared through/right-turn lane (and restripe the intersection to convert the existing eastbound shared through/right-turn lane to a shared left-turn/through lane, in addition to the existing left-turn only lane). Although this measure is part of larger improvements to this intersection that would otherwise typically be installed by the County, due to the potential additional traffic demands at this intersection associated with the proposed project, the County has indicated it will require the project to install the improvement.

Further, the proposed project will be required to increase the curb return radii adjacent to the project site at the intersections of Admiralty Way and Mindanao Way, and at Admiralty Way and Bali Way from 25 feet to 35 feet, and to improve the existing sidewalks adjacent to the project site to provide an eight-foot wide sidewalk along the project's entire Admiralty Way frontage,

while along both Mindanao Way and Bali Way, the proposed project will be required to provide eight-foot wide sidewalks between Admiralty Way and the existing Marvin Braude Bike Path, and five-foot wide sidewalks along the remainder of the project frontages of both streets.

Finally, in addition to the site frontage and access-related roadway/median island improvements described in the preceding paragraphs, the County's Department of Beaches and Harbors has indicated that the proposed project should be required to relocate the existing (non-project) access driveways to both Public Parking Lot No. 5 (on the north side of Bali Way west of Admiralty Way) and to the parking lot serving the Marina del Rey Visitor's Center (on the south side of Mindanao Way, also west of Admiralty Way) to align each of these existing driveways opposite the proposed project's new driveways. Further, in order to improve safety and minimize potential conflicts between vehicular traffic and bicyclists and pedestrians using the Marvin Braude Bike Path, the Department of Beaches and Harbors has requested that new speed humps or speed tables be installed in both directions on both Mindanao Way and Bali Way in advance of the bike path crossings of those roadways, along with appropriate signage.

This study evaluated the existing (year 2013) and forecast future (year 2016) conditions at a total of 25 intersections in the Marina and surrounding vicinity of the project during the typical weekday AM and PM peak commute traffic hours, as required by the Los Angeles County Department of Public Works Traffic and Lighting Division. Five of the study intersections are located within the exclusive jurisdiction of Los Angeles County and 14 of the intersections are under the jurisdiction of the City of Los Angeles, with the remaining six locations exhibiting shared jurisdiction between the County and City, although these shared intersections are generally operated and maintained by the City of Los Angeles.

Once completed and fully occupied (anticipated by the end of 2016), the proposed project could result in a net increase in site-related trips (following adjustments to account for the removal of traffic generated by the existing site development) of approximately 3,753 net daily trips, including approximately 79 net new trips (53 inbound, 26 outbound) during the AM peak hour, and approximately 387 net new trips (206 inbound, 181 outbound) during the PM peak hour.

Based on this level of net new traffic, the analyses summarized in this report indicate that the project itself could result in significant impacts at a total of four of the 25 study intersections under the "Existing (2013) With Project" analysis scenario, including one under the jurisdiction of the County alone (at the site-adjacent intersection of Admiralty Way and Mindanao Way). The remaining significant impacts occur at two intersections under the exclusive jurisdiction of the

City of Los Angeles (Lincoln Boulevard and Venice Boulevard, and Lincoln Boulevard and Washington Boulevard), and one two additional intersection under joint County/City jurisdiction (Lincoln Boulevard and Mindanao Way). No project-specific significant impacts are anticipated under the County's forecast future "Existing Plus Ambient Growth Plus Project" scenario (which is applicable only to the five study intersections under County-only jurisdiction, while the project could result in a total of seven significant impacts under the City of Los Angeles Department of Transportation's ("LADOT") "Future (2016) With Project" analysis scenario, which is considered to be applicable to the 20 study intersections under exclusive or shared jurisdiction of the City. These locations include the three City or shared-jurisdiction intersections impacted under the "Existing Plus Project" conditions (Lincoln Boulevard and Venice Boulevard, Lincoln Boulevard and Washington Boulevard, and Lincoln Boulevard and Mindanao Way), plus one additional shared-jurisdiction location (Lincoln Boulevard and Fiji Way), and three additional intersections under sole jurisdiction of the City (Lincoln Boulevard and Marina Expressway, Mindanao Way and Eastbound Marina Expressway, and Lincoln Boulevard and Jefferson Boulevard). However, it should be noted that the significant impacts at each of these seven locations occur only under the City of Los Angeles traffic impact analysis methodology.

Finally, the analyses summarized in this report indicate that cumulative increases in traffic within the study area, including typical "ambient" traffic growth as well as new trips generated by ongoing development in the Marina and surrounding vicinity (including trips from the proposed Parcel 44 project) could result in significant impacts to four of the five study intersections under County jurisdiction (the "cumulative" impact analyses are applicable only to those five locations), with only the intersection of Admiralty Way and Fiji Way not exhibiting a significant impact.

The Marina del Rey Specific Plan ("Specific Plan"), which incorporates the recently-adopted Marina del Rey Land Use Plan ("LUP") Amendment, identifies a number of transportation and circulation improvements that are designed to mitigate the traffic generation of ongoing development in Marina del Rey, of which the proposed Parcel 44 project is a part. These improvements include both local Marina and sub-regional cumulative roadway improvements that are designed to address both the incremental (project-specific) and cumulative traffic impacts from projects developed within Marina del Rey, as well as from traffic demands created by other developments outside the County's jurisdiction that utilize the Marina roadway system.

These roadway improvements are funded (in part) by a traffic impact mitigation fee imposed by the County, which all new development projects within the Marina, including the proposed Parcel 44 redevelopment project, are required to pay. These fees provide "fair share"

contributions from each Marina development project toward the identified improvements based on the number of net new PM peak hour trips generated by each project; the County's current traffic impact mitigation fee is \$5,690 per net new PM peak hour trip. Therefore, based on the applicable net project trip generation level of approximately 411 net new PM peak hour trips, the proposed Parcel 44 redevelopment project will be required to pay a total of approximately \$2,338,590 in traffic impact mitigation fees (per the County Department of Public Works policies, the number of project-related trips applicable to the traffic impact mitigation fee does not include otherwise applicable reductions of approximately 24 PM peak hour pass-by trips, which were appropriately used to analyze the proposed project's potential traffic impacts, increasing the number of net project trips from the 387 PM peak hour trips identified earlier). As noted above, these fees will be applied toward the project's "fair share" costs of implementing the roadway and intersection improvements described in the Marina del Rey Specific Plan LUP.

The County's Department of Public Works has expressed that it prefers to coordinate and implement the local and regional roadway improvements identified in the Specific Plan LUP itself, in order to reduce overall construction time and minimize traffic disruptions associated with these improvements. Therefore, payment of the traffic impact mitigation fee noted above is the recommended method of addressing the proposed project's traffic impact mitigation, rather than the incremental or partial construction of any of the relevant Specific Plan roadway improvements by the project applicant. However, should the County determine that the immediate implementation of roadway improvements is necessary to address the potential project-specific traffic impacts of proposed Parcel 44 development project, the following measures are recommended for each of the eight intersections potentially significantly-impacted by the proposed project (one under the joint County/City "Existing Plus Project" scenario, and seven additional locations under the City's "Future Plus Project" scenario).

Project-Specific Mitigation Measures

Los Angeles County Intersections

Admiralty Way and Mindanao Way – Although the project could result in a significant impact at this intersection during the PM peak hour under the "Existing With Project" analysis scenario, that evaluation assumed that this location would be improved with the project-required improvements to the eastbound approach of Mindanao Way for the analysis of potential project-related impacts for that scenario. However, the County is currently nearing completion on the construction of improvements to Admiralty Way that

will install new southbound dual left-turn lanes at this intersection. Once the ongoing installation of the dual southbound left-turn lanes is completed, the project's impacts will become less-than-significant during both peak hours. Therefore, no improvements to this intersection (beyond the project-required improvement to eastbound Mindanao Way and the ongoing improvements being installed by the County) are necessary.

Shared Los Angeles County/Los Angeles City Intersections

- Lincoln Boulevard and Mindanao Way This intersection is under the shared jurisdiction of the County and City of Los Angeles. The "Revised Set of Intersection Improvements" contained in the updated LUP does not identify any roadway improvements for this location, although the (now-superseded) Transportation Improvement Program ("TIP") of the prior LUP included an improvement to install a new northbound right-turn only lane on Lincoln Boulevard at Mindanao Way. However, this measure has already been installed, and a review of this location indicates that there are no additional rights-of-way available to widen any of the intersection approaches, and as such, no further feasible improvements are available to address the project's potential impacts at this location.
- o <u>Lincoln Boulevard and Fiji Way</u> This intersection is also under the shared jurisdiction of the County and City of Los Angeles, and as a result, the updated LUP does not identify any roadway improvements for this location, although the previous TIP included a measure to install a second eastbound left-turn lane on Fiji Way at Lincoln Boulevard (this recommendation has since been abandoned). This location is currently improved to the extent possible on each of its approaches, and no rights-of-way are available to increase capacity through the installation of additional lanes. As a result, no further improvements are feasible to mitigate the project's potential impacts at this intersection.

City of Los Angeles Intersections

The Marina del Rey Specific Plan does not include intersections that are not under the full or partial jurisdiction of the County, and as a result, the LUP does not identify any programmed improvements at any of the five intersections listed below, each of which is located wholly within and operated under the jurisdiction of the City of Los Angeles. Additionally, as noted earlier in this report, all of the intersections in the study area, including the locations listed below, have been improved with the City's ATSAC/ATCS traffic signal coordination system, and as such, no further signal-related operational

improvements are currently available. Further, detailed field surveys conducted at each of these intersections indicate that most already exhibit capacity enhancements beyond the typical intersection improvements (including additional left-turn lanes or exclusive right-turn only lanes). Finally, research of these locations indicated that there are currently no additional rights-of-way available to widen any of the approaches at any of these intersections, and as such, no further improvements to address the potential project impacts at these locations are feasible.

- Lincoln Boulevard and Venice Boulevard
- Lincoln Boulevard and Washington Boulevard
- Lincoln Boulevard and Marina Expressway
- Mindanao Way and Eastbound Marina Expressway
- Lincoln Boulevard and Jefferson Boulevard

Therefore, based on these observations and evaluations, of the eight potential project-specific significant impacts identified in this analysis, only the impact at the site-adjacent intersection of Admiralty Way and Mindanao Way (which occurs only under the "Existing Plus Project" analysis scenario) exhibits any feasible mitigation; the County's installation of dual left-turn lanes on the southbound approach of Admiralty Way, which is currently under construction and scheduled for completion in the first quarter of 2014, will reduce the proposed project's potential impact at this location to less-than-significant levels, and as discussed earlier, the project's impact at this intersection are not significant under the any of the future (year 2016) analysis scenarios. However, no feasible roadway or traffic signal improvements are available at any of the remaining seven City-only or shared County/City jurisdiction locations, and as such, the potential project-specific impacts at these intersections will remain significant and unavoidable.

Cumulative Mitigation Measures

In addition to the project-specific traffic impacts described in the preceding pages, potential cumulative traffic impacts (resulting from total development throughout the project vicinity, including the proposed project) could occur at four of the five study intersections under the jurisdiction of the County of Los Angeles; Admiralty Way and Via Marina, Admiralty Way and Palawan Way, Admiralty Way and Bali Way, and Admiralty Way and Mindanao Way, each during the PM peak hour only. As described earlier, the programmed roadway improvements identified in the Marina del Rey Specific Plan's LUP are designed to address the effects on

continued traffic growth due to cumulative development within and surrounding the Marina, and as such, payment of the proposed Parcel 44 project's \$2,338,590 traffic impact mitigation fee is intended to mitigate the proposed project's incremental contributions to the anticipated future cumulative traffic growth and its associated impacts.

Therefore, the roadway improvements listed in the LUP (and funded in part by the project's traffic impact mitigation fees) were further reviewed in order to identify which measures may be effective in addressing the potential cumulative traffic impacts in the study area. The applicable LUP roadway improvements are described below.

- Admiralty Way and Via Marina Two potential roadway improvement alternatives are identified in the Specific Plan to address cumulative traffic impacts at this intersection:
 - 1) The first roadway improvement alternative ("LUP A") includes the installation of a third left-turn lane (in addition to the two existing right-turn only lanes) on the westbound approach of Admiralty Way at Via Marina, and would also convert one of the three existing southbound through lanes to a new left-turn lane (resulting in a final southbound configuration of two left-turn lanes and two through lanes). The northbound approach of this intersection would remain unchanged, and continue to provide two through lanes and one right-turn only lane. The Specific Plan does not identify whether roadway widenings are necessary to implement this improvement.
 - 2) The second alternative ("LUP B") would reconstruct this intersection to realign Admiralty Way and the south leg of Via Marina to operate as a "through roadway", with the north leg of Via Marina intersecting the realigned Admiralty Way/Via Marina roadway in a "T" configuration. The resulting intersection would include two through lanes in each direction along realigned Admiralty Way/Via Marina, with one westbound right-turn lane and dual eastbound left-turn lanes from this roadway onto the north leg of Via Marina, while the southbound approach of Via Marina at the intersection would provide two left-turn lanes and a single right-turn lane.
- Admiralty Way and Palawan Way There are also two potential roadway improvements identified in the Specific Plan's LUP to address the cumulative impact at this intersection:
 - 1) In addition to improvements currently being installed at this intersection by the County to restripe northbound Palawan Way to convert the existing left-turn lane to a shared left-turn/through lane (with the existing shared through/right-turn lane

remaining unchanged), and to add a new exclusive westbound right-turn only lane on Admiralty Way, the first improvement alternative ("LUP A") would restripe the southbound approach of Palawan Way to convert the existing through lane to a shared left-turn/through lane (but leave the existing left-turn and right-turn lanes unchanged), and would further improve the westbound approach of Admiralty Way to provide an additional (third) through lane (west of Palaway Way). This alternative improvement would also convert the new westbound right-turn only lane into a shared through/right-turn lane, to provide a future configuration of one left-turn lane, two through lanes, and one shared through/right-turn lane. The eastbound approach would continue to exhibit its current configuration of one left-turn lane, one through lane, and one shared through/right-turn lane. As with the ongoing improvement at this location, due to the proposed "shared through/left-turn lane" configuration for southbound Palawan Way, this alternative will require modification of the existing traffic signal to provide north/south opposed phasing operation.

- 2) The second Specific Plan roadway improvement alternative ("LUP B") is similar to the LUP A alternative described above, and would again modify westbound Admiralty Way to provide a third westbound lane west of the intersection, and convert the new westbound right-turn only lane to a shared through/right-turn lane (again with no changes to the eastbound approach lane configuration). However, this alternative would also restripe northbound Palawan Way to convert the existing shared through/right-turn lane to an exclusive right-turn only lane, while keeping the new shared left-turn/through lane currently being constructed. Additionally, this alternative would modify the southbound approach of Palawan Way to add a second left-turn lane (resulting in a final southbound lane configuration of two left-turn lanes, one through lane, and one right-turn only lane). As with the LUP A alternative, the traffic signal would be modified to operate with opposed north/south phasing.
- Admiralty Way and Bali Way The LUP improvement to add a second left-turn lane on southbound Admiralty Way at Bali Way, resulting in a final lane configuration for this approach of two left-turn lanes, one through lane, and one shared through/right-turn lane is currently under construction, and no further improvements are proposed.
- Admiralty Way and Mindanao Way In addition to improvements to this intersection currently being installed by the County to provide a second southbound left-turn lane on Admiralty Way at Mindanao Way, and the project-required improvement to widen the

south side of Mindanao Way to install a new shared through/right-turn lane on the eastbound approach of this street (and convert the current shared through/right-turn lane to a shared left-turn/through lane) described earlier (which is also part of the overall LUP improvement at this location), the remaining LUP improvements at this intersection would restripe the westbound approach of Mindanao Way to convert the existing shared left-turn/through lane to a shared left-turn/through/right-turn lane. The traffic signal phasing at this location will continue to exhibit the current east-west "split" phase operations, due to the proposed new eastbound/westbound lane configurations.

The results of a supplemental analysis of the effectiveness of these potential improvements indicates that implementation of LUP alternative improvement "A" at the intersection of Admiralty Way and Via Marina will reduce the potential PM peak hour significant traffic impact resulting from anticipated cumulative increases in traffic (including from the proposed project) at this intersection to a less-than-significant level; however, while LUP alternative improvement "B" would also reduce the cumulative PM peak hour impact at this location to less-than-significant levels, this measure would actually result in the creation of a new secondary significant impact during the AM peak hour. Similarly, the installation of LUP alternative improvement "B" at Admiralty Way and Palawan Way would reduce the PM peak hour cumulative impact at that location to less-than-significant levels, while LUP alternative improvement "A" would reduce but not fully mitigate the impact. As such, it is recommended that LUP alternative improvement "A" be installed at the intersection of Admiralty Way and Via Marina to mitigate the potential cumulative traffic impacts at that intersection, while LUP alternative improvement "B" should be implemented at the intersection of Admiralty Way and Palawan Way in order to address the potential impacts of forecast future traffic growth in the project vicinity.

However, these supplemental analyses also indicate that the intersection improvements identified in the current Marina del Rey LUP update are not expected to be sufficient to mitigate the anticipated cumulative impacts at the two site-adjacent intersections of Admiralty Way and Bali Way, and Admiralty Way and Mindanao Way. Further, an examination of these locations indicated that there are no additional feasible roadway improvement or mitigation alternatives available beyond the measures identified in the updated LUP, and as a result, the potential cumulative traffic impacts at both intersections will remain significant and unavoidable (although it is important to note that, as described earlier in this section, the project-specific impacts of the proposed Parcel 44 project at Admiralty Way and Mindanao Way will be fully mitigated, and no project-specific impacts are identified at the intersection of Admiralty Way and Bali Way).

Nonetheless, the supplemental cumulative impact mitigation analyses also show that, while not fully mitigating all potential traffic impacts associated with anticipated cumulative development in and around the Marina, the implementation of the LUP mitigation measures (including those alternatives that do not fully mitigate the potential cumulative impacts) are expected to improve or maintain the operations of the four subject intersection at acceptable (LOS D or better) conditions during both the AM and PM peak hours at each of these locations, even with the increases in vehicular demands at this location due to the addition of traffic associated with cumulative development in the area. The remaining intersection of Admiralty Way and Fiji Way, which is not anticipated to experience any significant cumulative traffic impacts, is forecast to exhibit acceptable operational conditions under the anticipated cumulative traffic conditions during both peak hours without any additional roadway improvements. As such, while potential significant cumulative traffic impacts may remain at the two site-adjacent intersections of Admiralty Way and Mindanao Way, and Admiralty Way and Bali Way following implementation of the LUP intersection and/or roadway improvements identified for these location, these measures will result in benefits to the traffic flows in the project vicinity and throughout the Marina, and reduce the potential for future vehicular queuing and congestion in the study area.

As described earlier, the County Department of Public Works has historically expressed that it prefers to implement the roadway improvements identified in the Marina del Rey LUP, of which both the project-specific and cumulative mitigation measures recommended are a part, as a single major roadway improvement project in order to minimize traffic disruptions and reduce construction time. As such, payment of the identified traffic impact mitigation fee is the recommended approach to address both the project-specific as well as cumulative impacts of the proposed Parcel 44 project, rather than the actual construction of any of the improvements by the project itself. However, it should also be noted that no feasible alternative improvements to either the project-specific or cumulative mitigation measures, beyond those already described, have been identified at any of the significantly impacted intersections. Therefore, should the recommended mitigation improvement(s) not be accepted by the County, the potential traffic impacts identified in this analysis would remain significant and unavoidable.

As briefly noted earlier, the proposed project will include approximately 477 on-site vehicular parking spaces (including a total of approximately 34 tandem spaces) and 76 bicycle parking spaces to serve its various uses. While the number of bicycle spaces is adequate to meet the County's current Zoning Code, the number of vehicular parking spaces proposed will be about seven (7) spaces deficient of the total of 484 vehicular parking spaces required for the new

development (including both the landside and waterside portions of the redevelopment project). However, a shared parking analysis prepared for the proposed project, accounting for the variability in parking needs for the various project components throughout the day, indicates that the actual maximum parking demands anticipated for the new development will be somewhat lower than that identified using the "static" Zoning Code parking ratios, with a peak demand of approximately 457 vehicular parking spaces, or about 20 spaces fewer than are proposed to be provided. As such, the project's proposed 477-space parking supply will be sufficient to accommodate the anticipated peak parking demand periods, which occur generally during an approximately two-hour period in the middle part of a typical weekday (the project's peak weekend vehicular parking demands are expected to be considerably lower, at a maximum of approximately 398 spaces), and as such, no on-site parking shortages or "overflow" parking onto adjacent streets or public parking areas are anticipated.

It is important to note that the shared parking analyses also indicated that, during the peak weekday parking demand activity (from approximately 12:00 noon to 12:00 PM), the total parking demands for the project are expected to exceed the 443 "self-park" spaces provided (not counting the 34 tandem spaces), and therefore will necessitate use of approximately 20 of the tandem spaces to accommodate the anticipated parking demands during this period. However, throughout the remainder of the typical weekday activity, the total project parking demands are expected to be less than 443 spaces, and as such, use of tandem spaces will not be needed, and all project-related parking can be accommodated within the "self-park" spaces. Therefore, it is recommended that any valet or parking attendant assisted parking for the project be required only during the peak weekday parking activity periods from approximately 11:00 AM to about 3:00 PM. No use of the tandem spaces will be necessary on weekends, and as such, no valet or attendant assisted parking requirement is warranted.

Other Project-Impact Mitigation Measures

A review of the proposed configuration and anticipated operation of the project's on-site parking and internal vehicular circulation scheme indicates that it will be acceptable, and will provide sufficient driveway entry and exit capacity at all site access locations to accommodate the anticipated site-related traffic demands. Further, both on-street and internal (on-site) vehicular queuing and/or congestion is expected to be minimal, and no significant impacts with respect to site access or internal vehicular circulation are anticipated. Additionally, the installation of the improvements to the site-adjacent bicycle path expected to be required by the County is

expected to address any potential existing or future (project-related) impacts to bicycle and pedestrian activity in the project vicinity. As such, no project site access-related or on-site vehicular, pedestrian, or bicycle mitigation measures, other than the driveway and/or median island modifications described earlier in this study, are warranted.

Finally, the proposed Parcel 44 redevelopment project is not anticipated to produce sufficient net new traffic to create significant impacts to any of the surrounding CMP arterial monitoring intersections or freeway segments, nor are any significant impacts to the public transit facilities serving the study area anticipated. Therefore, no project mitigation measures associated with either of these issues are necessary.

TABLE OF CONTENTS

	<u>Page</u>
INTRODUCTION	1
PROJECT DESCRIPTION	6
Project Traffic Generation	8
Project Geographic Trip Distribution	14
Project Traffic Assignment	14
Project Parking and Access	21
Project Parking Requirements	21
Project Parking Supply	24
Project Vehicular Access and Operations	28
Analysis of Future (2020) Admiralty Way Site Access Conditions	35
Project Roadway Improvements	37
Required Project Site Frontage Roadway Improvements	38
Site-Adjacent Project Access-Related Median Island/Roadway Improvements	40
Additional County-Required Roadway/Infrastructure Improvements	42
PROJECT IMPACT ANALYSIS STUDY AREA	44
Environmental Setting	44
Area Transportation Facilities	44
Freeways	44
Major and Secondary Highways	45
Collector Roadways	49
Local/Residential Streets	50
Public Transportation	51
ANALYSIS OF AREA TRAFFIC CONDITIONS	55
Existing (Year 2013) Traffic Volumes	56
Existing (No Project) Conditions	56
Existing With Project Conditions	59
Analysis of Existing (Year 2013) Traffic Conditions	59
Impact Significance Criteria	67
Future (Year 2016) Traffic Volumes	68
Without Project Traffic Forecasts	69
Ambient Traffic Growth	69
Related Projects	70

TABLE OF CONTENTS (continued)

	<u>Page</u>
Ongoing and/or Programmed Future Highway System Improvements	76
Analysis of Future (2016) Traffic Conditions	84
Project-Specific Impact Analysis – Los Angeles County Intersections	95
Project-Specific Impact Analysis – City of Los Angeles and	
Shared Jurisdiction Intersections	99
Cumulative Impact Analysis – Los Angeles County Intersections Only	101
Project Impacts on Regional Transportation System	102
CMP Monitoring Intersection Impacts	103
CMP Freeway Segment Impacts	106
Project Impacts on Area Transit Facilities	107
MITIGATION MEASURES	108
Project-Specific Mitigation Measures	109
Cumulative Mitigation Measures	113
Additional Non-Mitigation Roadway and/or Infrastructure Improvements	118
Parking-Related Mitigation Measures	120
Other Project-Impact Mitigation Measures	121

APPENDICES

Volume I

- A Individual Project Component and Existing Uses Trip Assignments and Peak Hour Volumes
- B Project Shared Parking Analysis
- C Admiralty Way Project Driveway "Gap" Study and SYNCHRO Analysis
- D Truck and Auto/Boat Trailer Turning Movement Evaluations
- E Related Projects Trip Generation Rates/Equations
- F Intersection Geometrics/Controls and Traffic Count Data Sheets

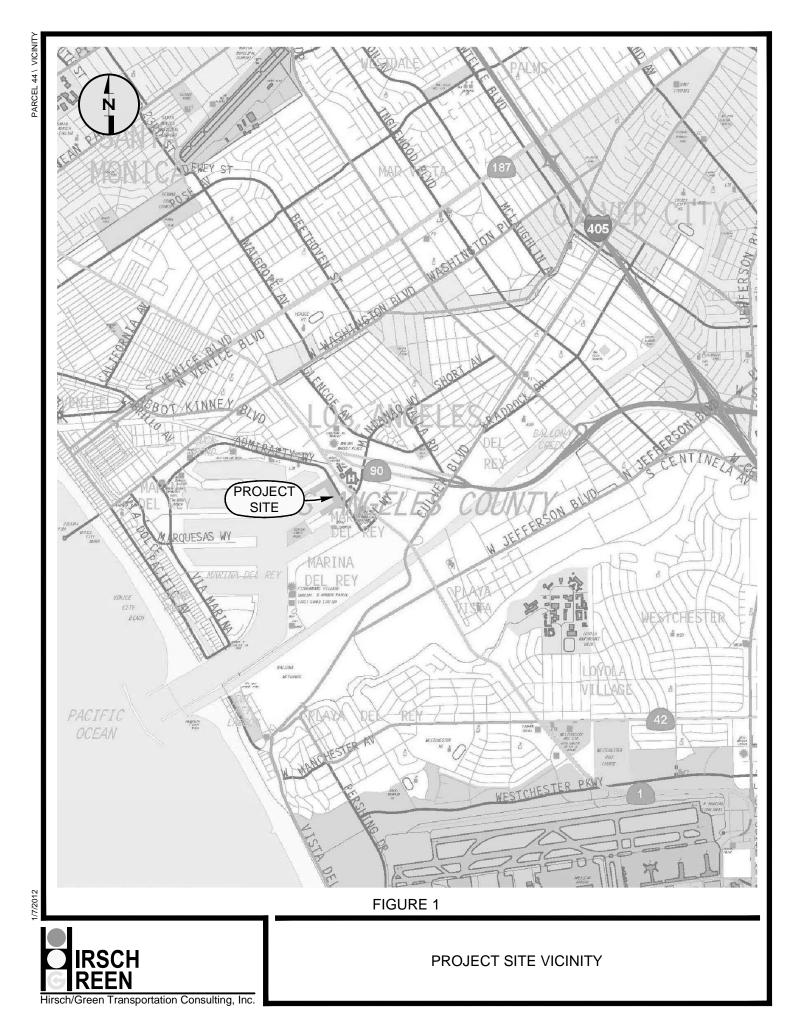
Volume II

G - CMA Calculation Worksheets

LIST OF FIGURES

Figure No	<u>o.</u>	<u>Page</u>
1	Site Vicinity Map	2
2	Study Intersection Locations	4
3	Project Site Layout	7
4	Project Traffic Geographic Distribution Percentages	15
5	Total Net Project Peak Hour Traffic Volumes	19
6	Project Peak Hour Driveway Volumes	31
7	Proposed Project Roadway Improvements	39
8	Project Area Transit Service Map	52
9	Existing (2013) Peak Hour Traffic Volumes	57
10	Existing (2013) With Project Peak Hour Traffic Volumes	60
11	Related Projects Locations Map	71
12	Related Projects Traffic Volumes	81
13	Future (2016) Peak Hour "Ambient Growth Only" Traffic Volumes	87
14	Future (2016) Peak Hour "Ambient Growth Plus Project" Traffic Volumes	89
15	Future (2016) Peak Hour "Without Project" Traffic Volumes	91
16	Future (2016) Peak Hour "With Project" (Cumulative) Traffic Volumes	93
17	CMP Arterial Monitoring Intersection Locations	104

LIST OF TABLES

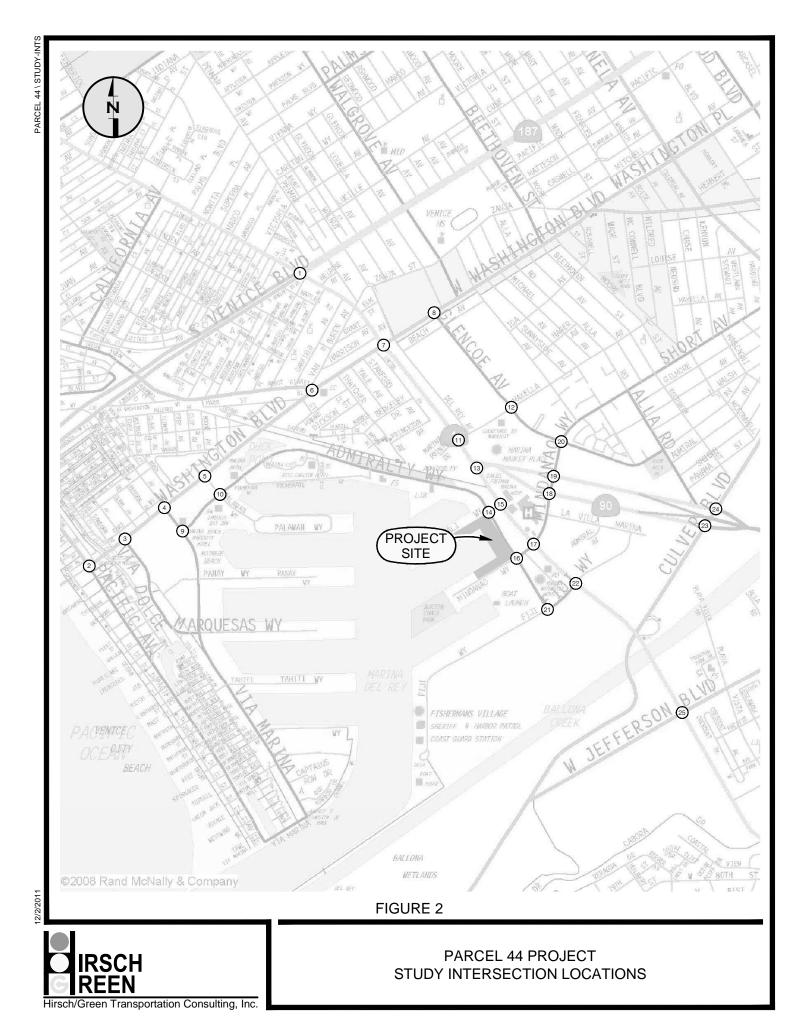

Table No.		<u>Page</u>
1	Project Trip Generation Rates	10
2	Project Trip Generation	13
3	Geographic Project Directional Trip Distribution	14
4	Project Zoning Code Vehicular and Bicycle Parking Calculations	22
5	Project Shared Parking Calculations Summary (Weekday and Weekend)	26
6	Critical Movement Analysis Volume Ranges per Level of Service	62
7	Level of Service as a Function of CMA Value	63
8	Critical Movement Analysis Summary – Existing (2013) Without and With Project Conditions	64
9	Los Angeles County/LADOT Significant Traffic Impact Criteria	68
10	Related Projects Descriptions	72
11	Related Projects Trip Generation	77
12	Critical Movement Analysis Summary – Future (2016) Without and With Project Conditions	96
13	Critical Movement Analysis Summary – Existing (2013) and Future (2016) with Project Plus Project-Specific Mitigation Conditions	112
14	Critical Movement Analysis Summary – Future (2016) with Cumulative Development Plus Cumulative Mitigation Conditions	116

INTRODUCTION

The project evaluated in this study is the proposed redevelopment of the landside portion of Parcel 44, located within the Marina del Rey area of Los Angeles County, along the west side of Admiralty Way between Bali Way and Mindanao Way and surrounding the eastern portion of Basin G of the Marina. The location of the project site is shown in Figure 1.

The landside portion of the Parcel 44 project site is currently developed with a number of small one and two-story structures housing a total of approximately 14,724 square feet of commercial, retail, and marine-related uses, including boat sales, boat service and repair, commercial office space, yacht clubs, and boater bathroom facilities, as well as an approximately 111-space dry boat storage facility; the waterside portion of Parcel 44 also includes a private anchorage containing a total of approximately 205 existing boat berthing spaces (boat slips). A number of surface parking lots surround and serve these uses, although the majority of the site is currently utilized as boat parking/storage for the boat sales and/or boat repair businesses. Additionally, the Marvin Braude Bike Path, which traverses the eastern half of Marina del Rey and connects the bicycle lanes on Washington Boulevard with the bike facilities along Fiji Way, runs roughly north-south across the entire project site generally along the eastern edge of Basin G.

The proposed project will remove all of the existing development on Parcel 44, including the surface parking lots, to construct five new commercial buildings (plus three small buildings housing boater restroom facilities) containing a total of approximately 83,253 square feet of visitor-serving and/or marine-related retail (including a supermarket), restaurant/dining facilities, and general and governmental office space. Specifically, the new development is proposed to consist of a total of approximately 13,795 square feet of general visitor-serving retail space, approximately 25,000 square feet of marine-related retail uses (West Marine), an approximately 13,625 square foot specialty market (Trader Joes or similar), approximately 9,855 square feet of restaurant space (providing a total of approximately 382 seats, including outdoor dining areas), a 700 square foot boat repair office (with associated open air service yard), an unenclosed, mast-up and dry stack boat storage facility accommodating approximately 69 boats, a total of approximately 16,588 square feet of office space (including 9,170 square feet of general office, 2,285 square feet of Marine Administrative Offices, and 5,133 square feet of boat sales offices), a 1,150 square foot yacht club, an 840 square foot community room/boater lounge (including a small kitchen area), and a total of 1,700 square feet of boater-related support facilities including boater-only bathrooms and laundry rooms.

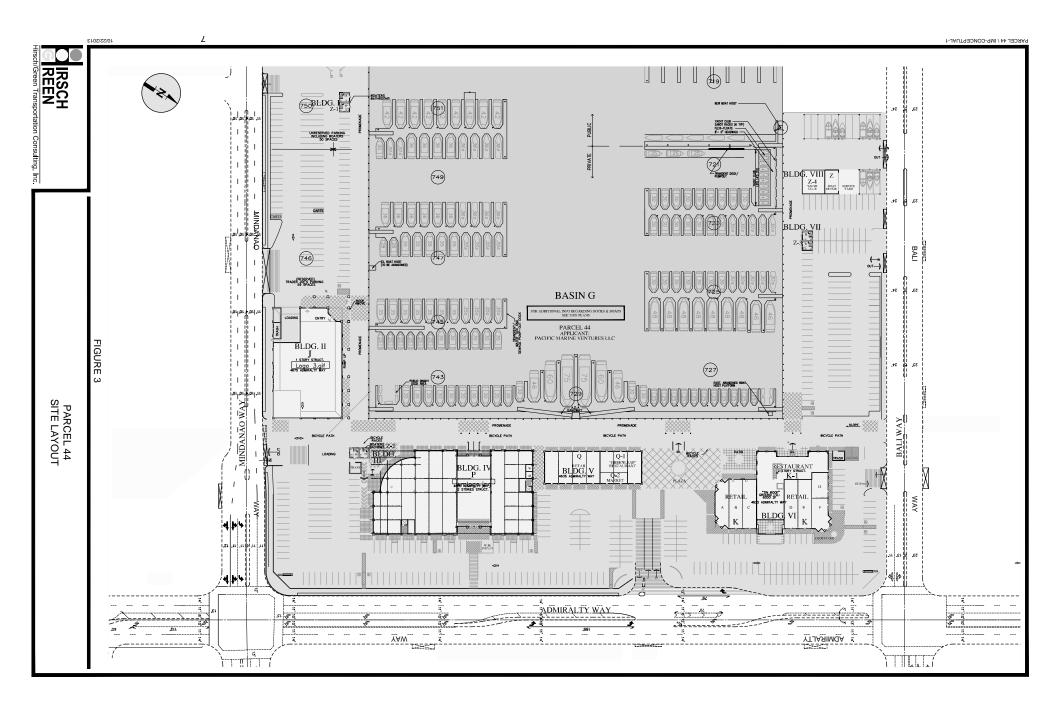


Additionally, while the project application does not include redevelopment of the waterside portion of the parcel, the existing private boat anchorage, which currently provides a total of approximately 205 boat slips will be redeveloped by the project applicant at or around the same time as the landside redevelopment of Parcel 44 pursuant to a previous land use approval granted by the California Coastal Commission (Coastal Development Permit No. 5-11-131). This prior approval allows for the redevelopment of the waterside portion of the parcel with a total of approximately 148 boat slips, which will replace and upgrade the existing boat slips. Therefore, in order to appropriately account for the effects of this previously-approved reduction in the number of boat slips located on the waterside portion of the Parcel 44 project site, this change has also been included as part of the overall traffic analyses for the proposed project.

The proposed project will also provide a total of approximately 477 on-site parking spaces, located in a series of surface parking lots adjacent to or surrounding each of the new buildings. Vehicular access to these parking facilities will be provided by driveways located along each of the project's three frontages, including three driveways along Mindanao Way, four driveways along Bali Way, and a single driveway along Admiralty Way.

The project applicant retained Hirsch/Green Transportation Consulting, Inc. ("Hirsch/Green") to study the potential traffic and parking impacts of the proposed redevelopment project. Based on consultation and agreements with the Traffic and Lighting Division of the Los Angeles County Department of Public Works, this report contains a detailed analysis of the existing and forecast future weekday AM and PM peak hour traffic conditions, including the identification of potential project-related impacts, at a total of 25 intersections adjacent to or in the vicinity of the project, as listed below and shown in relation to the project site in Figure 2.

- 1. Venice Boulevard and Lincoln Boulevard
- 2. Washington Boulevard and Pacific Avenue
- 3. Washington Boulevard and Via Dolce/Dell Avenue
- 4. Washington Boulevard and Via Marina/Ocean Avenue
- 5. Washington Boulevard and Palawan Way
- 6. Washington Boulevard and Abbot Kinney Boulevard
- 7. Washington Boulevard and Lincoln Boulevard
- 8. Washington Boulevard and Glencoe Avenue/Costco Plaza Driveway
- 9. Admiralty Way and Via Marina


- 10. Admiralty Way and Palawan Way
- 11. Lincoln Boulevard and Maxella Avenue/Marina Pointe Drive
- 12. Maxella Avenue and Glencoe Avenue
- 13. Lincoln Boulevard and Marina Expressway (SR-90)
- 14. Admiralty Way and Bali Way
- 15. Lincoln Boulevard and Bali Way
- 16. Admiralty Way and Mindanao Way
- 17. Lincoln Boulevard and Mindanao Way
- 18. Mindanao Way and Eastbound Marina Expressway (SR-90)
- 19. Mindanao Way and Westbound Marina Expressway (SR-90)
- 20. Mindanao Way and Glencoe Avenue
- 21. Admiralty Way and Fiji Way
- 22. Lincoln Boulevard and Fiji Way
- 23. Culver Boulevard and Eastbound Marina Expressway (SR-90) On/Off-Ramps
- 24. Culver Boulevard and Westbound Marina Expressway (SR-90) Off-Ramp
- 25. Lincoln Boulevard and Jefferson Boulevard

As shown in Figure 2, these 25 study intersections include five locations under the exclusive jurisdiction of the County of Los Angeles (intersections 9, 10, 14, 16, and 21), 14 intersections under the sole jurisdiction of the City of Los Angeles (intersections 1, 2, 6 through 8, 11 through 13, 18 through 20, and 23 through 25), and six additional intersections (3 through 5, 15, 17, and 22) exhibiting shared County/City jurisdiction (typically 25 percent County, 75 percent City). Based on the configuration of the roadway network in the study area, these locations are anticipated to be those most likely to be affected by traffic generated by the proposed project. Each of these intersections is currently traffic signal controlled, with the exception of Washington Boulevard and Palawan Way (intersection 5) which is a three-approach, STOP-sign controlled "tee" intersection (with Palawan Way terminating at Washington Boulevard).

PROJECT DESCRIPTION

The project under consideration is the proposed redevelopment of the landside uses occupying Parcel 44, a u-shaped site located within the Marina del Rey area of Los Angeles County, along the west side of Admiralty Way between Bali Way and Mindanao Way and surrounding the eastern portion of Basin G of the Marina. The landside portion of Parcel 44 is currently developed with a number of small one and two-story structures housing a total of approximately 14,724 square feet of commercial, retail, and marine-related uses, including an approximately 7,844 square foot boat sales facility ("Boat Brokers"), a total of approximately 4,216 square feet of office space, an approximately 1,000 square foot boat repair operation ("Seamark"), an approximately 1,080 square foot yacht club, an approximately 111-space dry boat storage facility, and an approximately 584 square foot boater bathroom facility, as well as surface parking lots surrounding and serving each of these uses. However, the majority of the site is currently utilized as boat parking/storage for the boat sales and/or boat repair businesses. Additionally, the Marvin Braude Bike Path, which traverses the east side of Marina del Rey and connects the bicycle lanes on Washington Boulevard with the bike facilities along Fiji Way, runs north-south through the on-site parking and boat storage lots to the east of Basin G. A private anchorage containing total of approximately 205 existing boat berthing spaces (boat slips) is also located on the waterside portion of Parcel 44.

The proposed project will remove all of the existing landside development on Parcel 44 to construct five new commercial buildings (plus three small boater restroom buildings) containing a total of approximately 83,253 square feet of visitor-serving/marine-related retail (including a supermarket), restaurants, and general and governmental office space. Specifically, the new development will consist of a total of approximately 13,795 square feet of general visitor-serving retail space, approximately 25,000 square feet of marine-related retail uses (West Marine), an approximately 13,625 square foot specialty market (Trader Joes or similar), a total of approximately 9,855 square feet of restaurant space (approximately 382 total seats, including outdoor dining areas), a 700 square foot boat repair office and related facilities, an unenclosed, mast-up and dry stack boat storage facility accommodating a total of approximately 69 boats, approximately 16,588 square feet of office space (including 9,170 square feet of general office, 2,285 square feet of Marine Administrative Offices, and 5,133 square feet of boat sales offices), a 1,150 square foot yacht club, an 840 square foot community room/boater lounge (including a small kitchen area), and a total of 1,700 square feet of boater-related support facilities including boater-only bathrooms and laundry rooms.

Additionally, while not part of the current landside redevelopment application, the project applicant will also redevelop the existing private anchorage located along the waterside portion of Parcel 44, under a separate land use approval (Coastal Development Permit No. 5-11-131) previously granted by the California Coastal Commission. This prior approval allows for the development of a total of approximately 148 boat berthing spaces (boat slips), which will replace and upgrade the existing 205 boat slips. Therefore, for purposes of this traffic study, in order to appropriately account for this change, the previously-approved boat slip reduction has been included as part of the analysis of the Parcel 44 landside redevelopment project.

Project Traffic Generation

Typically, estimates of the amount of traffic generated by projects located within the jurisdiction of the County of Los Angeles are based on information and data developed from surveys and studies conducted under the auspices of the Institute of Transportation Engineers ("ITE"), with the most widely-accepted information provided in the ITE's 8th Edition Trip Generation manual.1 However, the project site lies within the Marina del Rey area of the County, and development within the Marina, including the methodology for estimating the trip generation of various land uses, is governed by the Marina del Rey Land Use Plan ("LUP"). Figure 10, provided in Chapter 11 ("Circulation") of the approved (November 2011) update of the LUP, identifies the weekday PM peak hour traffic-generating characteristics ("trip generation rates") for a number of the existing and anticipated future land uses within Marina del Rey, including the retail, office, restaurant, and boat slip uses comprising portions of the existing and/or proposed Parcel 44 site redevelopment project. These "Marina specific" trip generation rates are recognized as accurately representing the trip generation activity for developments within the Marina by the County's Department of Public Works Traffic and Lighting Division, and are therefore appropriate for use in estimating the traffic resulting from the proposed project.

However, the LUP data do not identify PM peak hour trip generation rates for several of the current or proposed uses on the Parcel 44 site, including the proposed "specialty market" and "community room" uses, or the "boat repair" and "yacht club" facilities that are part of both existing and proposed developments, nor are daily (24-hour) or AM peak hour trip generation rates identified in the LUP for any land use. Therefore, for purposes of this analysis, the trip generation rates for these time periods (daily and AM peak hour) for both the existing and/or proposed retail uses (both visitor-serving and marine-related) and office uses, were obtained

¹ Trip Generation, 8th Edition, Institute of Transportation Engineers, Washington, D.C., 2008.

from the ITE *Trip Generation* publication, as were the daily, AM, and PM peak hour trip generation rates for the proposed specialty market and community room components, and for the existing and proposed boat repair and yacht club uses. Note that both the "yacht club" use and "community room" space were assumed to operate in a manner similar to a "recreational community center", and based on consultation with the Traffic and Lighting Division staff, the ITE trip generation rate for that land use was deemed appropriate. Similarly, the trip generation characteristics associated with the "boat repair" facilities were assumed to be reasonably represented by the ITE's "automobile care center" land use. Based on these assumptions, the baseline trip generation rates utilized in this analysis are summarized in Table 1.

The LUP trip generation rates shown in Table 1 were developed specifically for use with projects located within the Marina, and similar to the ITE trip generation data, were generally derived based on empirical counts of vehicles entering and exiting the driveways of the subject land uses. However, as such, both the LUP and ITE trip generation rates reflect only the amount of traffic directly accessing the use itself, and so do not account for factors such as "pass-by" traffic that can influence the amount of "net" traffic generation associated with the various land uses. Pass-by traffic refers to the "capture" by a particular project or land use of a vehicle that is already on the area roadway network for other purposes, such as a trip to or from work, by providing convenient amenities or services that result in the driver diverting from the existing trip to patronize the site. Since such activity is only an interim stop along a trip which existed prior to the development of the project, vehicles making these stops are not considered to be newly generated project-related traffic.

Therefore, in order to more accurately identify the amount of "net new" traffic generated by the proposed project's uses, the trip generation for the proposed project was adjusted to account for potential pass-by traffic activity that could be associated with the new development. A review of both the existing and proposed land uses for the Parcel 44 site indicated that pass-by trip activity is not expected to be a significant factor for most of these uses, with only the proposed visitor-serving and/or marine-related retail uses expected to exhibit any appreciable pass-by traffic activity. Based on the locations of these new facilities, which front on Admiralty Way, and by agreement with the County's Department of Public Works Traffic and Lighting Division, it was estimated that approximately 1.0 percent of the existing traffic passing the project site along Admiralty Way (in the southbound direction only) would patronize these proposed retail uses as an interim stop along an otherwise existing trip, and therefore would be considered to be existing (pass-by trips) rather than new project-generated traffic added to the area roadways.

Table 1 Existing and Proposed Uses Trip Generation Rates

<u>Visitor-Serving Retail</u> - per 1,000 square feet of floor area (ITE Land Use 814))

Daily Trips: T = 42.94 (A)

AM Peak Hour: T = 1.00 (A); I/B = 61%, O/B = 39% PM Peak Hour:* T = 4.44 (A); I/B = 49%, O/B = 51%

Supermarket - per 1,000 square feet of floor area (ITE Land Use 850)

Daily Trips: T = 102.24 (A)

AM Peak Hour: T = 3.59 (A); I/B = 61%, O/B = 39%PM Peak Hour: T = 10.50 (A); I/B = 51%, O/B = 49%

Restaurant - per seat (ITE Land Use 932)

Daily Trips:* T = 2.86 (S)

AM Peak Hour:* T = 0.03 (S); I/B = 50%, O/B = 50%PM Peak Hour:* T = 0.25 (S); I/B = 67%, O/B = 33%

Office - per 1,000 square feet of floor area (ITE Land Use 710)

Daily Trips: T = 11.01 (A)

AM Peak Hour: T = 1.55 (A); I/B = 88%, O/B = 12% PM Peak Hour:* T = 2.21 (A); I/B = 17%, O/B = 83%

Yacht Club - per 1,000 square feet of floor area (assumed as Recreational Community Center, ITE Land Use 495)

Daily Trips: T = 22.88 (A)

AM Peak Hour: T = 1.62 (A); I/B = 61%, O/B = 39%PM Peak Hour: T = 1.45 (A); I/B = 37%, O/B = 63%

Boat Slips - per slip

Daily Trips: T = 2.883 (SI)

AM Peak Hour: T = 0.126 (SI); I/B = 34%, O/B = 66% PM Peak Hour:* T = 0.137 (SI); I/B = 36%, O/B = 64%

Boat Dry Storage - per boat space

Daily Trips:* T = 0.334 (Sp)

AM Peak Hour:* T = 0.048 (Sp); I/B = 65%, O/B = 35% PM Peak Hour:* T = 0.048 (Sp); I/B = 8%, O/B = 92%

Boat Repair - per 1,000 square feet of floor area (assumed as Automobile Care Center, ITE Land Use 942)

Daily Trips: T = 12.50 (A) (estimated)

AM Peak Hour: T = 2.94 (A); I/B = 65%, O/B = 35% PM Peak Hour: T = 3.38 (A); I/B = 50%, O/B = 50%

Where: A = Building Area in 1,000 sq. ft. T = Trip Ends

Sp = Number of Boat Dry Storage Spaces

Per MdR LUP, or *Draft Traffic Study for the Marina del Rey Local Coastal Program Amendment*, Raju Associates, April 29, 2010. All other trip generation rates per 8th Ed. ITE Trip Generation, unless noted.

^{*} Note:

Based on current traffic volume information provided by the Traffic and Lighting Division, southbound Admiralty Way adjacent to the project site currently carries a total of approximately 14,359 vehicles per day, including approximately 936 vehicles during the AM peak hour, and approximately 1,235 vehicles during the PM peak hour. Therefore, for purposes of this study, it was assumed that approximately 144 vehicles per day (1.0 percent of the existing 14,359 daily trips on southbound Admiralty Way) would patronize the project's proposed visitor-serving and/or marine-related retail uses as part of an existing trip past the site, resulting in a total of approximately 288 pass-by trips per day (144 inbound and 144 outbound), since each of the pass-by vehicles will produce one "entering" and one "exiting" trip. Similarly, it was assumed that a total of approximately 18 pass-by trips (9 inbound, 9 outbound) would occur during the AM peak hour, while a total of approximately 24 pass-by trips (12 inbound, 12 outbound) would be expected during the PM peak hour. Based on the ratio of the anticipated trip generation associated with the various proposed individual retail uses (described later in this section), the total number of pass-by trips were divided between the buildings housing these components.

A second factor affecting the potential trip generation characteristics of any particular land use is the "internal interaction" of patrons or employees of one use by another use within a particular development site (also known as "internal capture" or "multi-purpose trips"). While the LUP trip rates discussed earlier are assumed to account for pass-by trip adjustment factors, these rates were developed for the purpose of estimating the traffic generated by "stand-alone" land uses, and as such, do not include applicable reductions associated with multi-purpose trips to a site that includes a variety of different land uses. However, a review of the project indicates that none of the proposed uses would be expected to exhibit any notable internal interaction activity, and therefore, for purposes of this study, no "internal interaction" reductions were assumed.

Finally, use of available public transit can reduce the amount of traffic generated by a development, as employees or visitors utilize bus or other transportation modes to travel to and from the project site. As discussed in detail later in this document, Parcel 44 is served by a number of bus lines, both directly and within convenient walking distance of the site; transfers and other connections available from these site-serving bus lines allow patrons and employees of the project to use of public transit to travel throughout the greater Los Angeles region. However, a review of both the existing and proposed uses at the project site indicates that none of the uses would be expected to exhibit any significant use of public transit, and as such, no additional transit utilization was assumed for either the existing uses or proposed project components beyond that intrinsically assumed in the LUP or ITE trip generation rates.

Therefore, using the baseline "Marina-specific" (LUP) and ITE stand-alone trip generation rates summarized in Table 1, adjusted to account for the effects of pass-by activity associated with the proposed retail components, the trip generation estimates for the new project uses was estimated. However, as described earlier in this study, the project will also remove the existing uses currently operating at the site, and in turn, the existing trips associated with these uses will disappear. Therefore, the "new" project trips (generated by the proposed uses) will be partially offset by the removal of these existing trips, resulting in a "net" increase in traffic at the project site. The results of the "net new" project trip generation estimates are summarized in Table 2.

As shown in Table 2, once completed and occupied, anticipated by the end of the year 2016, the proposed project itself is expected to result in a total of approximately 4,551 daily trips, including approximately 134 trips (85 inbound, 49 outbound) during the AM peak hour, and approximately 451 trips (224 inbound, 227 outbound) during the PM peak hour, including reductions of approximately 114 daily trips, 8 AM peak hour trips (4 inbound, 4 outbound), and 10 PM peak hour trips (5 inbound, 5 outbound) to adjust for pass-by patronage of the proposed 13,795 square feet of visitor-serving retail components (Buildings V and VI), and additional reductions of approximately 174 daily trips, 10 AM peak hour trips (5 inbound, 5 outbound), and 14 PM peak hour trips (7 inbound, 7 outbound) to account for pass-by patronage of the proposed 25,000 square foot marine-related retail (West Marine, Building IV) uses.

However, the demolition of the existing on-site development will result in the removal of its associated trips from the "existing" area traffic volumes. As also shown in Table 2, the existing Parcel 44 site uses currently generate a total of approximately 798 daily trips, including 55 trips (32 inbound, 23 outbound) during the AM peak hour, and 64 trips (18 inbound, 46 outbound) during the PM peak hour; as described earlier in this section of the report, no pass-by activity is assumed to be associated with any of the existing uses occupying Parcel 44.

Therefore, accounting for the removal of the existing site-related trips, as well as incorporating the effects of pass-by patronage for the visitor-serving and/or marine-related retail components of the new development (those fronting on Admiralty Way), the proposed project is anticipated to result in a net increase in Parcel 44 site-related traffic of approximately 3,753 net daily trips, including approximately 79 net trips (53 inbound, 26 outbound) during the AM peak hour, and approximately 387 net trips (206 inbound, 181 outbound trips) during the PM peak hour. This net trip generation was used to evaluate the potential impacts of the proposed project on the surrounding street and highway network, as discussed in the following sections of this report.

Table 2
Project Trip Generation Estimates

		AM Peak Hour		PM Peak Hour			
Size/Use	Daily	In	Out	Total	In	Out	Total
Proposed Project							
13,795 sq. ft. Visitor-Serving Retail	592	9	5	14	30	31	61
(Less 40% of Total Pass-by Trips) [1]	(114)	(4)	(4)	(8)	(5)	(5)	(10)
Subtotal Visitor-Serving Retail Trips	478	5	1	6	25	26	51
25,000 sq. ft. Marine-Related Retail (West Marine)	1,074	15	10	25	54	57	111
(Less 60% of Total Pass-by Trips) [1]	(174)	(5)	(5)	(10)	(7)	(7)	(14)
Subtotal Marine-Related Retail Trips	900	10	5	15	47	50	97
9,855 sq. ft. Restaurant(s) (382 total seats)	1,093	6	5	11	64	32	96
700 sq. ft. Boat Repair Offices	9	1	1	2	1	1	2
69 boat Dry and/or Mast-up Boat Storage	23	2	1	3	0	3	3
Subtotal Boat Repair/Boat Storage Trips	32	3	2	5	1	4	5
13,625 sq. ft. Supermarket	1,393	30	19	49	73	70	143
5,133 sq. ft. Boat Brokers Offices	57	7	1	8	2	9	11
9,170 sq. ft. General Offices	101	12	2	14	3	17	20
2,285 sq. ft. Marine Administrative Offices	25	4	0	4	1	4	5
1,150 sq. ft. Yacht Club	26	1	1	2	1	1	2
840 sq. ft. Community Room/Boater Lounge	19	1	0	1	0	1	1
148 -slip Boat Slips	427	6	13	19	7	13	20
1,700 sq. ft. Boater Bathrooms and Laundry (total)	ancillary						
Subtotal New Project Trips	4,551	85	49	134	224	227	<i>4</i> 51
Less Existing Site Uses							
7,844 sq. ft. Boat Brokers Offices (total)	86	11	1	12	3	14	17
1,000 sq. ft. Boat Repair (Seamark)	13	2	1	3	2	1	3
4,216 sq. ft. General Offices	46	6	1	7	2	7	9
1,080 sq. ft. Yacht Club	25	1	1	2	1	1	2
205 -slip Boat Slips	591	9	17	26	10	18	28
111 boat Dry Boat Storage	37	3	2	5	0	5	5
584 sq. ft. Boater Bathrooms	ancillary						
Subtotal Existing Site Trips	798	32	23	55	18	46	64
Total Net New Parcel 44 Site Trips	3,753	53	26	79	206	181	387

Note:

^[1] Pass-by trips estimated at 1% of SB traffic passing project site on Admiralty Way (14,359 daily, 936 AM, 1,235 PM).

Project Geographic Trip Distribution

Next, the general geographic distribution of the project trips was identified, based primarily on a review of existing travel patterns in the general site vicinity, although local and regional demographic information was also researched to provide data on the relative distribution of population from which employees and patrons of the proposed project's component facilities would be drawn. This information was used to estimate the overall geographic distribution of project trips throughout the local area and surrounding region, which is summarized in Table 3. For purposes of this analysis, it was assumed that the general geographic trip distributions shown in Table 3 are representative of both the AM and PM commute peak hours, and that the existing and proposed site uses exhibit the same general geographic trip distributions.

Table 3
Project Geographic Trip Distribution Percentages

Direction	Percent
North	35%
South	35%
East	20%
West	10%
Totals	100%

Project Traffic Assignment

Using the general geographic directional trip distribution percentages shown in Table 3, the approximate percentages of trips associated with both the existing site development and the proposed project's component uses on the key streets and freeway facilities in the project vicinity while traveling to or from the project site were determined, and are shown in Figure 4.

The general traffic assignments shown in Figure 4 were then further refined to identify the specific movement of project traffic through each of the study intersections as it travels to and from the project site; this level of detail is necessary in order to assess the project's traffic effects at each location. This step considered a number of factors that could influence the project traffic's access routes and travel patterns, including turn restrictions at several of the study intersections and the locations and operations of the project-serving driveways, as described in more detail in the following paragraphs.

15

GEO-DIST

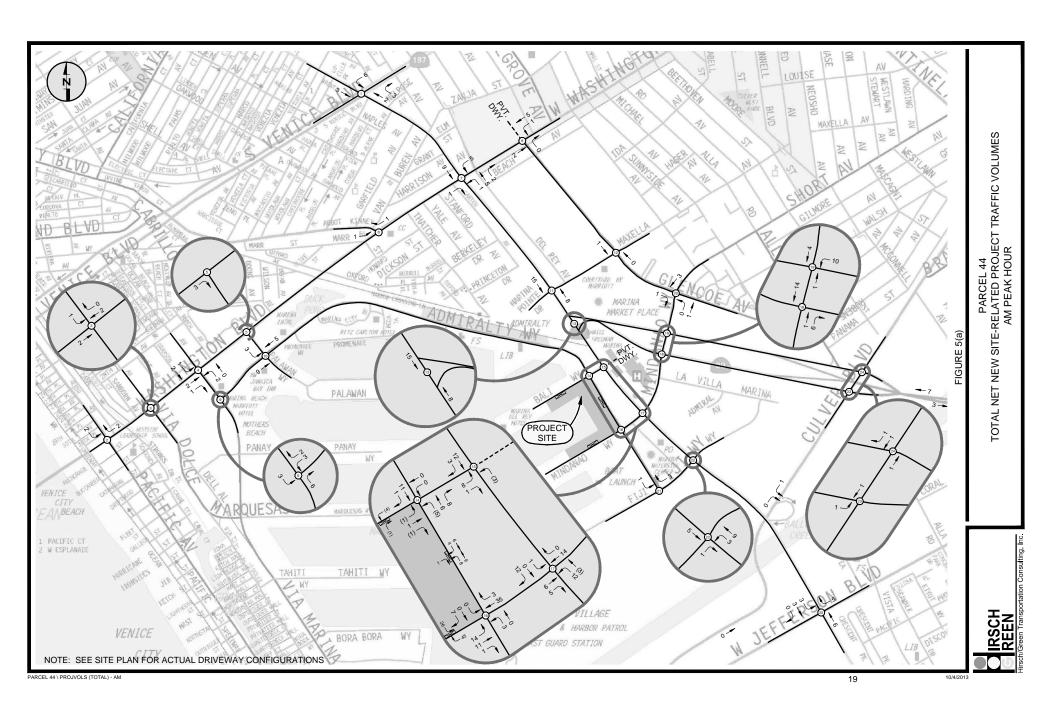
As described earlier, each of the project site-adjacent roadways, Admiralty Way, Bali Way, and Mindanao Way, currently exhibit raised median islands along the length of the project frontages. Both Bali Way and Mindanao Way exhibit existing openings in the median islands that permit left-turns into and out of the Parcel 44 site. Although some modification of the locations and/or sizes of these existing median openings may be necessary in order to align with the proposed project's new driveways (as described in detail later in this report), for purposes of identifying the traffic patterns associated with the new development for this analysis, each of the proposed new project driveways accessing either Bali Way or Mindanao Way is expected to allow for both left-turn and right-turn entry and exit movements.

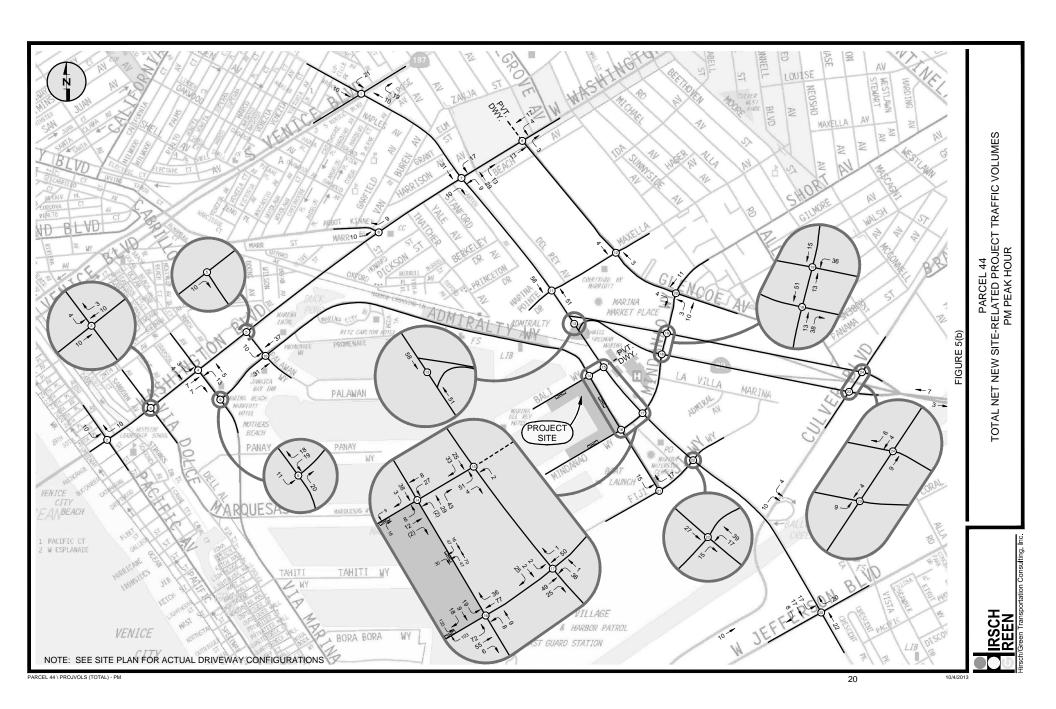
Conversely, while there is an existing median island opening on Admiralty Way adjacent to the project's proposed new driveway, this median opening currently exhibits only a left-turn pocket for southbound travel, to allow left-turns both into and out of an existing driveway serving the medical/commercial office development opposite Parcel 44, on the east side of Admiralty Way. However, this median island opening does not currently provide a left-turn pocket to facilitate northbound Admiralty Way traffic entry into the proposed project's new driveway; it is of note that northbound left-turns (or more accurately, northbound u-turns, since there is currently no Parcel 44 driveway adjacent to the existing median island opening) are not specifically prohibited at this location, but must make an undesirable turn from the innermost "through" travel lane (without benefit of a turn pocket), which can block or impede other northbound through traffic utilizing this lane. Similarly, while left-turn exits from the Parcel 44 site to northbound Admiralty Way are not technically prohibited, this move does not currently occur since no site driveway exists at the location of the existing median island opening.

As noted earlier, the project's proposed new Admiralty Way driveway will be located opposite the existing median island opening, and project-related traffic could physically enter and exit the site via this existing median island opening. However, due to the current configuration and operation of the median island opening (with no northbound left-turn lane), it is anticipated that both left-turn entry and left-turn exits (from and to northbound Admiralty Way, respectively) at this new project driveway would be prohibited due to safety and operational concerns.

Therefore, the project includes a modification to the Admiralty Way median island (adjacent to the new driveway) to provide a new left-turn pocket in the median island at the existing opening, to facilitate left turns from northbound Admiralty Way into the project site without impeding other northbound through traffic. Preliminary reviews of the conceptual median island modification by

both the County's Department of Public Works, and the Department of Beaches and Harbors indicate that constructing a new left-turn pocket within the existing median island to allow northbound left-turns into the project's new driveway at this location would be acceptable. However, both Departments also recommended that exiting left-turns from the new project driveway onto northbound Admiralty Way should be prohibited, in order to minimize potential conflicts with other vehicles entering or exiting the project site, reduce the potential for such conflicts to create vehicular queues either internal to the site or along Admiralty Way, and to eliminate conflicts with exiting vehicles turning left onto southbound Admiralty Way from the existing medical/commercial office development driveway. To address this recommendation, the project's Admiralty Way driveway design includes a raised triangular island to physically prevent left-turn exits and to direct all outbound project traffic onto southbound Admiralty Way; project patrons and employees wishing to travel north on Admiralty Way upon leaving the site will exit via one of the new project driveways on either Bali Way or Mindanao Way, then make a turn left at the signalized intersections at Admiralty Way to proceed north along that roadway.


Based on the site access assumptions and other factors described above, the project-related traffic turning movement assignment percentages at each of the 25 study intersections were identified. Again, as with the general geographic trip distributions discussed earlier, for purposes of this analysis, the basic project trip assignment percentages at each of the study intersections were assumed to be the same for both the AM and PM peak hours. However, a review of the proposed project's individual component uses, as well as a comparison of these uses to the existing site development, indicates that it is likely that each of the project's components would access the site using different driveways, depending on the proximity of their destination use to any of seven proposed driveways. Similarly, since the existing Parcel 44 site driveway locations are different from those of the proposed project, these current uses would also be expected to exhibit somewhat different site access patterns from the project's uses. While these individual site access variations would not affect the general travel patterns to and from the project vicinity, as shown in Figure 4, they would affect how patrons or employees travel through the study intersections nearest the project site as they orient themselves to enter or exit the project site via the most convenient driveway. Specifically, the six intersections of Admiralty Way and Bali Way (no. 14), Lincoln Boulevard and Bali Way (no. 15), Admiralty Way and Mindanao Way (no. 16), Lincoln Boulevard and Mindanao Way (no. 17), Admiralty Way and Fiji Way (no. 21), and Lincoln Boulevard and Fiji Way (no. 22), would be expected to exhibit slightly different "inbound" or "outbound" trip percentages as compared to each other.


Therefore, intersection-level turning movement trip assignment percentages were developed individually for each of the project's major component buildings or uses (Building II, Building IV, Buildings V and VI, Building VIII, and boat slips; Buildings I, III, and VII are boater restrooms that are ancillary to the project's primary uses, and do not generate any independent traffic). These trip assignments reflect the unique site access travel routes for each major project component use at the six intersections identified earlier. The trip assignment percentages for the traffic associated with the existing site uses were also identified separately, to account for differences between the current and proposed site access locations and operations.

The final step in the traffic assignment process identified the number of project component and existing use trips traveling through each of the 25 study intersections using their individually identified travel routes. This was accomplished by multiplying the AM and PM peak hour project component or existing use trips shown previously in Table 2 by the appropriate inbound or outbound intersection turning movement percentages for each use. Note that the assignment of trips for the project's Building IV, and for Buildings V and VI (which together are considered as one component) include the pass-by trip reductions described earlier. Additionally, the trips associated with the existing Parcel 44 site uses were combined, and assigned as a single entity.

The resulting individual AM and PM peak hour project component volumes were then added together to identify the amount of "total project trips" at each intersection (representing the number of trips resulting from the project itself) for both peak hours. Finally, the peak hour traffic generated by the existing site uses was subtracted from these values, to produce the net new project-related traffic additions to each of the 25 study intersections. The individual intersection-level traffic assignment percentages for the project component and existing uses, along with the AM and PM peak hour project component and existing uses traffic volumes, and the "total proposed project-only trips" volumes, are contained in Appendix A of this report.

The results of this project traffic assignment process provide the level of detail necessary to conduct the traffic analysis and to identify the potential incremental project-related traffic impacts at the study intersections. The "total net" project traffic volumes, representing the sum of the traffic expected to be generated by the total of the proposed project's component uses less those trips associated with the existing site uses, which will be removed, are shown in Figure 5(a) for the AM peak hour, and in Figure 5(b) for the PM peak hour. The volumes identified in these figures represent the incremental project traffic additions used in this analysis to identify the potential project-related traffic impacts at each of the 25 study intersections.

Project Parking and Access

Project Parking Requirements

The Los Angeles County Zoning Code, which is also applicable to developments located within Marina del Rey, identifies that on-site vehicular (automobile) parking shall be provided at a ratio of 4.0 vehicular parking spaces per 1,000 square feet of floor area for most typical "retail" uses, and 2.5 vehicular parking spaces per 1,000 square feet for offices and other commercial uses, while "restaurant" uses (including cafes and coffee shops) require 1.0 vehicular parking space for every three seats, based on their anticipated maximum occupancy, and including "kitchen" and "back of house" areas. The maximum occupancy for restaurants is typically estimated at one person for each 45 square feet for dining areas, and at one person for each 200 square feet for kitchen/back of house areas. Boat slips are required to provide vehicular parking at a ratio of 0.6 parking spaces per slip, while boat storage facilities require 0.3 vehicular parking spaces for each boat storage space. The Zoning Code does not specify vehicular parking requirements for uses such as the proposed yacht club, community room, or boater lounge/laundry facilities. Therefore, for purposes of this analysis, each of these uses was assumed to exhibit the same vehicular parking requirement as typical "retail" uses, at 4.0 spaces per 1,000 square feet.

In addition to the vehicular parking requirements noted above, the County's Zoning Code also includes requirements for the provision of both long-term and short-term on-site bicycle spaces; long-term bicycle parking spaces are intended for use for periods of two hours or longer, such as by a project's employees, while short-term bicycle spaces are generally utilized for periods of less than two hours, and are intended to accommodate project patrons or visitors. The current Zoning Code requires that long-term bicycle parking for most of the project's proposed uses, including the general retail, supermarket, and restaurant components, be provided at a ratio of 1.0 space per 12,000 square feet of gross floor area, while short-term bicycle parking is to be provided at a ratio of 1.0 space per 5,000 gross square feet. Long-term bicycle parking for "office" uses are required at a ratio of 1.0 space per 10,000 square feet of gross floor area, with short-term bicycle parking to be provided at a ratio of 1.0 space per 20,000 gross square feet; regardless of the parking ratios noted above, a minimum of two long-term and two short-term bicycle spaces are required for all of the commercial uses proposed for the Parcel 44 project.

Based on the parking ratios and assumptions described above, the amount of vehicular and bicycle parking required for each of the project's individual component uses, as well as for the entire development itself, was calculated, and is summarized in Table 4.

Table 4
Los Angeles County Zoning Code Vehicular and Bicycle Parking Calculations

Proposed Project Component Use	Project Con	nponent Size	Vehicular Parking Requirement	Spaces Required	
Retail Uses (total) [1]		53,960 sq. ft.	4.0 / 1,000 sq. ft.	216	
Restaurant Uses					
Indoor Dining Area (total)	267 seats	4,000 sq. ft.	1.0 / 3 seats	89	
Outdoor Dining Area (total)	115 seats	n/a	1.0 / 3 seats	38	
Kitchen/Back of House (total)	30 persons	5,855 sq. ft.	1.0 / 3 persons	10	
		Tot	al Restaurant Parking	137	
Office and Other Commercial Uses [2]		16,588 sq. ft.	2.5 / 1,000 sq. ft.	41	
Yacht Club		1,150 sq. ft.	4.0 / 1,000 sq. ft.	5	
Boater Bathrooms/Laundry		1,700 sq. ft.	n/a (ancillary)	0	
Boat Slips	148 slips	n/a	0.6 / boat slip	89	
Boat Dry/Mast-up Storage	69 spaces	n/a	0.3 / space	21	
Total Project Vehicular Parking Required					
Vehicular Parking Requirement Reduction (5% for provision of "above code" bicycle parking)					
Adjusted Total Project Vehicular Parking Required					

Notes:

^[2] Includes 5,133 sq. ft. Boat Brokers office; 2,285 sq. ft. Marine Administrative Office; and 9,170 sq. ft. general office space.

Proposed Use/Size	Bicycle Parking (Spaces/U	Bicycle Parking Required		
	Long-Term *	Short-Term *	Long-Term	Short-Term
63,815 sq. ft. Total Retail and Restaurant Uses	1.00 /12,000 sq. ft.	1.00 /5,000 sq. ft.	5 spaces	13 spaces
16,588 sq. ft. Total Office/Commercial Uses	1.00 /10,000 sq. ft.	1.00 /20,000 sq. ft.	2 spaces	2 spaces
1,150 sq. ft. Yacht Club	1.00 /12,000 sq. ft.	1.00 /5,000 sq. ft.	2 spaces	2 spaces
1,700 sq. ft. Boater Bathrooms/Laundry (total)	n/a (ancillary)	n/a (ancillary)	0 spaces	0 spaces
148 -slip Boat Slips	n/a	n/a	0 spaces	0 spaces
69 -boat Dry/Mast-up Boat Storage	n/a	n/a	0 spaces	0 spaces
	Subtotal Bicyc	le Parking Required	9 spaces	17 spaces
			26 9	spaces
Additional Bicycle Parking Provided (above required; for 5% vehicular parking requirement reduction, at 2 bicycle spaces per vehicle space)				50 spaces
Т	otal Project Bicycle F	Parking Required	9 spaces	67 spaces
			76 9	spaces

^{*} Note: Minimum 2 long-term and 2 short-term bicycle parking spaces required per use.

^[1] Includes 13,795 sq. ft. visitor-serving retail; 25,000 sq. ft. West Marine; 13,625 sq. ft. specialty market; 700 sq. ft. boat repair; and 840 sq. ft. community room/boater lounge.

As indicated in Table 4, the proposed project will require a total of approximately 509 vehicular parking spaces, including a total of approximately 216 spaces for the 53,960 total square feet of retail-related uses, a total of approximately 137 spaces for the 9,855 total square feet (total of 382 seats, including outdoor seating) of restaurant uses, approximately 41 total spaces for the 16,588 total square feet of office/other commercial uses, five (5) spaces for the yacht club use, and an additional 110 total parking spaces for the proposed boat-related uses (including both the waterside boat slips and the landside dry/mast-up boat storage uses). Additionally, the proposed project will be required to provide a total of approximately 26 bicycle spaces, including a total of nine (9) long-term and 17 short-term spaces; the majority of these bicycle spaces (approximately 18 spaces) are required for the proposed retail and restaurant component uses.

However, it is of note that in addition to the vehicular parking requirements noted above, the County's Zoning Code also includes provisions to allow for reductions in the number of required vehicular parking space, based on the provision of bicycle parking spaces in addition to the number otherwise required (at a ratio of two additional bicycle parking spaces for each of the vehicular parking spaces to be removed). Specifically, the Zoning Code permits a reduction in the number of required vehicular parking spaces of up to five percent (5%) of the total required spaces for a project if it provides more than the minimum number of required bicycle spaces, is located adjacent or proximate to an existing or proposed bicycle path, lane, route, or boulevard (as designated in the County Bicycle Master Plan), and is within one-half mile of a transit stop for a fixed rail or bus rapid transit or local bus system along a major or secondary highway (all three conditions must be met to qualify for the vehicular parking reduction). As described earlier in this report, the existing Marvin Braude Bike Path actually travels through the project site, and will be improved and enhanced as part of the proposed project's development. Additionally, as discussed later in this document, the Santa Monica Big Blue Bus ("BBB") Rapid 3 bus line operates along Lincoln Boulevard (designated as a Major Highway by the City of Los Angeles) through the project vicinity, including stops at Mindanao Way (for both northbound and southbound travel) approximately 150 feet east of the eastern edge of project site, well within the one-half mile distance required by the Zoning Code.

Therefore, since the proposed project meets both the bike path and bus transit proximity qualifications noted above, the project applicant has elected to exercise the option to reduce the number of required vehicular parking spaces by providing additional bicycle parking. The allowable maximum reduction in vehicular parking spaces of five percent equates to approximately 25 spaces (509 required vehicular spaces x 0.05), which will require the provision

of an additional 50 bicycle spaces (two bicycle parking spaces for each vehicular parking space) above the 26 bicycle spaces already required. Note that the Zoning Code does not designate whether such additional bicycle spaces are to be designated as long-term or short-term spaces; for purposes of this analysis, all of the 50 additional (above Code required) bicycle spaces were assumed to be short-term spaces. As a result, as also shown in Table 4, following implementation of these vehicular and bicycle parking requirement adjustments, the proposed project will be required to provide a total of approximately 484 vehicular parking spaces and a total of approximately 76 bicycle parking spaces (nine long-term and 67 short-term spaces).

Project Parking Supply

The proposed project will provide a total of approximately 477 on-site vehicular parking spaces to serve its proposed uses, including approximately 282 standard (full-size) spaces (59 percent), 184 compact spaces (39 percent), and 11 handicap spaces (two percent). The Zoning Code allows a maximum 40 percent of a project's required parking to be provided as compact spaces (or up to approximately 191 spaces for the proposed project), and as such, the project will conform to that provision. Additionally, the Zoning Code requires that projects that require between 401 and 500 vehicular parking spaces (such as the proposed development) provide a minimum of seven (7) handicap parking spaces; at a total of approximately 11 handicap spaces, the proposed project will exceed that requirement by approximately four (4) spaces. Therefore, the project's proposed parking "breakdown" of standard, compact, and handicap parking spaces complies with the applicable Zoning Code requirements and/or policies. However, it should be noted that approximately 34 of the total 477 proposed parking spaces (about seven percent) are configured as tandem spaces; as shown previously in Figure 3 (Project Site Layout), these tandem spaces are located along the north and south sides of the site's Admiralty Way driveway and along the northern portion of the site's Admiralty Way frontage (east of Buildings V and VI). The use and operations of these tandem spaces is discussed in detail later in this report. Finally, although not specifically indicated in Figure 3, a total of 76 bicycle parking spaces will also be provided at a number of locations scattered throughout the project site.

Although the proposed project will meet the Zoning Code's requirement to provide a minimum of 76 bicycle parking spaces, the proposed 477-space vehicular parking space supply will be approximately seven (7) spaces deficient of the required 484 vehicular parking spaces identified in Table 4 (including the allowable reductions associated with the bicycle and transit provisions of the Zoning Code). However, it is important to note that the Zoning Code's vehicular parking

requirements were designed to identify the anticipated "stand-alone" parking needs of retail and commercial land uses, including those contained in the proposed project, and as such, these parking ratios do not consider the potential beneficial effects on parking demands generally recognized to occur due to the integrated, mixed-use operations of the proposed development. Further, it is well known that most land uses exhibit variations in patronage and activity levels throughout the day, and as a result, the parking demands for these uses fluctuate as well, resulting in a dynamic parking demand profile rather than the static, maximum parking demand (requirement) value identified by the Zoning Code. The variability in parking demand is important in the ultimate determination regarding whether the proposed project will provide adequate parking, since the various retail, restaurant, and other commercial uses proposed for the project may not exhibit the same daily activity profiles, and as such, the peak parking demands of these various uses may not overlap. The potential offset of peak parking demands allows for a phenomenon known as "shared parking", where parking spaces designated for one land use are not fully utilized at all times of the day, and thus are available for use by other land uses on the same or adjacent sites, thereby potentially reducing the number of parking spaces needed to accommodate a project's parking demand. The generally beneficial effects of this type of parking interaction in reducing the overall parking requirements of new developments are well documented, and "shared parking" is recognized as a useful and appropriate parking assessment tool by many jurisdictions throughout the region, including Los Angeles County.

Therefore, in order to better evaluate whether the proposed project's parking supply is adequate to accommodate its anticipated parking demands, a supplemental shared parking assessment was prepared, based on methodologies and assumptions published in the current (2nd) Edition of the Urban Land Institute's Shared Parking report². The ULI data is based on surveys of parking activity for a variety of land uses located throughout California and across the country, including the retail, restaurant, and other commercial uses contained in the proposed project, and provides detailed hour-by-hour parking profiles for each use, identified as percentages of the maximum parking demand for each of the various uses. For purposes of this analysis, the maximum parking demands are assumed to equate to the Zoning Code "parking requirement" for each use, as shown earlier in Table 4. By applying the hourly parking demand percentages to the use's parking requirement, the actual parking needs for each use can be identified for any given time of the week. When these individual use parking demands. The supplemental

² Shared Parking, Second Edition, Urban Land Institute, Washington, D.C., 2005.

shared parking analyses for the proposed project, including a detailed discussion of the analysis methodologies and assumptions used, is provided in Appendix B of this report. However, the results of the evaluations, including identification of the anticipated hourly parking demands of the project for both typical weekday and weekend conditions, are summarized in Table 5.

Table 5
Proposed Project Shared Parking Calculations
Typical Weekday and Weekend Conditions

		Weekdays	i		Weekends	i
Time of Day	Total Parking Demand	Total Parking Provided	Parking Surplus/ (Deficit)	Total Parking Demand	Total Parking Provided	Parking Surplus/ (Deficit)
6:00 AM	18	477	459	17	477	460
7:00 AM	44		433	34		443
8:00 AM	118		359	80		397
9:00 AM	217		260	172		305
10:00 AM	304		173	223		254
11:00 AM	384		93	284		193
12:00 PM	447		30	360		117
1:00 PM	457 #		20	383		94
2:00 PM	441		36	385		92
3:00 PM	399		78	385		92
4:00 PM	407		70	375		102
5:00 PM	428		49	382		95
6:00 PM	433		44	398 #		79
7:00 PM	429		48	394		83
8:00 PM	395		82	374		103
9:00 PM	325		152	317		160
10:00 PM	246		231	242		235
11:00 PM	142		335	171		306
12:00 AM	35		442	69		408

Notes:

As indicated in Table 5, the peak parking utilization for the proposed project is expected to occur during the weekday mid-day period between about 1:00 and 2:00 PM, with a total site-related parking demand of approximately 457 spaces, or about 20 spaces fewer than are provided, and resulting in a maximum on-site parking occupancy of approximately 96 percent. Additionally, during the approximately two-hour period from approximately 12:00 noon to 2:00 PM, the total

[#] indicates peak weekday parking demand.

[#] indicates peak weekday parking demand.

parking demands for the project are expected to exceed the 443 "self-park" spaces provided (not counting the 34 tandem spaces), and therefore will necessitate use of approximately 20 of the tandem spaces to accommodate the anticipated parking demands during this period. However, as also shown in Table 5, throughout the remainder of the typical weekday activity, the total project parking demands are expected to be less than 443 spaces, and as such, use of tandem spaces will not be needed, and all project-related parking can be accommodated within the "self-park" spaces. Therefore, it is recommended that any valet or parking attendant assisted parking for the project be required only during the peak weekday parking activity periods identified in Table 5, from approximately 11:00 AM to about 3:00 PM.

Weekend project-related parking demands for the site are anticipated to be generally lower than for the weekday operations, due in part to reduced parking demands for the project's office components, as well as due to greater differences in the hourly activity levels of the remaining retail and restaurant uses of the project, which allow for greater benefit due to shared parking. As also shown in Table 5, the peak weekend parking demands for the project are anticipated to occur somewhat later in the day than on weekdays, from approximately 6:00 to 7:00 PM, with a total of approximately 398 spaces (about 84 percent) of the parking expected to be utilized, or about 79 spaces fewer than are provided. As a result, the proposed project is anticipated to be able to accommodate its peak weekend parking demands throughout the entire day without need of the tandem spaces, and no valet or attendant-assisted parking will be required.

Additionally, the project's overall vehicular parking supply is divided into several distinct parking areas within the site, to accommodate, to the extent feasible, the parking demands associated with the individual component uses (or combination of uses within the various buildings) in locations adjacent to or in close proximity to the intended users. As also shown earlier in the project site layout in Figure 3, approximately 109 vehicular parking spaces are provided in the site's southwestern parking lot (designated as "Parking Area 1" in the shared parking analysis in Appendix B), located on Mindanao Way west of the Marvin Braude Bike Path and which is anticipated to primarily serve Building II (Trader Joe's or similar specialty market), while approximately 164 additional vehicular parking spaces (including nine tandem spaces) are located in the parking area at the southeast corner of the project site ("Parking Area 2"), fronting Admiralty Way between Mindanao Way and the project's new Admiralty Way driveway, and which is expected to primarily serve Buildings IV and V (housing West Marine, all of the proposed office space, including the Marine Administration Offices, approximately one-third of the general retail uses, and one of the proposed restaurants). Approximately 94 vehicular

parking spaces (including the remaining 25 tandem spaces) are located in the parking area at the northeast corner of the site, fronting Admiralty Way between the new Admiralty Way driveway and Bali Way, with the final approximately 110 vehicular parking spaces provided in the site's northwestern parking lot along Bali Way (west of the Marvin Braude Bike Path); together, these areas (collectively designated as "Parking Area 3") provide a total of approximately 204 vehicular spaces, and are intended to serve Buildings VI and VIII, which house the remaining retail and restaurant uses (Building VI) as well as the proposed yacht club, boat repair, and boat dry/mast-up storage (Building VIII). Additionally, it should be noted that each of the three on-site parking areas described in this paragraph will also be utilized for parking for the 148 boat slips (to be developed under previously-approved CDP No. 5-11-131) included in the proposed redevelopment of the Parcel 44 site.

Locating adequate parking near its associated uses reduces the potential for "overparking" of individual parking lot areas within the project site, thereby reducing on-site traffic congestion as well as minimizing the walking distances for project patrons between their parking space and their on-site destination. As described in detail in the shared parking analyses in Appendix B, in addition to providing sufficient parking to meet the anticipated overall vehicular parking demands of the project, in general, each of the individual on-site parking areas will provide adequate vehicular parking to accommodate the needs of the individual project uses they are intended to serve, thereby reducing the potential for unnecessary on-site vehicular circulation within the project site as patrons search for convenient parking.

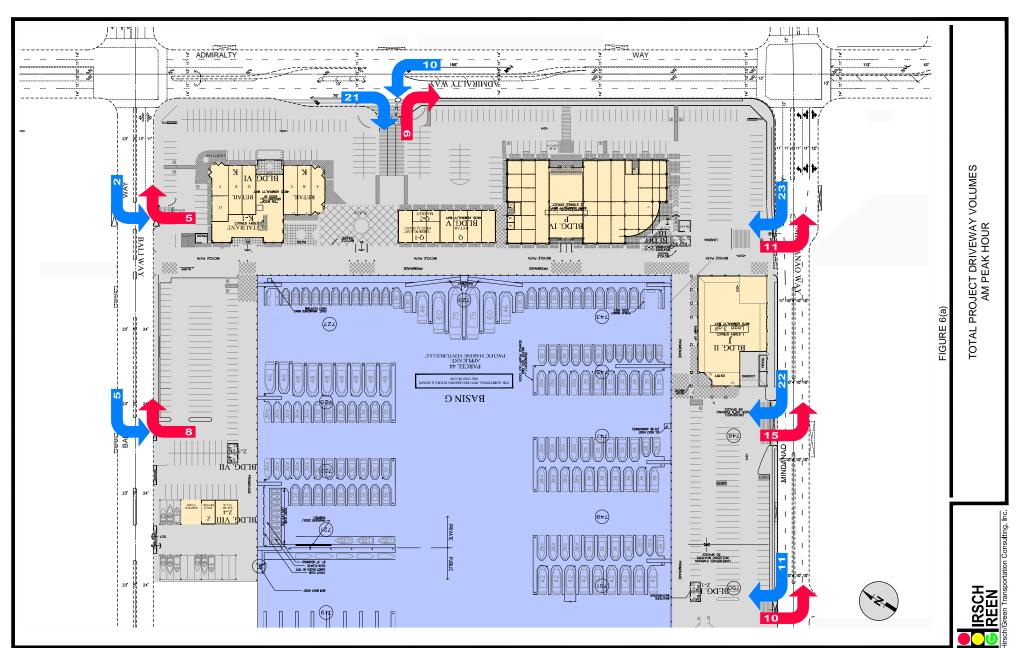
Therefore, based on the results of the supplemental shared parking analyses, despite exhibiting a slight (seven space) vehicular parking deficit compared to the Zoning Code requirements, the project will provide adequate parking to meet its estimated maximum parking needs at all times of the day for typical weekdays and weekends. As such, no project-related "overflow" parking into adjacent commercial or public parking areas or on nearby streets due to on-site parking shortages is anticipated, and no significant parking-related impacts are expected.

Project Vehicular Access and Operations

As shown previously in Figure 3 (Project Site Layout), and described in the preceding section of this report, the project will provide a total of approximately 477 on-site vehicular parking spaces, located within three separate parking areas spread throughout the site, including the "individual" parking lots fronting on Mindanao Way, on Admiralty Way, and on Bali Way. No direct, on-site vehicular access between these three individual parking areas is provided; access to the

"Mindanao lot" (Parking Area 1) is provided via two driveways along Mindanao Way (at the eastern and western ends of that parking area), while access to the "Admiralty lots" (which includes Parking Area 2 and the 94-space portion of Parking Area 3) is provided by a total of three driveways, including one each on Mindanao Way, Admiralty Way, and Bali Way. Finally, the "Bali lot" (containing the remaining 110 spaces in Parking Area 3) is generally served by a single driveway (located near the western end of the parking area), although it is of note that two additional driveways are also located slightly farther west on Bali Way, which provide access to the boat storage spaces provided at the far western edge of the project site; while less convenient than the designated "Bali lot" driveway, these additional driveways can also be used to access the vehicular parking spaces provided in the "Bali lot".

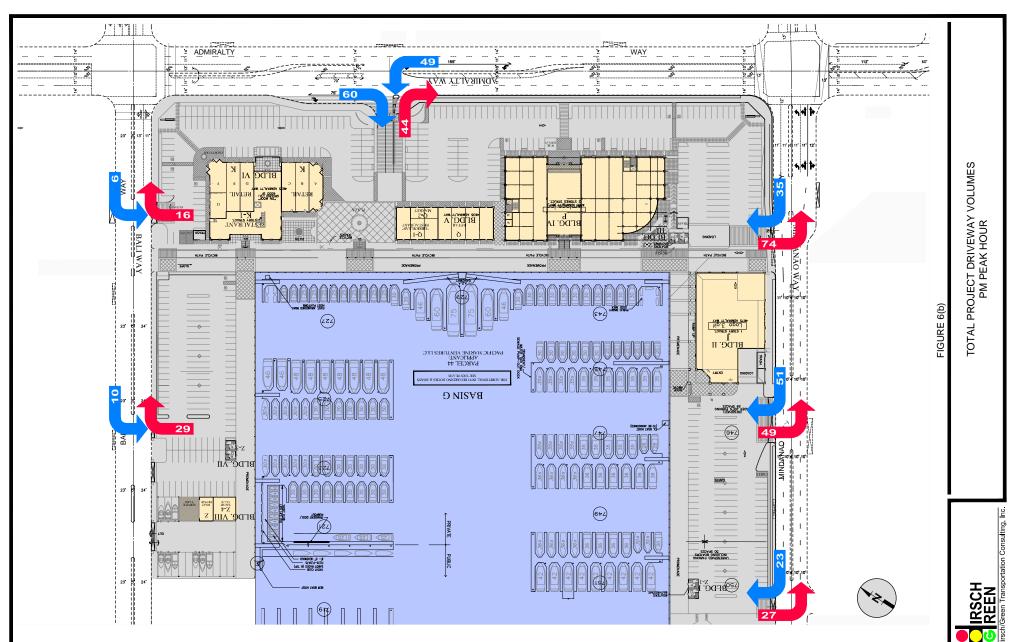
Although the project's vehicular access scheme is similar to the current site layout, with the exception of the proposed new left-turn entry capability from northbound Admiralty Way, a detailed examination of the operations of the project's driveways was conducted to assure that the anticipated traffic demands of the project can be adequately accommodated. The traffic volumes at each of the project's driveways were determined using the same individual project component traffic assignment percentages (contained in Appendix A) as described previously in the discussion of the assignment of project trips to the study intersections, combined with the appropriate individual project component peak hour trip generation estimates shown in Table 2. It should be noted, however, that the project's driveway volumes are somewhat higher than the "net" project intersection-related trips identified previously for use in the analysis of the potential traffic impacts to the nearby study intersections, as described in the following paragraphs.


First, the pass-by trip reductions applied to the project's Building IV, V, and VI retail components are not considered in the calculation of the project's driveway volumes; pass-by trips, while not necessarily new project trips on the streets and intersections in the general area, will actually access the project site and are therefore part of the project's overall driveway activity. Additionally, although appropriate for inclusion in the estimates of net project trips traveling through the surrounding intersections, the trip "credits" for removal of the traffic generated by the existing site development are not applicable to the estimation of project driveway trips, since the project's driveways will accommodate the total traffic resulting from the anticipated new site uses, and not merely the difference between the future and existing site-related trips.

Therefore, the project's net trip generation calculations shown previously in Table 2 were adjusted to remove the pass-by discounts assumed for the proposed retail uses, and to eliminate the trip credits associated with the removal of the existing site uses. As a result, the

proposed project's total driveway volumes, representing the number of vehicles expected to actually enter and exit the site during the typical weekday peak hour periods, are expected to be approximately 4,839 daily trips, including approximately 152 trips (94 inbound, 58 outbound) during the AM peak hour, and approximately 475 trips (236 inbound, 239 outbound) during the PM peak hour. Based on these adjusted trip generation estimates, the anticipated peak hour project-related trips into and out of each of the site driveways were calculated, and are shown in Figure 6(a) for the AM peak hour, and in Figure 6(b) for the PM peak hour conditions.

As shown in Figure 6(a), project driveway volumes during the AM peak hour are expected to be relatively nominal, with a total of approximately 92 vehicles (56 entering, 36 exiting) using the project's three Mindanao Way driveways, approximately 40 total vehicles (31 entering, including 10 vehicles using the proposed new northbound Admiralty Way left-turn lane, and nine exiting) using the Admiralty Way driveway, and the remaining 20 vehicles (seven entering, 13 exiting) using the Bali Way driveways. The individual driveways exhibiting the highest volumes during this time period are the new Admiralty Way driveway (with a total of approximately 40 vehicles as noted above), the easternmost Mindanao Way driveway (serving West Marine and other commercial uses), accommodating a total of approximately 24 vehicles per hour (23 entering, 11 exiting), and the "middle" Mindanao Way driveway (serving the specialty market), which is expected to accommodate a total of approximately 37 vehicles (23 entering, 15 exiting); these three driveways therefore are expected to accommodate approximately 73 percent of the project's total driveway traffic during the AM peak hour.


During the PM peak hour, however, overall traffic generated by the proposed project will be higher than during the AM peak hour, and as such, the anticipated driveway utilizations will also increase. As shown in Figure 6(b), the project's three Mindanao Way driveways are expected to accommodate a total of approximately 261 vehicles (111 entering, 150 exiting), with a total of approximately 153 vehicles (109 entering, including 49 using the new northbound left-turn lane, and 44 exiting), and a total of 61 vehicles (16 entering, 45 exiting) using the Bali Way driveways. The highest-volume individual driveways during the PM peak hour are again expected to be the new Admiralty Way driveway (with a total of 153 vehicles as noted above), the easternmost Mindanao Way driveway, with a total of approximately 109 vehicles (35 entering, 74 exiting), and the middle Mindanao Way driveway, which is anticipated to accommodate a total of approximately 100 vehicles (51 entering, 49 exiting) during this time period. As such, similar to the AM peak hour, together, these three driveways are anticipated to be utilized by more than 76 percent of the project's total driveway traffic during the PM peak hour.

PARCEL 44 \ IMP-CONCEPTUAL-1

31

10/15/20

PARCEL 44 \ IMP-CONCEPTUAL-1

32

10/15/201

In order to assure that the proposed new Admiralty Way driveway will permit the anticipated levels of inbound project-related traffic to cross the southbound Admiralty Way traffic stream (via the proposed new northbound left-turn movement), a supplemental "gap" study was prepared to evaluate the traffic flow conditions on Admiralty Way at the proposed driveway location for both the AM and PM peak periods. The gap study, contained in Appendix C of this report, identified the number and duration of gaps in the southbound traffic flows on Admiralty Way that could be used by vehicles attempting to make a northbound left-turn into this new project driveway, and to quantify the minimum number of vehicles that would be able to actually make this move. The details and results of the gap study, including a description of the analysis methodologies and assumptions associated with this supplemental analysis, and a summary of the observed vehicle gap data, are fully described in the appendix of this document. Those analyses indicated that, during the peak commute traffic periods (7:00 to 10:00 AM, and 4:00 to 7:00 PM) evaluated in this traffic study, there are sufficient gaps in southbound Admiralty Way traffic to accommodate a minimum of approximately 212 northbound left-turning vehicles per hour during the morning analysis period, and approximately 190 northbound left-turning vehicles during the afternoon/evening analysis period. Therefore, the proposed project's anticipated northbound left-turn traffic demands of approximately 10 vehicles per hour during the AM peak hour and approximately 49 vehicles per hour during the PM peak hour shown in Figures 6(a) and 6(b), respectively, can be easily accommodated under current traffic conditions in the project vicinity.

The project does not propose any type of access control, such as control arms activated by card keys or ticket dispensers, at any of the site driveway entrances. Typically, "uncontrolled" access driveways exhibit entry capacities of between 750 and 1,000 vehicles per hour per lane, depending on the configuration of the internal vehicular circulation and parking layout accessed by the driveway. Conversely, driveway exit capacities are primarily dependent upon the amount of traffic/congestion on the frontage streets, which generally control the number of vehicles that can enter into the traffic flow on the site adjacent streets, with most driveways exhibiting exit capacities of between 350 and 400 vehicles per hour. A review of the project's proposed driveway access locations and configurations indicates that each of the site's driveways provide adequate on-site "receiving" drive aisles to accommodate inbound traffic without significant internal conflicts or congestion, and as such, exhibit no factors that would substantially reduce the typical entry capacities noted earlier. Similarly, the existing traffic volumes on both Bali Way and Mindanao Way (discussed later in this report) are relatively low, and are not expected to significantly impede vehicles exiting the site along these frontages. Although traffic volumes

along Admiralty Way can be heavy at times, and short periods of congestion are typical at some of the intersections in the project vicinity during the peak hours, as noted previously in the discussion of the operations of the project's Admiralty Way driveways, the right-turn only exit restrictions for this driveway will tend to allow for exit capacities at the higher end of the range. As such, each of the project's driveways is expected to exhibit exit capacities of between approximately 350 and 400 vehicles per hour. Since each of the proposed project driveways is configured with one entry and one exit lane, the "per lane" capacity values identified above were assumed to represent the "full" entry and exit capability of each driveway.

A review of the peak project driveway volumes shown in Figures 6(a) and 6(b) indicates that the total vehicular demand at any of the project's driveways for either inbound and outbound traffic will be substantially below the typical driveway capacity levels identified above during both the weekday AM and PM peak periods; hourly driveway traffic volumes at other times of the day are expected to be less than the values shown in Figures 6(a) and 6(b). Therefore, adequate entry capacity is provided to minimize the potential for on-street vehicular queuing, and similarly, driveway exit capacities are sufficient to accommodate the demands of the project without creating internal vehicular queues or on-site congestion, for both the individual driveways and for the proposed project in its entirety.

Finally, the operations of the proposed Building II semi-trailer truck loading dock were examined to determine whether such trucks can exit from the loading dock onto eastbound Mindanao Way in a single, continuous move (without having to back up to re-orient themselves, resulting in disruptions to both eastbound and westbound traffic on Mindanao Way, or having to exit to westbound Mindanao Way to ultimately turn around at the mole terminus of that roadway), while the ingress and egress movements for a passenger vehicle towing a boat trailer were evaluated for the project's Bali Way driveways serving the dry and mast-up boat storage areas. These evaluations are provided in Appendix D of this document. First, as shown in Figure D-1, a typical semi-trailer truck (48-foot trailer, approximately 69-foot total length) can exit the project driveway on Mindanao Way closest to the loading dock in a single move, although as also shown in this figure, the existing raised median island east of the proposed driveway will require modification to shorten it by approximately 40 feet (at the west end) to accommodate this move. However, as described in detail in the following section of this report, the project will be required by the County's Department of Beaches and Harbors to modify this and other medians along Mindanao Way in order to provide a second westbound lane along the project frontage, and as such, the additional modification to shorten this median is not expected to be a significant issue.

Further, as shown in Figure D-2(a) and D-2(b), a typical passenger vehicle towing a trailer containing an approximately 35-foot boat (the largest boat that can be accommodated in the dry/mast-up boat storage spaces) will be able to enter and exit either of the westernmost site driveways serving these uses in a single, continuous move, although as with the Mindanao Way driveway described earlier, the existing raised median islands along Bali Way at these locations (as well as at other site driveway locations along Bali Way) will require modification to provide new "openings" to permit the proposed entry and exit movements.

Therefore, based on the evaluations summarized in the preceding pages (and documented in detail in the appendices to this report), following implementation of the recommended modifications to the existing raised median islands along both the Mindanao Way and Bali Way frontages of the site, the proposed project's vehicular access is expected to operate adequately, and no significant impacts with respect to driveway capacity, on-site vehicular circulation, or vehicular entry or exit operations are anticipated.

Analysis of Future (2020) Admiralty Way Site Access Conditions

As described in the preceding section, the gap study indicates that there are adequate gaps in the existing southbound traffic flows along Admiralty Way exist to accommodate the anticipated project-related traffic demands and that the proposed new northbound left-turn lane will operate acceptably without the need to install a new traffic signal at this location. However, as noted in the preceding discussions and analyses, anticipated future traffic growth in the project vicinity (including trips generated by the proposed project itself) could result in increasing congestion along Admiralty Way adjacent to the project site, potentially reducing or eliminating the ability of project-bound vehicles to make the proposed new northbound left-turn across southbound Admiralty Way traffic into the new project driveway along Admiralty Way without the aid of a traffic signal or other traffic-control device. Therefore, an additional analysis was conducted to determine whether the proposed new northbound left-turn would operate adequately in the future under the current (unsignalized) configuration, or if a new traffic signal would be required at this location to facilitate left-turns into the project site.

Following discussions with the County's Department of Public Works Traffic and Lighting Division and the Department of Beaches and Harbors, it was determined that the supplemental analysis should examine the long-term operations not only of the proposed project's new Admiralty Way driveway, but also evaluate the future operations of the area roadways and intersections in the immediate vicinity of the project. Therefore, based on the recommendations

of both the Department of Public Works and the Department of Beaches and Harbors, this analysis was expanded to examine future traffic conditions in the immediate project vicinity anticipated by the year 2020, approximately four years after the expected completion of the proposed Parcel 44 redevelopment project. Note that the supplemental year 2020 analyses include the installation of both project-required roadway improvements to the site-adjacent intersections of Admiralty Way and Bali Way (as described in detail in the following section of this report), as well as programmed future improvements to these intersections either currently being constructed (dual southbound left-turn lanes at both locations) or recommended for installation in order to address potential future "cumulative" traffic impacts in the study area (described in the later "Ongoing and/or Programmed Future Highway System Improvements" and "Mitigation" sections of this this report, respectively).

The Department of Public Works requested that this additional analysis be prepared using a detailed traffic modeling program known as SYNCHRO, which evaluates not only the operations (volume-to-capacity ratios and levels of service) of specific intersections, but also provides information regarding corridor-level traffic flows, vehicular queuing and delays on various intersection approaches, and other pertinent data. In order to identify and analyze the operations of the subject intersection (Admiralty Way and the proposed project driveway), the SYNCHRO program requires traffic volume and geometric/operational data for other intersections surrounding the specified locations in order to accurately predict traffic flow patterns and volume demands at the intersections to be analyzed in detail. Therefore, for purposes of this supplemental SYNCHRO analysis, future year (2020) traffic volumes were identified for a total of seven intersections in the project vicinity, including Lincoln Boulevard at Marina Expressway, Bali Way, Mindanao Way, and Fiji Way, as well as for Admiralty Way at Bali Way, Mindanao Way, and Fiji Way.

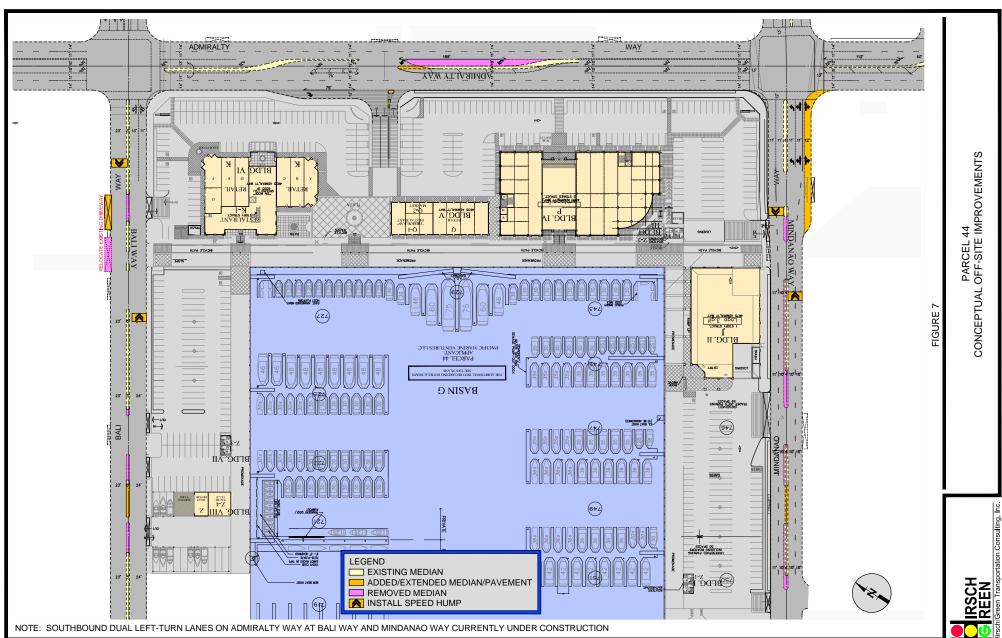
The details of the supplemental year 2020 Admiralty Way project driveway access analysis are provided in Appendix C (along with the existing conditions gap study). However, to summarize those results, the SYNCHRO analyses indicated that the proposed new northbound left-turn on Admiralty Way into the new Parcel 44 driveway will operate acceptably under the cumulative year 2020 conditions, and that adequate gaps in southbound Admiralty Way traffic will continue to be available during both peak hours to accommodate the anticipated traffic demands of the proposed project. Average delays for project traffic using the new northbound left-turn lane will range from about 15 to 20 seconds (during the PM peak hour period), and no long-term queuing is forecast. As a result, this proposed new site access location will not require signalization.

The analyses also indicated that the County's programmed new southbound dual left-turn lanes at both Admiralty Way and Bali Way, and at Admiralty Way and Mindanao Way will adequately accommodate the forecast future traffic demands for those moves, and that no significant vehicular "spillover" into the through travel lanes on Admiralty Way at either location will occur, although during the PM peak hour, southbound vehicular queues on Admiralty Way could be sufficiently long to temporarily prevent left-turning vehicles from accessing these lanes. It should also be noted that the SYNCHRO analyses indicated that northbound vehicular queuing on Admiralty Way at Bali Way (from northbound vehicles stopped at the signal at Bali Way) could occasionally, although temporarily, back up sufficiently to block northbound access to the proposed new northbound left-turn lane (as well as access to the existing northbound left-turn lane at Bali Way) during both the AM and PM peak hours. As a result, it is recommended that "Keep Clear" signage and roadway markings be installed at the existing median cut on Admiralty Way to maintain clearance for vehicles using this access.

Therefore, the results of the long-term year 2020 analysis of traffic conditions indicate that the proposed new northbound left-turn access to the Parcel 44 site will adequately accommodate the project's anticipated traffic demands without need of a traffic signal or other traffic control device, although appropriate signage and/or pavement markings are recommended at the median cut to prevent blockages of this access location by vehicle queuing on northbound Admiralty Way at Bali Way. The supplemental SYNCHRO analyses also determined that, while typical peak commute period traffic volumes will result in some intermittent congestion in the project vicinity (as is the current condition), including at the site-adjacent intersections of Admiralty Way and Bali Way, and Admiralty Way and Mindanao Way, no significant traffic flow or intersection operational issues are anticipated. As such, no additional roadway or traffic signal improvements beyond those identified earlier in this report are necessary.

Project-Required Roadway Improvements

As briefly described earlier in this document, the project proposes a number of modifications to the roadway facilities fronting the site, including but not limited to the relocation or elimination of existing site driveways and modifications to the existing raised median islands adjacent to the project site in order to facilitate ingress and egress for project-related traffic. However, the County's Department of Public Works, and Department of Beaches and Harbors have each conducted a preliminary review of the proposed project, including its vehicular access plans, and have identified a number of additional improvements to the roadways or other


transportation facilities adjacent to the project site that they believe will be necessary to ensure that acceptable street and intersection operations will be provided in the area following the completion of the proposed project (and other ongoing or proposed development in the vicinity).

The project's proposed median island and/or roadway modifications to the Admiralty Way, Mindanao Way, and Bali Way frontages of the site, along with the additional roadway and other infrastructure improvements identified by the County, are shown conceptually in Figure 7, and are discussed in detail in the following pages. Note that, pursuant to the County's request, in addition to the proposed project-related improvements, Figure 7 also includes the County's own improvements (currently under construction) to install new southbound dual left-turn lanes on Admiralty Way at both Mindanao Way and Bali Way, in order to provide a complete overview of the anticipated ultimate future roadway system in the project vicinity.

Required Project Site Frontage Roadway Improvements

The Parcel 44 project site exhibits frontages along each of three roadways; Bali Way on the north, Mindanao Way on the south, and Admiralty Way (between Bali Way and Mindanao Way) on the east. Bali Way adjacent to the project site, and in fact, throughout its length west of Admiralty Way, is currently improved to a total width of approximately 52 feet, including an approximately six-foot raised median island along much of its length between Admiralty Way and the mole terminus of the roadway separating two approximately 23-foot wide travel lanes; no sidewalks are provided along either side of Bali Way. No roadway dedications or street widenings are anticipated to be required along the project's Bali Way frontage.

Mindanao Way is currently improved to a total width of approximately 57 feet throughout most of its length west of Admiralty Way, including an approximately 20-foot wide, one-lane eastbound travel lane and approximately 18-foot wide, single-lane westbound travel lane separated by a six-foot raised median island; a five-foot sidewalk is generally provided along the north side of Mindanao Way (adjacent to the project frontage), with an eight-foot sidewalk provided along the south side of the roadway. However, near its intersection with Admiralty Way, Mindanao Way exhibits widenings along both its north and south sides, to provide a total improved width (including sidewalks and median islands) of approximately 60 feet. From its intersection with Admiralty Way to approximately 200 feet west, the eastbound roadway of Mindanao Way is widened to approximately 22 feet to provide a second travel lane in that direction through this segment, although the southern sidewalk is reduced in width by approximately three feet, from eight feet to five feet. Similarly, the westbound roadway is widened by approximately four feet

PARCEL 44 \ IMP-CONCEPTUAL-1

10/15/201

39

to a total width of approximately 22 feet (again, to provide for two travel lanes) for approximately 150 feet west of Admiralty Way, then tapers for a distance of approximately 120 feet back to its typical 18-foot wide, single lane configuration for the remainder of its length; the northern sidewalk (along the project frontage) retains its 5-foot width throughout this widening and transitional-width area. As with the project's Bali Way frontage, no roadway dedications or street widenings are anticipated to be required along the site's Mindanao Way frontage.

Finally, Admiralty Way, located along the project site's eastern frontage, is currently improved to a total width of approximately 80 feet, including an approximately 70-foot total roadway width plus approximately five-foot wide sidewalks along both the east and west sides of the street. Adjacent to the project site (between Bali Way and Mindanao Way), Admiralty Way exhibits an approximately 33-foot wide, two-lane northbound roadway and an approximately 25-foot wide, two-lane southbound roadway; the northbound and southbound roadways are separated by an approximately 12-foot raised median island, although the island is reduced in width or eliminated altogether to provide for left-turn pockets at both Bali Way and Mindanao Way, as well as approximately mid-block between Bali Way and Mindanao Way, at the driveway for the existing medical office facility on the east side of the street. Similar to both the Bali Way and Mindanao Way site frontages, no roadway dedications or street widenings along the site's Admiralty Way frontage related to the overall roadway or sidewalk widths along Admiralty Way are anticipated, although the Department of Public Works has identified that the project will be required to improve the curb return radii adjacent to the project site at the intersections of both Admiralty Way and Mindanao Way, and Admiralty Way and Bali Way from 25 feet to 35 feet (including appropriate "corner cuts" to the right-of-way dedications to provide adequate sidewalk widths following the curb return improvements). Additionally, although not directly related to any required roadway width improvements, as described earlier (and shown previously in Figure 3), the proposed project includes the construction of a new, approximately 12-foot wide southbound deceleration lane (right-turn only lane) along a portion of its Admiralty Way frontage (north of the proposed new driveway) to provide for improved access for southbound traffic entering the project site, and to minimize potential interference with the southbound through traffic flows on Admiralty Way that could be caused by vehicles slowing to enter the project driveway.

Site-Adjacent Project Access-Related Median Island/Roadway Improvements

While no right-of-way dedications or roadway widenings are expected to be required along the project's Admiralty Way, Bali Way, or Mindanao Way frontages (with the exception of the southbound deceleration lane and curb return improvements on Admiralty Way noted above),

as described earlier in this document, each of these roadways currently exhibits one or more raised median islands along their lengths adjacent to the project site. Although a number of "breaks" or openings in the median islands currently exist to allow vehicular traffic to enter or exit existing driveways on both sides of each of these roadways (accessing both the project site itself and non-project uses located on the opposite sides of the streets), the project's proposed driveway locations along both Bali Way and Mindanao Way will require some modification of the existing median islands on both roadways in order to provide new openings to allow access into and out of the proposed site driveways, and/or to extend the medians to close existing openings adjacent to some of the existing site-serving driveways that will be removed as part of the project. The Department of Public Works and the Department of Beaches and Harbors have each expressed that such median island modifications are acceptable.

Additionally, the Department of Beaches and Harbors has indicated that the proposed project will be required to improve Mindanao Way to provide a second westbound travel lane along the full length of project site's frontage, in order to accommodate the additional traffic anticipated to be generated by the proposed new development, particularly the proposed specialty market use to be located along Mindanao Way (in Building II). As described earlier in this report, the approximately 150-foot long segment of Mindanao Way west of Admiralty Way already provides two westbound lanes, although from that point westward, Mindanao Way narrows to provide only an approximately 18-foot wide, single-lane westbound roadway. In order to provide the required extension of the two westbound travel lanes to the project's western boundary, the Department of Beaches and Harbors has indicated that it will allow the project applicant to narrow the Mindanao Way median islands along their northern sides by approximately two feet (from the existing six feet to four feet), thereby providing a minimum 20-foot westbound roadway and allowing Mindanao Way to be striped to provide two 10-foot westbound lanes along the project's entire frontage. Further, the eastbound roadway of Mindanao Way should be striped to also provide two 10-foot travel lanes between the project's western boundary and the existing two-lane segment of the roadway near Admiralty Way; the striping improvement to eastbound Mindanao Way will not require median island modifications.

Further, as described earlier in this document, the project proposes to modify the raised median island along Admiralty Way to provide a new northbound left-turn pocket into the project site opposite the proposed new site driveway at that location. This new northbound left-turn pocket will be installed at the southern end of the existing median island opening (which already provides a southbound left-turn pocket for access to the parking facilities serving the existing

medical office and other commercial developments located opposite the proposed project on the east side of Admiralty Way); the new left-turn pocket will be designed to provide sufficient storage length (to the satisfaction of the County's Public Works Department) to accommodate the anticipated project-related vehicular demands without resulting in "spillover" queuing out of the turn pocket and disrupting traffic flows in the northbound through lanes of Admiralty Way.

Additional County-Required Roadway/Infrastructure Improvements

In addition to the typically required and/or proposed site frontage and access-related roadway and median island improvements associated with the development of the proposed project described in the preceding pages, the Department of Beaches and Harbors has indicated that the proposed project should be required to relocate the existing (non-project) access driveways to both Public Parking Lot No. 5 (on the north side of Bali Way west of Admiralty Way) and to the parking lot serving the Marina del Rey Visitor's Center (on the south side of Mindanao Way, also west of Admiralty Way) to align each of these existing driveways opposite the proposed project's new driveways. Further, in order to improve safety and minimize potential conflicts between vehicular traffic and bicyclists and pedestrians using the Marvin Braude Bike Path, the Department of Beaches and Harbors has requested that new speed humps or speed tables be installed in both directions on both Mindanao Way and Bali Way in advance of the bike path crossings of those roadways, along with appropriate signage.

Finally, the Department of Beaches and Harbors has also indicated that it will require the proposed project to widen the south side of Mindanao Way west of Admiralty Way, adjacent to the Marina del Rey Visitors Center, to install a new eastbound shared through/right-turn lane (and restripe the eastbound approach of Mindanao Way at Admiralty Way to convert the existing shared through/right-turn lane into a shared left-turn/through lane, in addition to the existing left-turn only lane). It is of note that this measure is part of the overall improvements to this intersection identified in the LUP's revised intersection improvements (which also includes the installation of dual southbound left-turn lanes on Admiralty Way and restriping of the westbound approach of Mindanao Way to convert the existing shared through/right-turn lane to allow both left-turns and right-turns along with the "through" move). Typically, the LUP roadway improvements are installed by the County (and funded by the traffic impact mitigation fees paid by development projects within the Marina, as described later in this document). However, due to concerns regarding potential additional traffic demands at this intersection associated with the proposed project, the County has indicated it will require the project to install the improvements to eastbound Mindanao Way prior to issuance of any certificates of occupancy for the project.

Although Figure 7 shows the conceptual roadway improvements proposed by the project and/or required by the County, detailed plans of these measures will be submitted to both the County's Department of Public Works, and Department of Beaches and Harbors for review and approval, with all agreed-upon improvements required to be completed, to the satisfaction of the County, prior to the issuance of any certificates of occupancy for any of the proposed project. However, since the improvements to the site-adjacent roadways described in the preceding pages will be required to be installed prior to the completion and occupancy of the proposed project, these measures were assumed to be "in place" as part of the "with project" conditions for both the "existing (year 2013)" and forecast "future (2016)" traffic impact analysis conditions, which are described in detail in a later section of this report.

TRAFFIC IMPACT ANALYSIS STUDY AREA

Environmental Setting

The Parcel 44 project site is located in the eastern portion of Marina del Rey, along the west side of Admiralty Way between Bali Way and Mindanao Way and surrounding the eastern portion of Basin G of the Marina, in Los Angeles County. The area surrounding the project site is currently developed with a variety of uses, primarily consisting of marine-related uses (including boat docks, boat sales and service/repair, and associated parking facilities), although several medical office facilities are located on the east side of Admiralty Way from just north of Bali Way to Mindanao Way, and the Waterside Shopping Center is located immediately to the southeast, along the east side of Admiralty Way between Mindanao Way and Fiji Way. Additionally, the Marina del Rey Hotel is located immediately west of the proposed project site at the mole terminus of Bali Way, and Burton Chace Park and its associated facilities surrounds the mole terminus of Mindanao Way directly west of the project site along that roadway. The Marina del Rey Visitors Center occupies the southwest corner of Mindanao Way and Bali Way adjacent to the project site, and the Mark Taber Branch of the Los Angeles Public Library is located a short distance north of the site along the west side of Admiralty Way. A number of other retail, commercial, and residential developments are also evident within Marina del Rev and the adjacent City of Los Angeles farther from the project site to the north, east, and south.

Area Transportation Facilities

The area surrounding the proposed project is served by both local and regional transportation facilities. While not providing direct access to the site, the San Diego (I-405) Freeway, located approximately two miles to the east, and the Marina Freeway/Expressway (SR-90), accessible approximately one-quarter mile to the east via Mindanao Way, allow for easy regional access to and from the project area. Additionally, the area is served by a number of major and secondary arterials, along with a well-developed local street grid. The key transportation facilities in the project vicinity examined in this report are identified in the following pages.

Freeways

<u>San Diego (I-405) Freeway</u> – The most important north-south transportation facility through the study area, the San Diego Freeway serves the western portion of the Los Angeles basin from departure from the Golden State (I-5) Freeway in the San Fernando community of the City of

Los Angeles on the north to its reconnection to the Golden State Freeway in the City of Irvine in Orange County, approximately 70 miles to the south. This freeway generally provides five main line travel lanes per direction, although additional lanes are typically provided at surface street ramps or interchanges with other freeways. Within the project vicinity, the San Diego Freeway provides surface street access ramps at Venice/Washington Boulevards, Culver Boulevard, and Braddock Drive, allowing for relatively direct access to the project site. Additionally, this freeway provides an interchange with the Marina Freeway near the eastern terminus of that facility, although northbound-to-eastbound and westbound-to-southbound movements are not available.

Marina Freeway/Expressway (State Route 90) – Exhibiting a roughly east-west alignment, and containing both elevated and at-grade elements, the Marina Freeway/Expressway is a short sub-regional facility located approximately one-third of a mile to the south of the project site, and connects Slauson Avenue (east of Sepulveda Boulevard) on the east with Lincoln Boulevard on the west. The elevated (freeway) section of this facility, from just west of Culver Boulevard on the west to the Slauson Avenue terminus on the east, provides a three-lane per direction configuration, with additional lanes provided at the interchange with the San Diego Freeway. Surface street access ramps are provided only at Sepulveda Boulevard (to the eastbound Marina Freeway), at Centinela Avenue (full ramp set), and at Culver Boulevard (full ramp set). The at-grade (expressway) portion of the facility, from Culver Boulevard to Lincoln Boulevard, is developed with two lanes per direction, although localized flarings or striping improvements at the intersections with Culver Boulevard and Mindanao Way accommodate additional left and/or right-turn lanes. The Expressway portion of the facility is a divided roadway, with crossover traffic prohibited except at its intersections with Culver Boulevard and Mindanao Way.

Major and Secondary Highways

<u>Venice Boulevard</u> – This generally east-west oriented Major Highway is located at the northern edge of the study area, approximately one mile north of the project site, and provides a key connection through the study area between Pacific Avenue in the Venice community of the City of Los Angeles on the west and Main Street in the southern portion of downtown Los Angeles on the east, where it continues eastward as 16th Street before terminating at Hooper Avenue. Venice Boulevard exhibits a large raised median island through much of the study area, and is typically configured to provide two to three through lanes plus a dedicated bicycle/parking lane in each direction, along with exclusive left-turn channelization at major intersections. On-street parking is typically allowed along both sides of the roadway throughout the study area.

Lincoln Boulevard — A generally north-south oriented Major Highway, Lincoln Boulevard is located only a few hundred feet east of the project site, and provides a key access route between San Vicente Boulevard near the northern boundary of the City of Santa Monica and its terminus at Sepulveda Boulevard near the Los Angeles International Airport ("LAX"). In the project vicinity, Lincoln Boulevard serves as the eastern boundary between Marina del Rey and the adjacent City of Los Angeles from just south of the Marina Expressway to the Ballona Creek drainage channel to the south, and is generally developed to provide three peak hour travel lanes per direction at most intersections north of Fiji Way, but only two lanes per direction between Fiji Way and the Culver Boulevard overcrossing, where three lanes per direction are again provided. Left-turn channelization is provided at all intersections in the study area, and a raised median island exists on Lincoln Boulevard from Fiji Way north to the Marina Expressway intersection. On-street parking is prohibited on this portion of Lincoln Boulevard at all times, but is allowed on a time-restricted basis on both sides of the street north of Maxella Avenue, although peak hour parking restrictions are in effect on these segments in order to provide a third travel lane during the critical morning and evening commute periods.

Washington Boulevard – Another Major Highway facility, this generally east-west oriented roadway is located approximately one-half mile to the north of the project site, at the northern boundary between Marina del Rey and the City of Los Angeles. Washington Boulevard is a major transportation facility through the study area, providing uninterrupted service between Pacific Avenue on the west and the City of Whittier on the east, passing through the City of Culver City, the Mid-City and Harvard Heights communities and the southern portion of downtown Los Angeles, and the Cities of Vernon, Commerce, and Pico Rivera along the route. In the study area, Washington Boulevard typically provides two through lanes in each direction, plus a median two-way left-turn lane that converts to exclusive left-turn channelization at most cross streets, including dual left-turn pockets at Lincoln Boulevard. On-street parking is generally allowed along most segments of Washington Boulevard within the study area.

<u>Culver Boulevard</u> – Located approximately one-half mile south of the project site, this roadway provides an important connection between the coastal areas on the west and the northeastern portion of the City of Culver City to the easy, running generally northeast-southwest between Trolleyway, about two blocks west of Vista del Mar at the western edge of the Playa del Rey community of the City of Los Angeles, and Venice Boulevard, just west of Robertson Boulevard, in the City of Los Angeles near the Culver City border. Culver Boulevard is designated as a Major Highway throughout much of the City of Los Angeles, although it is downgraded to a

Secondary Highway west of Lincoln Boulevard, and ultimately to Local Street status for its final few blocks west of Vista del Mar. Within the immediate study area, Culver Boulevard generally exhibits one travel lane in each direction west of Lincoln Boulevard, one to two westbound and three eastbound lanes between Lincoln Boulevard and the Marina Expressway/Freeway, and two lanes in each direction east of the Marina Expressway/Freeway; on-street parking is prohibited along both sides of Culver Boulevard throughout the study area. Culver Boulevard provides both on and off-ramps with the Marina Expressway/Freeway, as well as limited access to Lincoln Boulevard (eastbound and westbound on to northbound Lincoln Boulevard and northbound Lincoln Boulevard to eastbound Culver Boulevard only).

Jefferson Boulevard – Another Major Highway facility, this generally east-west oriented roadway is located at the southern edge of the study area, approximately three-quarters of a mile to the south of the project site, and serves as an important connection through the region from its intersection with Culver Boulevard west of Lincoln Boulevard on the west to its eastern terminus at Central Avenue in South Los Angeles. Within the immediate study area, Jefferson Boulevard typically provides three westbound and three to four through lanes in each direction, separated by a raised median island, plus left-turn channelization at most cross streets along the portion of the roadway to the east of Lincoln Boulevard, but reduces to two lanes per direction (again separated by a raised median island) to the west of this facility. On-street parking is typically prohibited both sides of Jefferson Boulevard throughout the study area, with the exception of a short section west of Lincoln Boulevard, along the south side of the roadway adjacent to the Ballona Creek Freshwater Marsh preservation area.

Maxella Avenue – This east-west oriented roadway is located approximately one-quarter mile north of the project site, and provides localized service generally between its western terminus at Lincoln Boulevard on the west (opposite Marina Pointe Drive, a local access roadway serving an existing residential and commercial/retail development) and Centinela Avenue on the east, although the street is discontinuous McConnell Boulevard and Neosho Avenue in the City of Culver City. Maxella Avenue is designated as a Secondary Highway on its westernmost segment between Lincoln Boulevard and Glencoe Avenue, but is downgraded to Local Street status throughout the remainder of its length. Along the Secondary Highway portion of the roadway, Maxella Avenue provides two travel lanes in each direction plus a median two-way left-turn lane, and on-street parking is prohibited along both sides of the roadway in this area; the Local Street portions of Maxella Avenue typically provide a single travel lane per direction, with on-street parking generally allowed on both sides of the street.

Mindanao Way – Another east-west oriented Secondary Highway, Mindanao Way serves as the southern boundary of the Parcel 44 project site, and also provides localized access between Burton Chase Park and the Marina del Rey "Basin G" berths west of Admiralty Way in the Marina itself and Alla Road in the City of Los Angeles, where it becomes Short Avenue and continues eastward to its eventual terminus at Centinela Avenue. Mindanao Way provides the most direct access between the project site and the Marina Expressway/Freeway, with connections to both the eastbound and westbound at-grade roadways of this facility located approximately one-quarter mile from the site. West of Admiralty Way, including along the project frontage, Mindanao Way typically provides only a single travel lane in each direction, separated by a raised median island, while to the east of Admiralty Way, the roadway is typically striped to provide two lanes in each direction, with some sections widened to permit additional left-turn and or right-turn lanes, particularly at its intersections with the Marina Expressway and Lincoln Boulevard. On-street parking is typically not permitted on either side of Mindanao Way west of Glencoe Avenue, with the exception of an approximately 200-foot section on the south side of the street immediately south/west of La Villa Marina.

Glencoe Avenue – This north-south roadway is located approximately one-quarter mile east of Lincoln Boulevard, and provides a local connection generally between Washington Boulevard on the north and Alla Road on the south, turning to an east-west orientation at Alla Road, and continuing a short distance as Bonaparte Avenue, a Local Street. Glencoe Avenue is designated as a Secondary Highway between Washington Boulevard and Maxella Avenue, but provides only a single travel lane per direction, plus on-street parking. Between Maxella Avenue and Mindanao Way, Glencoe Avenue is downgraded to a Collector Street designation, but is widened to provide two travel lanes per direction, plus a median two-way left-turn lane and some on-street parking. Southeast of Mindanao Way, the roadway reverts back to a single travel lane per direction plus on street parking for the remainder of its length.

<u>Pacific Avenue</u> – Located at the western edge of the study area, Pacific Avenue provides the westernmost continuous north-south oriented roadway in the vicinity, and serves as a key alternative to Lincoln Boulevard between the northern portions of the City of Santa Monica and Marina del Rey. Throughout the City of Los Angeles, between approximately Navy Court near the City of Los Angeles/City of Santa Monica boundary and its southern terminus at Via Marina in Marina del Rey, just north of the Marina main channel, Pacific Avenue is designated as a Secondary Highway, generally providing one travel lane plus on-street parking in each direction. Within the City of Santa Monica, this facility, now named Neilson Way, is an arterial roadway,

and changes names once again at Pico Boulevard to become Ocean Avenue before eventually terminating at Channel Road north of San Vicente Boulevard. This portion of the roadway typically provides two peak hour travel lanes per direction, although on-street parking is allowed during off peak travel periods, reducing some portions of the street to a single lane per direction.

Admiralty Way – This Secondary Highway is the primary transportation facility through the north and east portions of Marina del Rey, connecting Via Marina on the west and Fiji Way on the southeast, and providing the eastern boundary for the project site. Throughout its length, Admiralty Way is typically configured with a raised median island separating two through travel lanes per direction, although additional left-turn and/or right turn lanes are provided at most street and driveway intersections. On-street parking is prohibited on both sides of this roadway.

<u>Via Marina/Ocean Avenue</u> – A generally a north-south oriented roadway, the Via Marina portion of this facility is designated as a Secondary Highway, and provides local access to the western, primarily residential area of Marina del Rey, extending southward from Washington Boulevard (where it terminates opposite Ocean Avenue) to provide access to the Marina del Rey "Basin A" through "Basin D" areas, in addition to Ballona Creek. Via Marina provides two to three through lanes in each direction plus a raised median island and left-turn channelization at all intersections, with on-street parking prohibited along both sides of the street. North of Washington Boulevard, the street changes names to Ocean Avenue, a short Local Street that ultimately connects to Venice Boulevard on the north. Ocean Avenue provides only a single travel lane per direction, but on-street parking is permitted on both sides of the roadway.

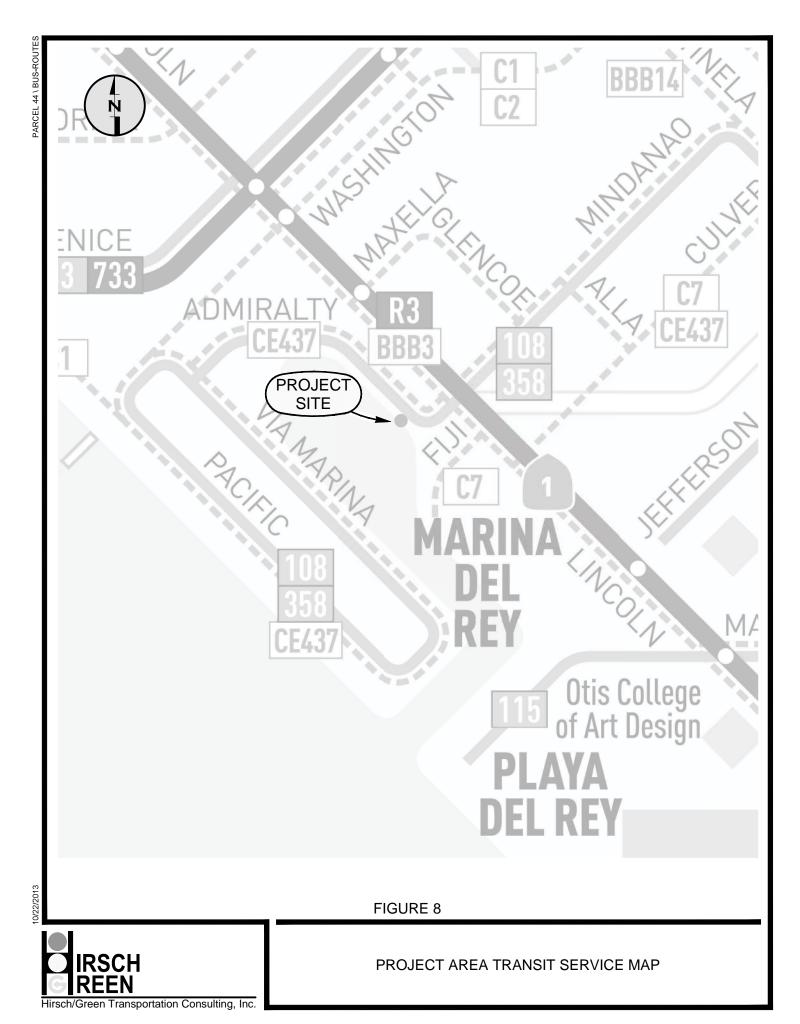
Collector Roadways

<u>Dell Avenue/Via Dolce</u> — Another short arterial collector/local street combination, Dell Avenue also provides a local connection between Venice Boulevard and Washington Boulevard, traveling through the Venice Canals area, before changing names to become Via Dolce to the south of Washington Boulevard, where is continues a short distance as an arterial collector roadway serving the single-family and multi-family residential developments in this area of the Marina, before intersecting with and terminating at Via Marina opposite Marquesas Way. The Dell Avenue portion of this roadway provides a single travel lane in each direction on the short segment between Venice Boulevard and Washington Boulevard in the City of Los Angeles, while the Via Dolce segment within Marina del Rey generally provides two through lanes in each direction plus a striped median two-way left-turn lane. On-street parking is generally allowed on both sides of the street along both the Dell Avenue and Via Dolce segments of this facility.

Local/Residential Streets

<u>Bali Way</u> – This short Local Street provides the northern boundary of the Parcel 44 project site, and serves primarily as a local-access facility between Lincoln Boulevard and Admiralty Way and the Marina del Rey "Basin F" and "Basin G" areas. Bali Way is striped to provide three lanes per direction on the short segment between Lincoln Boulevard and Admiralty Way, but is unstriped and exhibits only a single lane in each direction, separated by a raised median island, to the west of Admiralty Way, including adjacent to the project site, although it is striped to provide two eastbound approach lanes at Admiralty Way.

<u>Fiji Way</u> – Another Local Street facility, Fiji Way is the southernmost roadway in the Marina, located approximately two-tenths of a mile south of the project site, and provides access to the existing "Fisherman's Village" retail/commercial development, a number of marine-related businesses (including boat storage, boat charters, and associated parking/pier facilities), the County's Department of Beaches and Harbors offices, existing residential development, and the U.S. Coast Guard Harbor Patrol station near the Ballona Creek "point". Within the Marina, west of Lincoln Boulevard, Fiji Way provides two westbound and one eastbound travel lanes, plus a bicycle lane in each direction. Similar to many other roadways in the Marina, it exhibits a raised median island along much of its length, with on-street parking prohibited along both sides of the roadway. Fiji Way "dead ends" a short distance to the east of Lincoln Boulevard; this segment, within the City of Los Angeles, provides a single lane in each direction plus on-street parking, and serves only as local access to several fronting businesses and multi-family developments.


Palawan Way – Located at the northern edge of the Marina, approximately one mile northwest of the project site along Admiralty Way, this short Local Street provides a connection from Washington Boulevard to the Mothers Beach area of the Marina, as well as to existing residential and commercial development to the south of Admiralty Way. Palawan Way generally provides two lanes per direction, separated by a raised median island, on the short segment between Admiralty Way and Washington Boulevard, although northbound Palawan Way reduces to a single right-turn only lane at the STOP sign controlled "tee" intersection with Washington Boulevard (the only unsignalized major intersection in the study area), while the southbound approach of Palawan Way at Admiralty Way (signalized intersection) provides three lanes, including a left-turn only lane, a through lane, and a right-turn only lane. South of Admiralty Way, Palawan Way provides only a single lane in each direction, although the raised median island is still present, and on-street parking is prohibited on both sides of the street.

Public Transportation

The Los Angeles County Metropolitan Transportation Authority ("Metro") has established an extensive grid system of public transit bus routes throughout the greater Los Angeles region, including the project vicinity, and several local jurisdictions including the cities of Los Angeles, Santa Monica ("Big Blue Bus", aka "BBB"), and Culver City also provide public transit services through the Marina del Rey study area. Several of these existing bus lines currently serve the project site directly, along Admiralty Way or Mindanao Way, or are located within convenient walking distance (less than one-quarter mile) along Lincoln Boulevard or Fiji Way. A map of the current bus transit service within the project vicinity is shown in Figure 8, and the key transit lines serving the project site and study area are described in more detail in the following pages.

Metro Lines 108/358 – Both Line 108 (local-stop service) and Line 358 (limited-stop service) provide weekday service between the west side of Marina del Rey and the Pico Rivera area, with also Line 108 providing additional weekend and holiday service. Within the immediate study area, Lines 108/358 operates on a loop route through the Marina, traveling along Admiralty Way between Mindanao Way and Via Marina, including a stop located adjacent to the proposed Parcel 44 project site, then continues along Via Marina, Pacific Avenue, and Washington Boulevard before returning to Admiralty Way via Palawan Way. These lines then travel primarily along Mindanao Way/Short Avenue, Centinela Avenue, Jefferson Boulevard, and Slauson Avenue between Marina del Rey and Pico Rivera, serving the Fox Hills Mall, Culver City Transit Station (located adjacent to the mall parking lot), and office and residential developments east of Sepulveda Boulevard between Centinela Avenue and Slauson Avenue along the way. In the vicinity of the proposed project, Lines 108/358 operate between approximately 5:00 AM and 10:00 PM on weekdays, with peak period headways of approximately 15 to 20 minutes, although headways during the mid-day and other off-peak periods lengthen to upwards of 45 minutes. Weekend and holiday service (Line 108 only) is also provided during approximately the same time periods, although headways on these days range from about 30 minutes during the peak periods to one hour throughout the rest of the day.

<u>Commuter Express 437</u> – This local-stop bus line, a service of LADOT, provides weekday peak period commuter service between Marina del Rey and downtown Los Angeles, with one-way eastbound service during the morning commute periods, and return (westbound) service during the afternoon/evening periods. Line 437 begins at Pacific Avenue and Washington Boulevard, then travels south along Pacific Avenue to Via Marina, follows Via Marina to Admiralty Way, and

then continues along Admiralty Way to Mindanao Way, providing stops at both Bali Way and Mindanao Way adjacent to the Parcel 44 project site. Line 437 then travels eastward out of the Marina, continuing along Mindanao Way to Alla Road, then south to Culver Boulevard, where it travels eastbound through Culver City before accessing the I-10 Freeway near Fairfax Avenue, to continue into downtown Los Angeles. Within downtown Los Angeles, Line 437 provides service along Grand Avenue, Olive Street, Flower Street and Temple Street, ultimately terminating at the Federal Building at Temple Street and San Pedro Street before returning to the Marina area during the afternoon/evening, generally along the reverse route. In the project vicinity, Line 437 provides departing (eastbound) buses at 15 to 20 minute headways between approximately 6:00 AM and 8:00 AM. Returning (westbound) buses serve the project vicinity approximately every 15 to 30 minutes between about 4:30 PM and 7:00 PM. No weekend or holiday service is available on this line.

<u>Culver City Route 7</u> – Another weekday-only bus line, Route 7 provides local-stop service from just northeast of downtown Culver City to the Fisherman's Village area of Marina del Rey, near the western end of Fiji Way. Beginning with a loop along Culver Boulevard, Venice Boulevard, Robertson Boulevard, and Washington Boulevard in Culver City, Route 437 travels to and from Marina del Rey along Culver Boulevard. From near the Marina Expressway (SR-90), Route 7 then turns to travel along Alla Road, Mindanao Way, Glencoe Avenue, Maxella Avenue, and Lincoln Boulevard before entering Marina del Rey at Bali Way, where it provides a stop at the project-adjacent intersection of Admiralty Way and Bali Way. Route 7 then continues along Admiralty Way to Fiji Way, where it provides service to Fisherman's Village and the surrounding commercial, retail, restaurant, and residential developments before beginning its return to Culver City along the reverse route. In the immediate project vicinity, Route 7 typically provides eastbound service between approximately 5:30 AM and 6:30 PM, and westbound service between approximately 6:30 AM and 7:30 PM, with one-hour headways in both directions throughout the day; no weekend or holiday service is available via this route.

BBB Route 3 – This bus line provides weekday, weekend, and holiday service between the UCLA Campus in Westwood and the Metro Green Line Station at Imperial Highway and Aviation Boulevard to the southeast of the Los Angeles International Airport ("LAX"). Route 3 serves both the Hilgard and Ackerman Terminals at the UCLA campus, before traveling along Westwood Boulevard, Wilshire Boulevard, Federal Avenue, San Vicente Boulevard, and Montana Avenue to Lincoln Boulevard in the City of Santa Monica. Route 3 then travels along Lincoln Boulevard to Wilshire Boulevard, then through the downtown area of Santa Monica

along 4th Street between Wilshire Boulevard to Pico Boulevard, before returning to its route along Lincoln Boulevard to continue through the project study area, including project-serving stops on Lincoln Boulevard at both Bali Way and Mindanao Way (in both directions), to Manchester Avenue in the Westchester community of the City of Los Angeles. From Manchester Avenue, Route 3 then provides service along Sepulveda Boulevard, 96th Street, including a stop at the LAX City Bus Center, along Airport Boulevard, Century Boulevard, and Aviation Boulevard before terminating at the Metro Green Line Station, and returning to UCLA via the reverse route. Route 3 operates in the project vicinity on weekdays from approximately 5:30 AM to 12:30 PM, with headways of approximately 15 minutes in both directions throughout the day. Weekend and holiday service is also provided during approximately the same hours, although headways can range from 15 to 30 minutes, depending on the time of day.

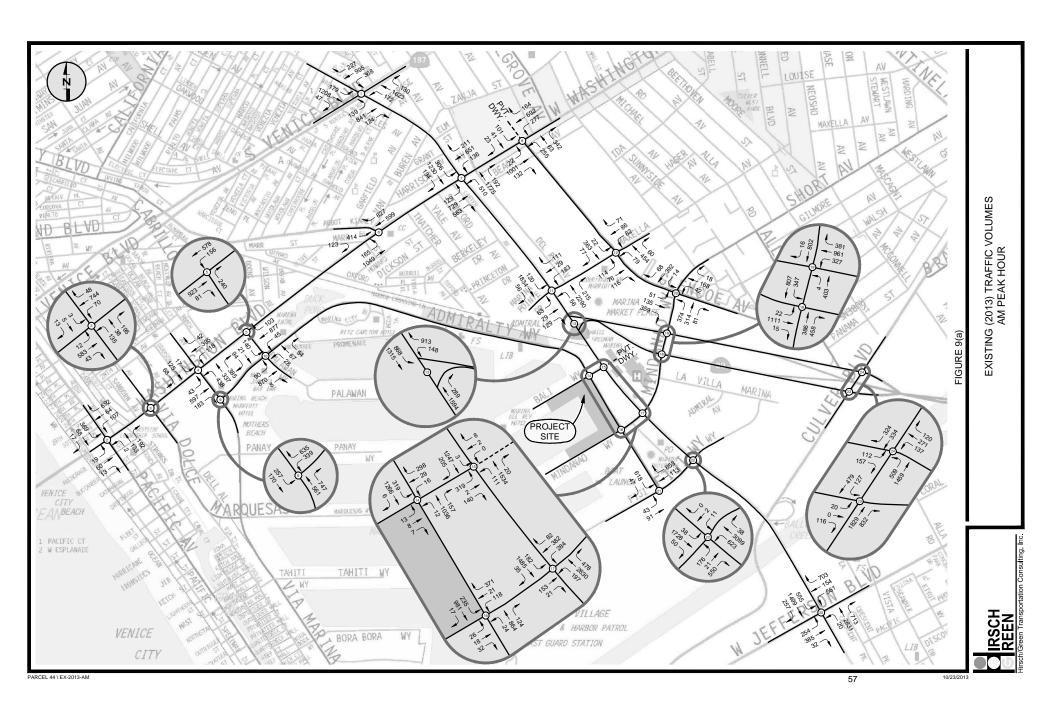
BBB Rapid 3 – This limited-stop bus line provides weekday morning and afternoon/evening service from downtown Santa Monica to the Metro Green Line Station at Imperial Highway and Aviation Boulevard near LAX. The Rapid 3 route loops along Arizona Avenue, 6th Street, and Wilshire Boulevard before travelling on 4th Street to Pico Boulevard, then along Pico Boulevard to Lincoln Boulevard before continuing on Lincoln Boulevard through the project vicinity, providing project-serving stops for both northbound and southbound travel at Maxella Avenue (approximately one-third of a mile walking distance from the site) along the way. South of the project vicinity, Rapid 3 continues along Lincoln Boulevard, 96th Street, including a stop at the LAX City Bus Center, Airport Boulevard, Century Boulevard, and finally Aviation Boulevard to reach the Metro Green Line Station before returning to Santa Monica along the reverse route. Rapid 3 operates in the morning between approximately 5:45 AM and 10:30 AM, and again in the afternoon/evening between approximately 1:30 PM and 9:00 PM, with 15-minute headways in each direction throughout these service periods. Rapid 3 does not provide weekday midday (between 10:30 AM and 1:30 PM), weekend, or holiday service.

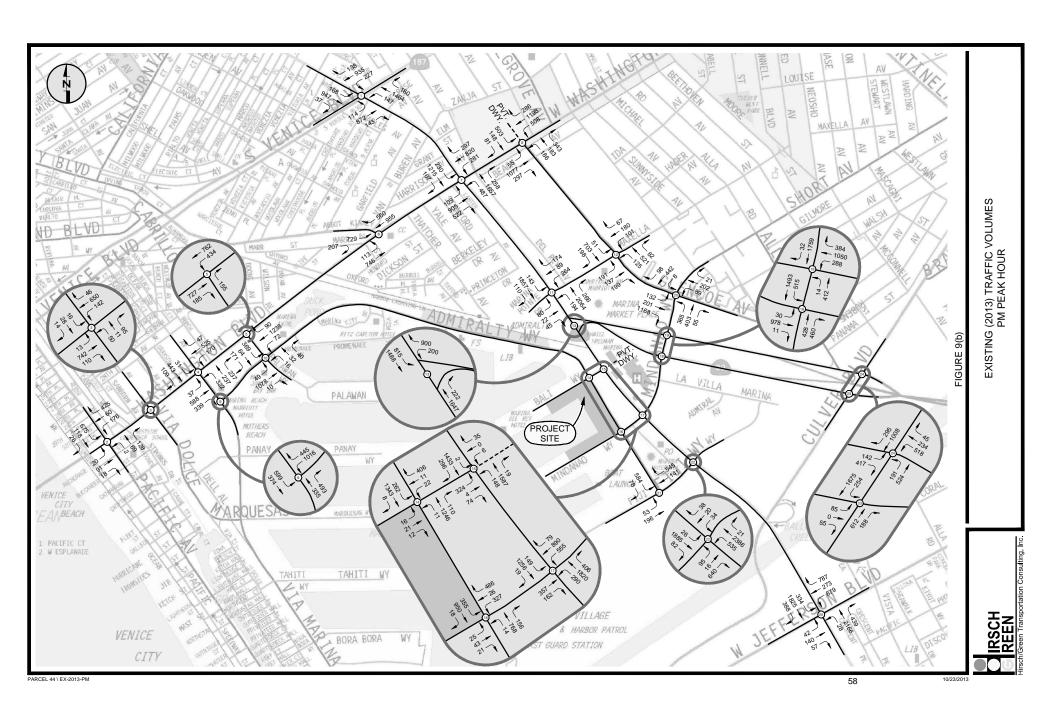
As described in the preceding pages, public transportation service is available either directly at or within convenient walking distance of the project site, and as such, it is likely that some of the project's employees and/or patrons could utilize public transit to travel to destinations within the local area, or throughout the larger metropolitan Los Angeles area via transfers to other service providers. However, based on the anticipated operations of the proposed project's uses, and to assure a conservative analysis of the project's potential traffic impacts, no significant transit use was assumed for the project beyond those nominal levels intrinsically included in the LUP or ITE trip generation data used to estimate the project's trips, as described earlier in this report.

ANALYSIS OF AREA TRAFFIC CONDITIONS

Based on a review of the proposed project's trip generation and site access details described in the previous section, consultation with the Los Angeles County Department of Public Works, Traffic and Lighting Division, determined that the project traffic study should evaluate both existing and forecast future weekday conditions at the following 25 intersections:

- 1. Venice Boulevard and Lincoln Boulevard
- 2. Washington Boulevard and Pacific Avenue
- 3. Washington Boulevard and Via Dolce/Dell Avenue
- 4. Washington Boulevard and Via Marina/Ocean Avenue
- 5. Washington Boulevard and Palawan Way
- 6. Washington Boulevard and Abbot Kinney Boulevard
- 7. Washington Boulevard and Lincoln Boulevard
- 8. Washington Boulevard and Glencoe Avenue/Costco Plaza Driveway
- 9. Admiralty Way and Via Marina
- 10. Admiralty Way and Palawan Way
- 11. Lincoln Boulevard and Maxella Avenue/Marina Pointe Drive
- 12. Maxella Avenue and Glencoe Avenue
- 13. Lincoln Boulevard and Marina Expressway (SR-90)
- 14. Admiralty Way and Bali Way
- 15. Lincoln Boulevard and Bali Way
- 16. Admiralty Way and Mindanao Way
- 17. Lincoln Boulevard and Mindanao Way
- 18. Mindanao Way and Eastbound Marina Expressway (SR-90)
- 19. Mindanao Way and Westbound Marina Expressway (SR-90)
- 20. Mindanao Way and Glencoe Avenue
- 21. Admiralty Way and Fiji Way
- 22. Lincoln Boulevard and Fiji Way
- 23. Culver Boulevard and Eastbound Marina Expressway (SR-90) On/Off-Ramps
- 24. Culver Boulevard and Westbound Marina Expressway (SR-90) Off-Ramp
- 25. Lincoln Boulevard and Jefferson Boulevard


These 25 study intersections include five locations under the exclusive jurisdiction of the County, (study intersections 9, 10, 14, 16, and 21) 14 intersections under the sole jurisdiction of the City of Los Angeles (1, 2, 6 through 8, 11 through 13, 18 through 20, and 23 through 25), and six additional intersections (3 through 5, 15, 17, and 22) exhibiting shared County/City jurisdiction (typically 25 percent County, 75 percent City), and represent the locations within the study area most likely to be affected by traffic generated by the proposed project.


All of the study intersections are controlled by multi-phase, actuated traffic signals, with the exception of Washington Boulevard and Palawan Way, which is a "tee" intersection, STOP sign controlled along on the Palawan Way approach. Additionally, each of the signalized intersections in the study area, including locations under the jurisdiction of the County, are improved with LADOT's Automated Traffic Surveillance and Control ("ATSAC") traffic signal coordination software, as well as the next-generation Adaptive Traffic Control System ("ATSC") upgrades. These systems enhance the overall capacity of a network of interconnected traffic signals by monitoring the traffic flow from adjacent ATSAC/ATCS intersections and adjusting signal timing and phasing in real time to maximize vehicular throughput and minimize delay.

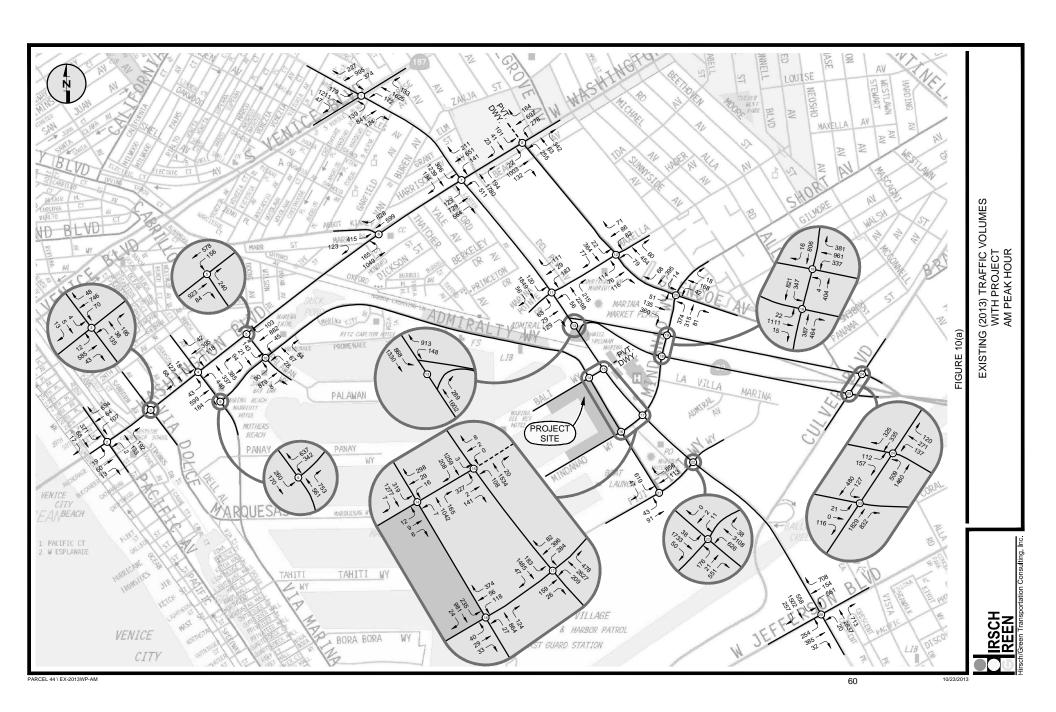
Existing (Year 2013) Traffic Volumes

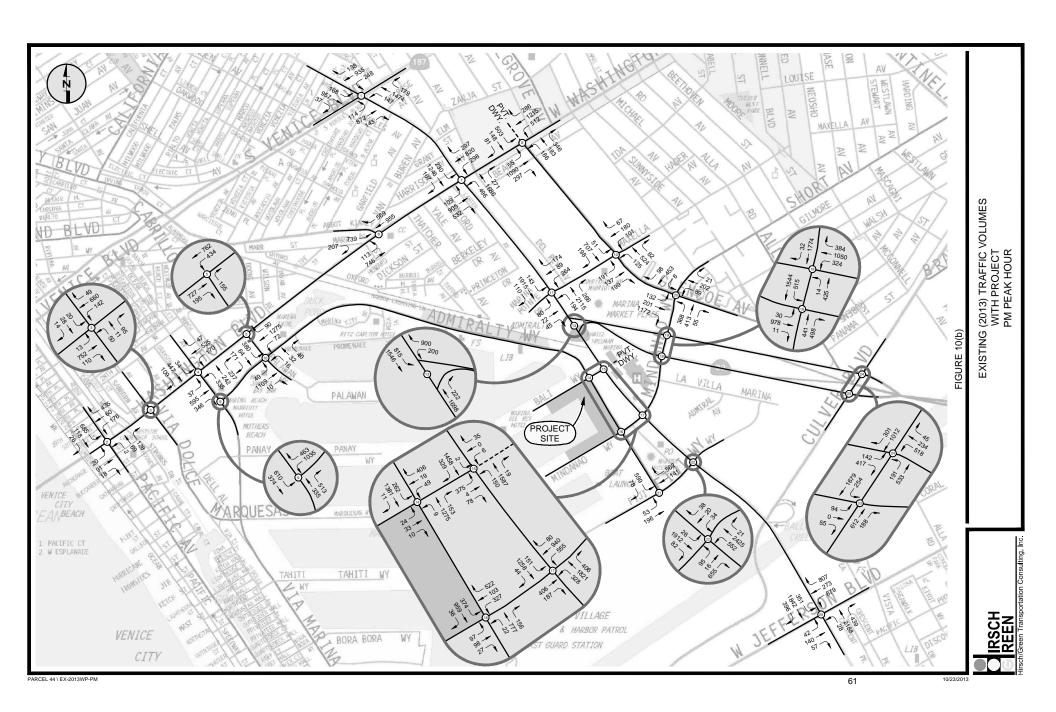
Existing (No Project) Conditions

The weekday peak hour traffic volume data at each of the study intersections were obtained from counts performed for this study in December of 2011. Based on traffic growth trends in the study area, it is expected that the traffic patterns and volumes identified in these counts will remain relatively constant, and continue to accurately reflect traffic conditions in the study area for some time. However, for purposes of this analysis, the December 2011 count data were increased using the County's recommended "ambient traffic growth factor" (described later in this report) to estimate the traffic volumes for the year 2013 conditions identified in this study. The count data are representative of typical mid-week conditions during weeks with no holidays or other special events, and with all area businesses and schools in full, regular operation. The "peak hour" volumes described in this analysis reflect the highest four consecutive 15-minute periods within a larger three-hour count windows; peak hour traffic volumes were determined individually for each of the study intersections, assuring that the "worst case" operational conditions at each location were analyzed in this study. The "existing" (year 2013) weekday peak hour traffic volumes at each of the 25 study intersections are shown in Figure 9(a) for the AM peak hour conditions and in Figure 9(b) for the PM peak hour conditions.

Existing With Project Conditions

Although not currently required by the County, recent court decisions regarding the California Environmental Quality Act ("CEQA") have mandated that, in addition to the "future conditions" traffic impact analyses typically requested by jurisdictions in Southern California, all new traffic studies must include an analysis of potential project-related impacts based on the existing conditions in the project vicinity, in order to identify any "immediate" and project-specific traffic impacts within the study area which may result from development of the proposed project alone.


Therefore, in order to comply with this mandate, this study includes an analysis of the effects of project traffic on the current intersection operations at each of the nine study locations. The traffic volumes associated with this scenario were developed by adding the net project traffic volumes shown earlier in Figures 5(a) and 5(b) to the existing ("no project") year 2013 traffic volumes shown in Figures 9(a) and 9(b), and the resulting "Existing (2013) With Project" scenario traffic volumes are shown in Figures 10(a) and 10(b).


Analysis of Existing (2013) Traffic Conditions

This study uses the Critical Movement Analysis ("CMA") methodology as the basis for the analysis and evaluation of traffic operations at signalized intersections; the CMA procedures are applicable for the evaluation of signalized intersection operations during the weekday peak hour analysis periods. This analysis technique, detailed in Circular Number 212 published by the Transportation Research Board ("TRB")³, describes the operating characteristics of an intersection in terms of the "Level of Service", based on intersection traffic volume and other variables such as number and type of signal phasing, lane geometries, and other factors which determine both the quantity of traffic that can move through an intersection ("Capacity") and the quality of that traffic flow ("Level of Service").

"Capacity" represents the maximum total hourly volume of vehicles in the critical lanes which has a reasonable expectation of passing through an intersection under prevailing roadway and traffic conditions. Critical lanes are defined generally as those intersection movement or groups of movements which exhibit the highest "per lane" volumes, thus defining the maximum amount of vehicles attempting to negotiate through the intersection during a specific time period. The capacity of an intersection also varies based on the number of signal phases for the location; more signal phases generally result in more "lost" or "startup" time, as vehicles exhibit slight

³ Interim Materials on Highway Capacity, Circular Number 212, Transportation Research Board, Washington, D.C., 1980.

driver reaction delays when signal indications change from "red" to "green". Additional signal phases introduce more signal indication changes, creating more opportunities for lost time during the signal cycle, and reducing the efficiency, and thus the capacity, of an intersection.

The capacities used in the CMA methodology are assigned to the various intersection operating conditions based on the number of traffic signal phases, as shown in Table 6. For intersection analysis and transportation planning purposes (such as this traffic study), the CMA methodology typically equates the capacity of an intersection to the value of Level of Service ("LOS") E for the applicable number of signal phases. This value represents the highest volume of traffic that can be adequately accommodated through urban area intersections without a breakdown in operations, resulting in unstable traffic flows, high levels of congestion, and long delays.

Table 6
Critical Movement Analysis Volume Ranges per Level of Service *

Maximum Sum of Critical Volumes (VPH)
vs. Number of Signal Phases

	vs. Humber of orginal i mases							
Level of Service	Two Phases	Three Phases	Four or More Phases					
A	900	855	825					
В	1,050	1,000	965					
С	1,200	1,140	1,100					
D	1,350	1,275	1,225					
Е	1,500	1,425	1,375					
F	Not Applicable							

^{*} For planning applications only. Not appropriate for operations/design applications.

The "Critical Movement" indices at an intersection are determined by first identifying the sum of all critical movement volumes at that intersection. This value is then divided by the appropriate capacity value for the type of signal control at the study intersection to arrive at the "CMA value" for the intersection, which is roughly equivalent to the volume-to-capacity ratio for the location.

"Level of Service" describes the quality of traffic flow through an intersection. LOS A through LOS C provide good traffic flow characteristics, with little or no congestion or vehicle delay. LOS D is the condition for which most metropolitan area street systems are designed, and represents the highest level of smooth traffic flow. LOS E represents volumes at or near the capacity of the intersection and can result in stoppages of momentary duration and unstable

traffic flow at the upper reaches of this condition. LOS F occurs when a facility is overloaded and is characterized by stop-and-go traffic with stoppages of long duration. Note that the LOS definitions do not represent a single operating condition, but rather correspond to a range of CMA values, as shown in Table 7.

Table 7 Level of Service as a Function of CMA Value

CMA Value	Level of Service	Intersection Operation/Traffic Flow Characteristics
<u><</u> 0.600	А	No congestion; all vehicles clear in a single cycle.
> 0.600 <u><</u> 0.700	В	Minimal congestion; all vehicles still clear in a single cycle.
> 0.700 <u><</u> 0.800	С	No major congestion; most vehicles clear in a single cycle.
> 0.800 ≤ 0.900	D	Generally uncongested, but vehicles may wait through more than one cycle; no short duration queues form on critical approaches.
>0.900 <u><</u> 1.000	E	Increased congestion on critical approaches; long duration queues form at higher end of range.
> 1.000	F	Over capacity; forced flow with long periods of congestion; substantial queues form.

Although designed for use with signalized intersections, the CMA methodology can also be useful in the evaluation of the operations of unsignalized locations. For this analysis, a modified CMA analysis was used to analyze the unsignalized intersection of Washington Boulevard and Palawan Way, assuming a reduction in intersection capacity to 1,200 vehicles per hour to account for the somewhat less efficient traffic flows associated with STOP sign control.

Additionally, as described previously, ATSAC/ATCS traffic signal coordination upgrades have been implemented at all of the signalized intersections in the study area, including those under the jurisdiction of the County along Admiralty Way in the Marina. These systems monitor traffic volumes and demands at a network of intersections, and adjust signal phasing programs and timing in real time to maximize the capacity of the intersections in the system, resulting in an approximate 10 percent increase in intersection capacity when compared to non-ATSAC/ATCS equipped intersections. While it is acknowledged that the Los Angeles County Department of Public Works Traffic and Lighting Division traffic study guidelines⁴ do not indicate methodologies for evaluating the effects of traffic signal coordination systems such as ATSAC/ATCS, the

OCTOBER 2013

⁴ "Traffic Impact Analysis Report Guidelines", Los Angeles County Department of Public Works, January 1, 1997.

improvements in traffic flow and intersection operations due to the ATSAC/ATCS improvements occur nonetheless. Therefore, for purposes of this study, the effectiveness of these signal coordination systems was estimated using methodologies identified in LADOT's current Traffic Study Policies and Procedures guidelines (June 2013). In accordance with LADOT policies, the "baseline" CMA values at each of the signalized study intersections (calculated using the standard assumptions and methodologies noted earlier) have been reduced by 0.100 to account for the operational improvements resulting from the ATSAC/ATCS signal upgrades.

By applying the analysis procedures and assumptions described above, the existing (year 2013) weekday AM and PM peak hour operating conditions (CMA value and corresponding LOS) at each of the 25 study intersections were calculated, as summarized below in Table 8.

Table 8
Critical Movement Analysis Summary
Existing (2013) Without and With Project Conditions

Int.		Peak	No Project		With Project		
No.	Intersection	Hour	CMA	LOS	CMA	LOS	Impact
1	Venice Boulevard and Lincoln Boulevard	AM PM	1.026 0.944	F E	1.028 0.954	F E	0.002 0.010 *
2	Washington Boulevard and Pacific Avenue	AM PM	0.534 0.678	A B	0.535 0.685	A B	0.001 0.007
3	Washington Boulevard and Via Dolce/Dell Avenue	AM PM	0.260 0.314	A A	0.261 0.320	A A	0.001 0.006
4	Washington Boulevard and Via Marina/Ocean Avenue	AM PM	0.564 0.779	A C	0.567 0.788	A C	0.003 0.009
5	Washington Boulevard and Palawan Way ^[1]	AM PM	0.715 0.794	C C	0.715 0.794	C C	0.000 0.000
6	Washington Boulevard and Abbot Kinney Boulevard	AM PM	0.561 0.606	A B	0.562 0.609	A B	0.001 0.003
7	Washington Boulevard and Lincoln Boulevard	AM PM	0.819 0.897	D D	0.822 0.914	D E	0.003 0.017 *
8	Washington Boulevard and Glencoe Avenue/Costco Plaza Driveway	AM PM	0.632 1.032	В F	0.635 1.039	В F	0.003 0.007
9	Admiralty Way and Via Marina [2]	AM PM	0.407 0.831	A D	0.411 0.845	A D	0.004 0.014
10	Admiralty Way and Palawan Way ^[2]	AM PM	0.461 0.669	A B	0.464 0.689	A B	0.003 0.020

Table 8 (continued) Critical Movement Analysis Summary Existing (2013) Without and With Project Conditions

Int.	t.		No Project		With Project		
No.	Intersection	Hour	CMA	LOS	CMA	LOS	Impact
11	Lincoln Boulevard and Maxella Avenue/Marina Pointe Drive	AM PM	0.651 0.644	B B	0.653 0.656	B B	0.002 0.012
12	Maxella Avenue and Glencoe Avenue	AM PM	0.345 0.493	A A	0.345 0.495	A A	0.000 0.002
13	Lincoln Boulevard and Marina Expressway (SR-90)	AM PM	0.732 0.729	C C	0.734 0.741	C C	0.002 0.012
14	Admiralty Way and Bali Way [2]	AM PM	0.596 0.652	A B	0.601 0.687	B B	0.005 0.035
15	Lincoln Boulevard and Bali Way/Auto Dealership Driveway	AM PM	0.456 0.576	A A	0.461 0.611	A B	0.005 0.035
16	Admiralty Way and Mindanao Way [2]	AM PM	0.565 0.669	A B	0.556 0.721	A C	-0.009 0.052 *
17	Lincoln Boulevard and Mindanao Way	AM PM	0.847 0.861	D D	0.851 0.891	D D	0.004 0.030 *
18	Mindanao Way and EB Marina Expressway (SR-90)	AM PM	0.626 0.770	B C	0.628 0.788	B C	0.002 0.018
19	Mindanao Way and WB Marina Expressway (SR-90)	AM PM	0.431 0.697	A B	0.432 0.701	A C	0.001 0.004
20	Mindanao Way and Glencoe Avenue	AM PM	0.445 1.040	А F	0.447 1.047	А F	0.002 0.007
21	Admiralty Way and Fiji Way ^[2]	AM PM	0.231 0.243	A A	0.231 0.249	A A	0.000 0.006
22	Lincoln Boulevard and Fiji Way	AM PM	0.824 0.693	D B	0.827 0.707	D C	0.003 0.014
23	Culver Boulevard and Marina Freeway (SR-90) EB On/Off-Ramps	AM PM	0.469 0.515	A A	0.469 0.523	A A	0.000 0.008
24	Culver Boulevard and Marina Freeway (SR-90) WB Off-Ramp	AM PM	0.661 0.795	B C	0.662 0.796	B C	0.001 0.001
25	Lincoln Boulevard and Jefferson Boulevard	AM PM	1.046 0.827	F D	1.048 0.837	F D	0.002 0.010

Notes:

^[1] Unsignalized intersection; capacity assumed as 1,200 vehicles per hour.

^[2] Los Angeles County intersection.

[&]quot;*" Significant impact per Los Angeles County Department of Public Works *Traffic Impact Analysis Report Guidelines*, January 1, 1997, or LADOT *Traffic Study Policies and Procedures*, June 2013.

As shown in Table 8, each of the five study intersections under the jurisdiction of the County (intersections 9, 10, 14, 16, and 21), are currently operating at LOS A or LOS B during both the AM and PM peak hours, with the exception of Via Marina and Admiralty Way, which exhibits LOS D operations during the PM peak hour. Similarly, most of the remaining 20 study intersections (operated by or under sole or shared jurisdiction of the City of Los Angeles) generally also operate at LOS D or better, although four of the intersections, Lincoln Boulevard and Venice Boulevard, Washington Boulevard and Glencoe Avenue/Costco Plaza Driveway, Mindanao Way and Glencoe Avenue, and Lincoln Boulevard and Jefferson Boulevard, exhibit LOS E or F operations during one or both of the peak hours (indicated by bold text).

Both the County's Department of Public Works and LADOT identify the "target" maximum acceptable intersection operation to be LOS D. As such, as indicated in Table 8, a total of 21 of the 25 study intersections currently exhibit "acceptable" operating conditions during the most critical times of the day, and field observations confirm that the roadways and intersections within the study area typically operate at reasonable levels for urban conditions, with most vehicles clearing the intersections during one or two signal cycles under normal conditions. However, it is acknowledged that several of the key roadways within the study area carry high traffic volumes during the peak commute hours, and that traffic flows on these facilities generally exhibit slow speeds and/or "stop-and-go" conditions during these times. During these periods, failure of any of the intersections due to accidents, higher than typical pedestrian volumes, vehicles blocking traffic at intersections, or other factors can produce operational abnormalities ranging from localized short-term congestion and delay to cascade failures of an entire travel corridor, producing substantial gridlock conditions for extended periods throughout the area.

The incremental project-related impacts at each of the 25 study intersections were determined by comparing the results of the analysis of the existing (year 2013) "no project" conditions to those of the "with project" conditions, to identify any potential project-specific traffic impacts that could occur the under current traffic conditions in the project vicinity. As also shown in Table 8, development of the proposed project and the addition of its associated traffic could result in incremental increases in the CMA values at each of the study intersections to varying degrees, depending upon the intersection's proximity to the project site, its location along the anticipated project traffic travel routes, or the specific geometries and/or operating characteristics of the intersection. However, the incremental traffic (and associated CMA value changes) resulting from the proposed project are not expected to result in reductions to the existing ("no project") operating conditions (LOS) at most of the study locations during either peak hour, although the

intersection of Washington Boulevard and Lincoln Boulevard could experience a deterioration from acceptable LOS D to undesirable LOS E operations during the PM peak hour; its current LOS D conditions during the AM peak hour will remain unchanged. Nonetheless, the addition of project-related traffic is not anticipated to result in the change from "acceptable" to "undesirable" operations at any other of the study intersections, although several other locations will also exhibit changes in their existing levels of service during one or both of the peak hours.

As also shown in Table 8, the operations at the intersection of Admiralty Way and Bali Way, adjacent to the northeast corner of the project site, could be reduced from existing LOS A to LOS B conditions during the AM peak hour, while the nearby intersection of Lincoln Boulevard and Bali Way could be reduced from LOS A to LOS B conditions during the PM peak hour, due to the addition of project-related traffic. Similarly, the intersections of Admiralty Way and Mindanao Way, located adjacent to the southeast corner of the project site, Mindanao Way and westbound Marina Expressway, and Admiralty Way and Fiji Way, could each be anticipated to experience potential reductions from their current LOS B operations to LOS C conditions during the PM peak hour. However, despite these potential reductions in levels of service, each of these five study intersections is expected to continue to exhibit acceptable (LOS D or better) conditions during both peak hours following the addition of project-related traffic.

Impact Significance Criteria

However, project traffic-related changes to the level of service at an intersection, while useful as an indicator of the potential for noticeable effects on the area transportation network, are not the standard used by either the County Department of Public Works or LADOT to evaluate the potential "significance" of a project's incremental traffic impacts on the area roadway network. Both agencies define the significance of a project's traffic impacts based on a "stepped scale", with intersections exhibiting higher LOS conditions and volume-to-capacity ratios being more sensitive to additional traffic than those operating at better levels of service and with more available surplus capacity. As such, a "significant" traffic impact is identified as an increase in the CMA value, due to project-related traffic, of 0.010 or more when the final ("with project") Level of Service is E or F, a CMA increase of 0.020 or more when the final Level of Service is LOS D, or an increase of 0.040 or more at LOS C. No significant impacts are deemed to occur at LOS A or B, as these operating conditions exhibit sufficient surplus capacities to accommodate traffic increases with little effect on traffic delays. The significance criteria used by both Los Angeles County and LADOT to evaluate intersection impacts is shown in Table 9.

Table 9
Los Angeles County/LADOT
Significant Traffic Impact Criteria

LOS	Final (With Project) CMA Value	Project-Related Increase in CMA Value
С	> 0.700 <u><</u> 0.800	<u>≥</u> 0.040
D	> 0.800 <u><</u> 0.900	<u>></u> 0.020
E or F	> 0.900	<u>></u> 0.010

Therefore, using the County/City traffic impact "significance" criteria summarized in Table 9, the incremental effects of the anticipated project-specific traffic additions to each of the study intersections were evaluated. As also shown in Table 8, in general, the potential traffic impacts of the proposed Parcel 44 redevelopment project are expected to be relatively nominal, although based on the impact evaluation criteria shown in Table 9, significant project-related traffic impacts could occur at four of the 25 study intersections, all during the PM peak hour, under the "Existing (2013) With Project" scenario. These significantly-impacted locations include one location under the sole jurisdiction of the County, at the site-adjacent intersection of Admiralty Way and Mindanao Way, one intersection exhibiting shared City/County jurisdiction, Lincoln Boulevard and Mindanao Way, and two Los Angeles City-only jurisdiction intersections, Lincoln Boulevard and Venice Boulevard, and Lincoln Boulevard and Washington Boulevard. Measures to address these potential project-related significant traffic impacts are described and analyzed later in the "Mitigation Measures" section of this report.

Future (Year 2016) Traffic Conditions

Future (year 2016) traffic volumes in the project vicinity, and indeed throughout the region, are anticipated to increase as a result of a number of factors, although two factors contribute most significantly to area traffic growth. The first of these factors is ambient increases in the number of vehicles on the roadway system. Ambient traffic growth can occur for a number of reasons; increasing population (not tied to development), additional vehicles for existing households (as children become driving age, or new multi-vehicle status for current single-vehicle families), economic factors such as new jobs creating new worker trips, and other factors.

The second factor is new traffic resulting from ongoing and continued development. A number of other development projects, both within Marina del Rey and outside the County jurisdiction within the City of Los Angeles, are currently either under construction or planned for construction in the

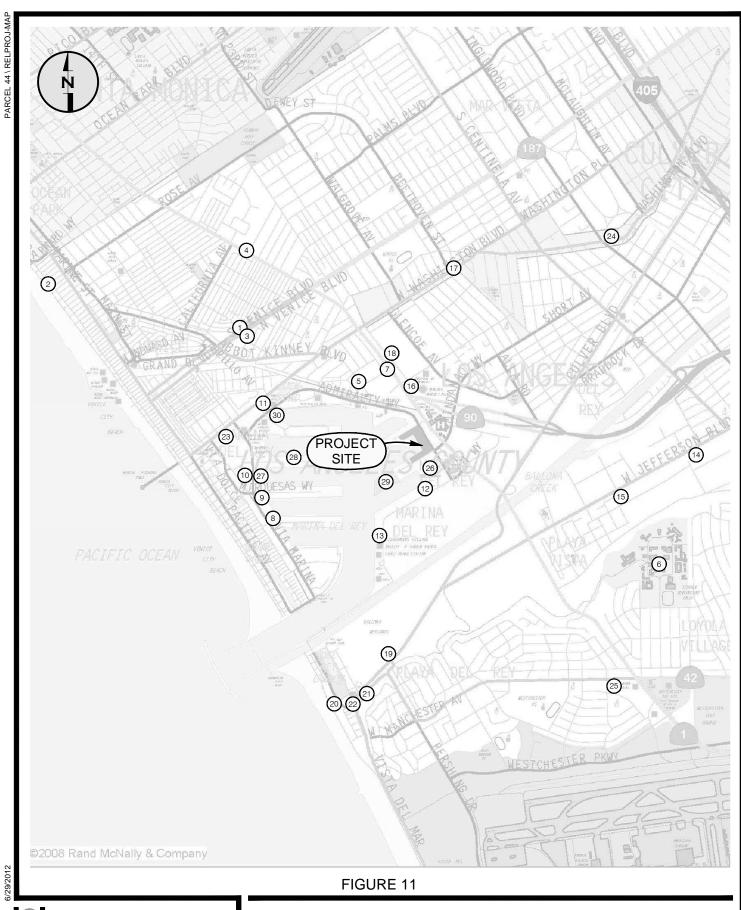
project vicinity in the foreseeable future. These projects range from small "in fill" residential developments to large Master Plan projects incorporating hundreds of residential units and thousands of square feet of commercial office, retail, and community space, and each will likely contribute to future traffic volumes in the study area to some degree.

Therefore, since the proposed project is not expected to be built and occupied until some time in the year 2016, its potential traffic additions, and associated traffic impacts, will occur on a roadway system that is anticipated to exhibit more traffic than identified in the "Existing (2013)" conditions described earlier. As such, the analysis of future traffic conditions within the study area as expanded to include potential traffic increases from both ambient traffic growth and from trips generated by other development projects in the vicinity that have not yet been developed. These "Future (2016) Without Project" scenarios represent the forecast traffic conditions in the study area at the time of the proposed project's completion, but prior to occupancy, and form the baseline for evaluating the effects of the project's potential incremental traffic additions.

Without Project Traffic Forecasts

Briefly, the methodology for estimating future traffic volumes was as follows: First, as described in a preceding section of this report, the current (year 2013) traffic volumes were determined by traffic counts. These existing volumes were then used to estimate future conditions (year 2016) through the application of an "ambient traffic growth factor". This growth factor, compounded annually, was applied to all of the turning movement volumes at the study intersections to form the baseline traffic volume conditions for the future study year 2016. Although the annual growth factor is expected to fully represent all potential area traffic increases, for the purposes of conservative analysis, traffic generated from nearby "related projects" was also added to these future baseline traffic volumes, to identify future cumulative traffic conditions in the area.

Ambient Traffic Growth


Based on analyses of recent traffic growth in the study area, as documented in the current (2010) Los Angeles County Congestion Management Program ("CMP"), the County's Department of Public Works Traffic and Lighting Division has determined that an annual traffic growth factor of 0.6 percent is appropriate. In fact, the CMP foresees actual anticipated traffic growth in the "West/Central Los Angeles" area encompassing the study vicinity to be approximately 0.14 percent annually, inclusive of both general ambient growth and traffic from cumulative area development ("related projects"), through the year 2016, and as such, the

assumed 0.6 percent annual growth factor is expected to be quite conservative. This "ambient traffic growth factor" is used to account for expected increases in traffic resulting from general ambient traffic growth in the study vicinity due to ongoing regional population growth, or from potential development projects not yet proposed or outside of the study area. The ambient growth factor, compounded annually, was applied to the 2013 traffic volumes to develop estimates of the future traffic volumes for the future year 2016 baseline conditions.

Related Projects

In addition to the 0.6 percent annual traffic growth rate used for this study, a listing of specific projects located within the study area, an approximately 2.0-mile radius from the project site, was obtained from various sources, including the Los Angeles County Department of Regional Planning, the County Department of Beaches and Harbors, LADOT, and the City of Culver City Planning Department. Additionally, a field survey of the study area was conducted to identify any ongoing developments not on these lists. However, it should be noted, as discussed previously, that the assumed 0.6 percent annual ambient traffic growth factor is expected to accurately represent all area traffic growth within the study period, and as such, the inclusion of additional traffic due to specific projects in the study area in addition to the assumed ambient background traffic growth may tend to overstate cumulative conditions. Therefore, so as not to inordinately deteriorate future traffic conditions and to more accurately predict future traffic volumes, for purposes of this study, related projects generating fewer than 20 net new peak hour trips, or those located outside the 2.0-mile radius, were generally not included as specific traffic generators, and were assumed to be included within the ambient traffic growth increases. However, in order to fully evaluate the cumulative traffic effects of ongoing or proposed development within Marina del Rey itself, all proposed projects located in the Marina were included in this analysis, regardless of their net traffic generation.

Using these assumptions as guidelines, a review of the related projects information indicated that a total of 30 individual projects near the study site, including 12 projects located within the County-controlled portions of Marina del Rey itself, might produce additional traffic at one or more of the 25 study intersections. Therefore, potential traffic from these ongoing or prospective developments were added to the assumed 0.6 percent annual ambient traffic growth to produce the estimates of cumulative future (2016) traffic volumes. The locations of the 26 specific related projects included in this analysis are shown in Figure 11, and each project is individually listed and described in Table 10.

IRSCH REEN

Hirsch/Green Transportation Consulting, Inc.

RELATED PROJECTS LOCATIONS MAP

Table 10
Related Projects Descriptions

Map No.	Land Use/Description	Size/Units	Address
1.	Specialty Retail Warehouse	10,000 sq. ft. 10,000 sq. ft.	585 Venice Boulevard
2.	Mixed-Use Hotel Restaurant (High-turnover)	30 room 2,000 sq. ft.	305 Ocean Front Walk
3.	Mixed-Use Residential Retail	5 unit 5,700 sq. ft.	580 Venice Boulevard
4.	Supermarket	36,800 sq. ft.	1600 Lincoln Boulevard
5.	LADPW Maintenance Yard Expansion	n/a	3233 Thatcher Avenue
6.	Loyola Marymount University [1] (student increase)	2,540 student	1 LMU Drive
7.	Retail	8,000 sq. ft.	4160 Lincoln Boulevard
8.	Marina del Rey Parcel 9 [2] Hotel Public Park	288 room 1 acre	NEC Tahiti Way/Via Marina
9.	Marina del Rey Parcels FF and 10R Apartment Boat dock Apartment Boat Dock	526 unit 168 slip 136 <i>unit</i> 184 slip	E/s Via Marina near Marquesas Way
10.	Marina del Rey Parcels 100, 101 [4] Apartment Apartment	544 unit 202 <i>unit</i>	SWC Via Marina/Panay Way
11.	Marina del Rey Parcel OT [5] Senior Care Speciality Retail	114 unit 3,000 sq. ft.	E/o Palawan Way between Washington Boulevard and Admiralty Way
12.	Marina del Rey Parcels 52,GG Storage County Office Public Parking Lot	375 boat 2,000 sq.ft. 236 space	Fiji Way, W/o Admiralty Way

Table 10 (continued) Related Projects Descriptions

Map No.	Land Use/Description	Size/Units	Address
13.	Fisherman's Village (Parcels 55, 56, W	<u>/)</u> [6]	Near southern terminius of Fiji Way
	Retail	 29,150 sq.ft.	
	Resturants and Food Court	37,100 sq.ft.	
	Ferry Terminal and Office	6,500 sq.ft.	
	Hotel	132 room	
	Boat Slips	26 slip	
	Retail	2,580 sq.ft.	
	Office	10,404 sq.ft.	
	Resturants	16,149 sq.ft.	
	Boat Slips	17 slip	
14.	The Village at Playa Vista [7]		S/o Jefferson Boulevard and
	Office	175,000 sq.ft.	Westlawn Avenue
	Apartment	2,600 unit	
	Retail	150,000 sq.ft.	
	Community Serving Uses	40,000 sq.ft.	
15.	Playa Vista-Phase 1		S/o Jefferson Boulevard and
	Office	1,922,050 sq.ft.	E/o Lincoln Boulevard
	Condominium	3,246 unit	(assumed 30% completed and occupied)
	Retail	25,000 sq.ft.	
	Production and Stage Support	1,129,900 sq.ft.	
	Community Service Uses	65,000 sq.ft.	
16.	<u>Villa Marina</u> ^[8]		E/o Lincoln Boulevard Between SR-90
	Condominium	244 unit	and Maxella Avenue
	Shopping Center	9,000 sq. ft.	
	Shopping Center	21,038 sq. ft.	
17.	Mixed-Use [9]		12803 Washington Boulevard
	Office	31,150 sq.ft.	ŭ
	Retail	6,260 sq.ft.	
18.	Apartment [10]	77 unit	4100 Del Rey Avenue
19.	Office	7,994 sq. ft.	309-315 E. Culver Boulevard
20.	Mixed-Use [11]		6819 Pacific Avenue
	Single-Family Residential	29 unit	
	Retail	4,000 sq. ft.	

Table 10 (continued) Related Projects Descriptions

Map No.	Land Use/Description	Size/Units	Address
21.	Mixed-Use [12]		220 Culver Boulevard
	Apartments	63 unit	
	Pharmacy/Drugstore	11,000 sq. ft.	
	Restaurant	4,000 sq. ft.	
22.	Mixed-Use [13]		138 Culver Boulevard
	Apartments	72 unit	
	Retail	7,000 sq. ft.	
	Restaurant	3,000 sq. ft.	
	Supermarket	6,000 sq. ft.	
23.	Marina del Rey Parcel 95 [14]		Washington Boulevard between
	Retail	14,922 sq. ft.	Via Dolce and Via Marina
	Café/Coffee Shop	1,797 sq. ft.	
	Islands Restaurant	165 seat	
	Office	9,180 sq. ft.	
	Islands Restaurant	5,713 sq. ft.	
	Furniture Sales/Showroom	7,500 sq. ft.	
24.	Office	41,000 sq. ft.	11955 W. Washington Boulevard
	Retail	9,500 sq. ft.	
25.	Apartment	126 unit	7280 W. Manchester Avenue
26.	Marina del Rey Parcels 49, 77		W/o Admiralty Way between
	Retail	135,000 sq. ft.	Mindanao Way and Fiji Way
	Office	26,000 sq. ft.	
27.	Esprit Phase 2 (Parcel 15)		E/o Via Marina between Mindanao Way
	Apartments	297 unit	and Marquesas Way
	Retail	8,000 sq. ft.	
	Boat Slips	41 slip	
	Restaurant	4,400 sq. ft.	
28.	Marina del Rey Parcel 21		13953 Panay Way
	Health Club	10,000 sq. ft.	
	Retail	2,916 sq. ft.	
	Marine Commercial Offices	11,432 sq. ft.	
	Yacht Club	92 slip	
	Health Club	16,000 sq. ft.	
	Retail	2,916 sq. ft.	
	Marine Commercial Offices	5,432 sq. ft.	
	Yacht Club	64 slip	

Table 10 (continued) Related Projects Descriptions

Map No.	Land Use/Description	Size/Units	Address
29.	Burton Chace Park Expansion	6.64 acres	Western terminus of Mindanao Way
30.	Marina del Rey Parcel 30/NR [15]		SEC Admiralty Way and Palawan Way
	Apartment	292 unit	
	Supermarket	14,700 sq. ft.	
	Pharmacy/Drugstore	11,000 sq. ft.	
	Retail	2,300 slip	
	Restaurants	16,670 sq. ft.	
	Restaurant/Entertainment	17,000 sq. ft.	

Note:

Uses identified in italics are existing uses removed in order to develop proposed project.

Sources:

- [1] Traffic Impact Assessment Letter for Proposed Loyola Marymount University Master Plan Project, City of Los Angeles, November 13, 2009.
- [2] Traffic Study for Proposed 288-room Hotel and 1.1-Acre Park on Parcel 9U in Marina del Rey, Crain & Associates, March 2006.
- [3] Traffic Study for Proposed 526-Unit Residential Development on Parcels FF and 10R in Marina del Rey, Crain & Associates, September 2005.
- [4] Traffic Analysis for a Proposed 544-unit Residential Development on Parcels 100 and 101 in Marina del Rey, Crain & Associates, August 2005.
- [5] Scoping for Traffic Study for Proposed Congregate Care Facility and Retail on Parcel OT in Marina del Rey, Crain & Associates, May 18, 2006.
- [6] Traffic Impact Analysis Report, Proposed Fisherman's Village Enhancement/Expansion Project Near the Southern Terminus of Fiji Way, Marina del Rey, California, Hirsch/Green Transportation Consulting, Inc., September 2007.
- [7] Traffic Analysis for The Village at Playa Vista Project, Kaku Associates, and Raju Associates, July 2003.
- [8] Memorandum to Eddie Guerro, LADOT, from Pat Gibson and Audrey Naval, May 6, 2009.
- [9] Traffic Impact Analysis Report, Proposed 31,150 Square Foot Office and 6,260 Square Foot Retail Development Located at 12803 Washington Boulevard and Culver City, Hirsch/Green Transportation Consulting, Inc., Revised April 2008.
- [10] Traffic Impact Analysis Report, Proposed 77-Unit Residential Apartment Development located at 4100 Del Rey Avenue, Los Angeles, Hirsch/Green Transportation Consulting, Inc., April 2011.
- [11] Preliminary Trip Generation Calculations, 6819 Pacific Avenue Mixed-Use Project, Hirsch/Green Transportation Consulting, Inc., October 2010.
- [12] Preliminary Trip Generation Calculations, 220 Culver Boulevard Mixed-Use Project, Hirsch/Green Transportation Consulting, Inc., October 2010.
- [13] Traffic Impact Analysis Report, Proposed 72-Unit Residential and 16,000 Square Foot Commercial Mixed-Use Development Located at 138 Culver Boulevard in Playa del Rey, Hirsch/Green Tranportation Consulting, Inc., Revised March 2011.
- [14] Traffic Impact Analysis Report, Proposed Commercial Redevelopment of Parcel 95 on Washington Boulevard between Via Marina and Via Dolce in Marina del Rey, California, Hirsch/Green Transportation Consulting, Inc., November 2011
- [15] Preliminary Trip Generation Calculations, Parcel 33/NR Mixed-Use Project, Hirsch/Green Transportation Consulting, Inc., January 2012.

Estimates of the amount of new traffic expected to be generated by these related projects were obtained from Los Angeles County, LADOT, or City of Culver City project records, or where no such information was provided, were determined by applying the appropriate trip generation rates and equations from the ITE *Trip Generation* publication described earlier, or for projects located within Marina del Rey, by using the appropriate trip generation rates identified in the LUP, similar to the calculations described earlier for the proposed Parcel 44 project itself. The resulting related project trip generation estimates are summarized in Table 11.

The related project's traffic volumes shown in Table 11 were then distributed through the study area and assigned to the area roadway and freeway network using assumptions and methodologies similar to those used to assign the trips generated by the proposed project. As with the proposed Parcel 44 project traffic assignments described earlier in this report, the distribution and assignment of related project's traffic was assumed to exhibit the same travel paths during both the AM and PM peak hours. The resulting related project's trip assignments are shown in Figure 12(a) for the AM peak hour and Figure 12(b) for the PM peak hour.

Ongoing and/or Programmed Future Highway System Improvements

The existing roadway network serving the study area, consisting of streets and intersections located within both Los Angeles County (Marina del Rey) and the City of Los Angeles, is already improved with a variety of physical (geometric) and/or operational measures designed to enhance traffic flow and reduce travel delays, including the provision of left-turn and/or right-turn channelization at key intersections, prohibition of on-street parking during peak commute traffic periods to provide additional travel lanes, and the installation of LADOT's ATSAC/ATCS traffic signal coordination systems at all of the signalized study intersections (both County and City) in the project vicinity. Additionally, a new northbound right-turn only lane on Lincoln Boulevard at Mindanao Way was recently installed, although this improvement was completed prior to the preparation of this study, and its effects on area travel patterns and traffic flows are already incorporated into the "existing" (year 2013) area traffic conditions analyzed earlier in this report.

As a result, few roadway, intersection, or traffic signal system improvements remain in the project vicinity. However, Chapter C.11 of the current (updated) Marina del Rey LUP includes programmed improvements ("Revised Set of Intersection Improvements") to a number of intersections and roadways located within the County portion of Marina del Rey, particularly along Admiralty Way, which is the key transportation corridor within and through the Marina, and which, as described previously, provides direct access to the proposed project site. The County

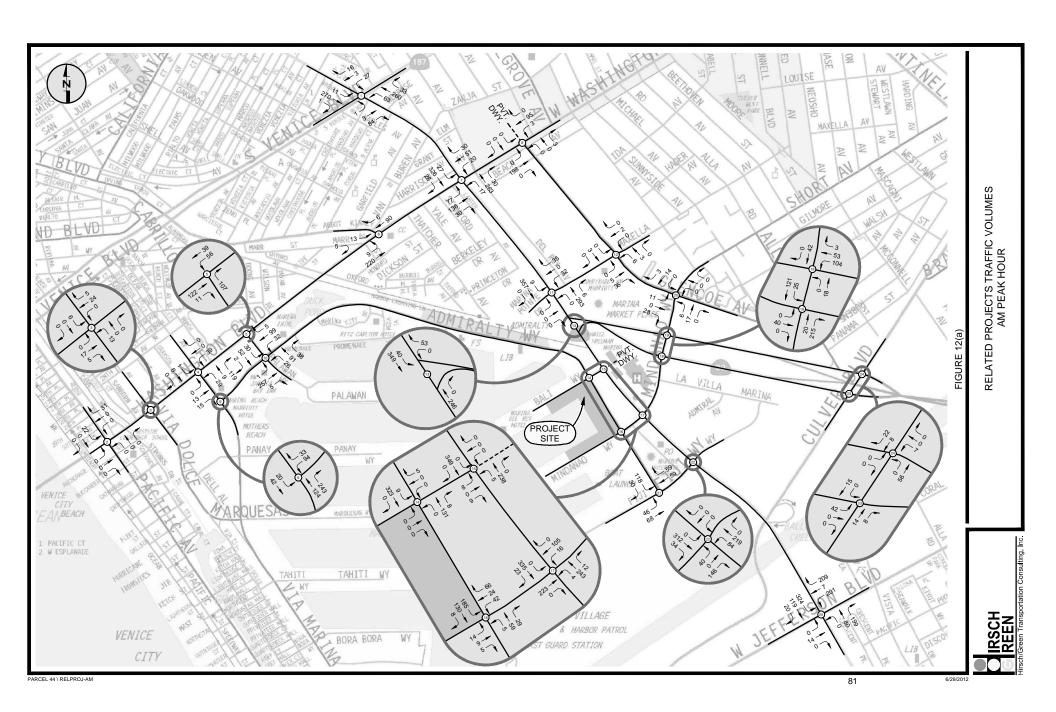
Table 11
Related Projects Trip Generation Estimates

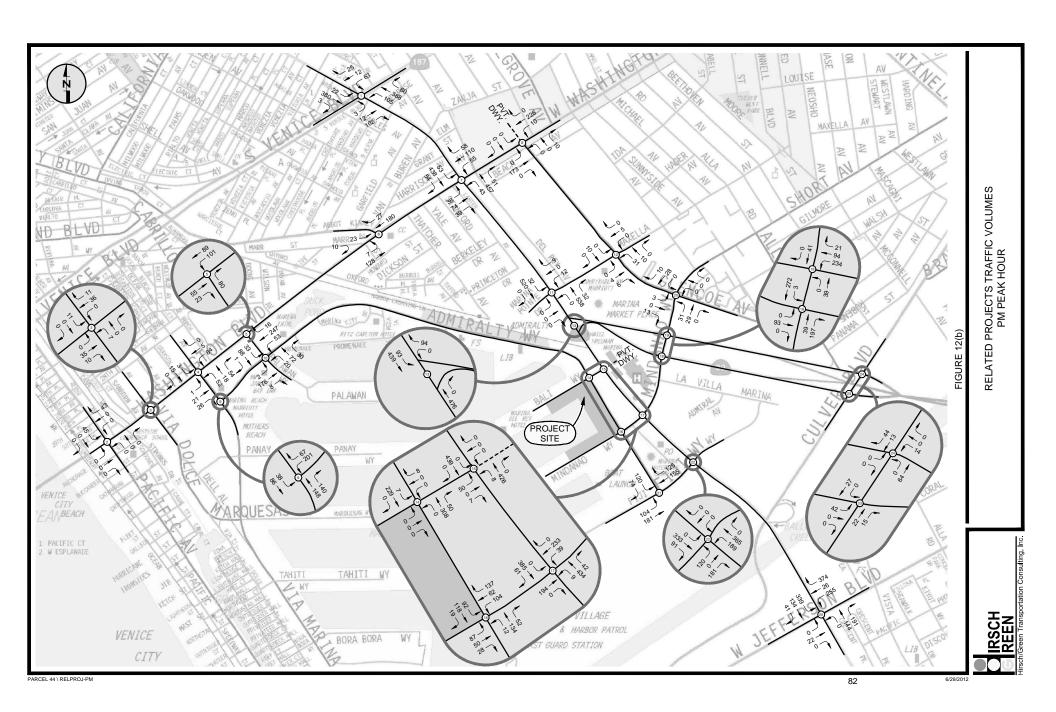
Мар				AM Pe	ak Hour	PM Pe	PM Peak Hour		
No.	Land Use/Description	Size/Units	Daily	In	Out	ln	Out		
1.	Specialty Retail	10,000 sq. ft.	429	6	4	18	19		
	Warehouse	10,000 sq. ft.	36	2	1	1	2		
			393	4	3	17	17		
2.	Mixed-Use								
	Hotel	30 room	245	10	7	11	10		
	Restaurant (High-turnover)	2,000 sq. ft.	254	12	11	13	8		
			499	22	18	24	18		
3.	Mixed-Use								
	Residential	5 unit	33	1	2	3	1		
	Retail	5,700 sq. ft.	253	5	3	13	16		
			286	6	5	16	17		
4.	Supermarket	36,800 sq. ft.	3,762	81	51	165	159		
5.	LADPW Maintenance Yard Expansion	n/a	75	29	1	1	29		
6.	Loyola Marymount University (student increase)	2,540 student	2,540	146	30	112	111		
7.	Retail	8,000 sq. ft.	102	(1)	(1)	20	16		
8.	Marina del Rey Parcel 9								
	Hotel	288 room	1,588	63	54	46	56		
	Public Park	1 acre							
			1,588	63	54	46	56		
9.	Marina del Rey Parcels FF and 10R		1,499	24	111	87	39		
	Apartment	526 unit							
	Boat dock	168 slip							
	Apartment	136 unit							
	Boat Dock	184 slip							
10.	Marina del Rey Parcels 100, 101	544	0.454	6.4	450	400			
	Apartment	544 unit	2,154	34	156	120	57		
	Apartment	202 unit	1,354	13	57	45	21		
			800	21	99	75	36		

Table 11 (continued) Related Projects Trip Generation Estimates

Мар				AM Pe	ak Hour	PM Pea	ak Hour
No.	Land Use/Description	Size/Units	Daily	<u>In</u>	Out	In	Out
11.	Marina del Rey Parcel OT		561	10	37	31	19
	Senior Care	114 unit					
	Speciality Retail	3,000 sq. ft.					
12.	Marina del Rey Parcels 52,GG						
	Storage	375 boat	1,081	16	31	18	33
	County Office	2,000 sq.ft.	17	2	0	1	2
	Public Parking Lot	236 space					
			1,064	14	31	17	31
13.	Fisherman's Village (Parcels 55, 56, W)		2,496	41	58	121	99
	Retail	29,150 sq.ft.					
	Resturants and Food Court	37,100 sq.ft.					
	Ferry Terminal and Office	6,500 sq.ft.					
	Hotel	132 room					
	Boat Slips	26 slip					
	Retail	2,580 sq.ft.					
	Office	10,404 sq.ft.					
	Resturants	16,149 sq.ft.					
	Boat Slips	17 slip					
14.	The Village at Playa Vista		24,220	577	1,049	1275	1027
	Office	175,000 sq.ft.					
	Apartment	2,600 unit					
	Retail	150,000 sq.ft.					
	Community Serving Uses	40,000 sq.ft.					
15.	Playa Vista-Phase 1		40,771	3,647	1,489	2,640	3,327
	Office	1,922,050 sq.ft.					
	Condominium	3,246 unit					
	Retail	25,000 sq.ft.					
	Production and Stage Support	1,129,900 sq.ft.					
	Community Service Uses	65,000 sq.ft.					
16.	Villa Marina		896	11	84	72	11
	Condominium	244 unit					
	Shopping Center	9,000 sq. ft.					
	Shopping Center	21,038 sq. ft.					

Table 11 (continued)
Related Projects Trip Generation Estimates


Мар				AM Pe	ak Hour	PM Peak Hour		
No.	Land Use/Description	Size/Units	Daily	In	Out	ln	Out	
17.	Mixed-Use		620	47	9	15	48	
	Office	31,150 sq.ft.						
	Retail	6,260 sq.ft.						
18.	Apartment	77 unit	512	8	31	35	19	
19.	Office	7,994 sq. ft.	88	11	1	4	18	
20.	Mixed-Use		438	7	13	28	26	
	Single-Family Residential	29 unit						
	Retail	4,000 sq. ft.						
21.	Mixed-Use		446	18	33	31	29	
	Apartments	63 unit						
	Pharmacy/Drugstore	11,000 sq. ft.						
	Restaurant	4,000 sq. ft.						
22.	Mixed-Use		1,204	28	48	82	63	
	Apartments	72 unit						
	Retail	7,000 sq. ft.						
	Restaurant	3,000 sq. ft.						
	Supermarket	6,000 sq. ft.						
23.	Marina del Rey Parcel 95		220	(1)	6	13	4	
	Retail	14,922 sq. ft.						
	Café/Coffee Shop	1,797 sq. ft.						
	Islands Restaurant	165 seat						
	Office	9,180 sq. ft.						
	Islands Restaurant	5,713 sq. ft.						
	Furniture Sales/Showroom	7,500 sq. ft.						
24.	Office	41,000 sq. ft.	451	56	8	10	51	
	Retail	9,500 sq. ft.	421	8	5	11	15	
			872	64	13	21	66	
25.	Apartment	126 unit	(156)	(6)	42	14	(46)	


Table 11 (continued)
Related Projects Trip Generation Estimates

Мар				AM Pe	ak Hour	PM Peak Hour		
No.	Land Use/Description	Size/Units	Daily	<u>In</u>	Out	<u>In</u>	Out	
26.	Marina del Rey Parcels 49, 77				- '		-	
	Retail	135,000 sq. ft.	5,797	82	53	294	305	
	Office	26,000 sq. ft.	286	35	5	10	47	
			6,083	117	58	304	352	
27.	Esprit Phase 2 (Parcel 15)							
	Apartments	297 unit	1,975	30	121	63	34	
	Retail	8,000 sq. ft.	355	7	4	16	20	
	Boat Slips	41 slip	118	2	3	2	4	
	Restaurant	4,400 sq. ft.	559	27	24	28	18	
			1,653	8	98	49	32	
28.	Marina del Rey Parcel 21							
	Health Club	10,000 sq. ft.	329	6	8	19	17	
	Retail	2,915 sq. ft.	129	2	2	6	7	
	Marine Commercial Offices	11,432 sq. ft.	126	16	2	4	21	
	Yacht Club	92 slip	265	4	8	5	8	
	Health Club	16,000 sq. ft.	527	10	12	31	27	
	Retail	2,915 sq. ft.	129	2	2	6	7	
	Marine Commercial Offices	5,432 sq. ft.	60	7	1	2	10	
	Yacht Club	64 slip	185	3	5	3	6	
			(52)	6	0	(8)	3	
29.	Burton Chace Park Expansion	6.64 acres	15	2	1	1	3	
30.	Marina del Rey Parcel 33/NR		3,899	99	172	165	135	
	Apartment	292 unit						
	Supermarket	14,700 sq. ft.						
	Pharmacy/Drugstore	11,000 sq. ft.						
	Retail	2,300 sq. ft.						
	Restaurants	16,670 sq. ft.						
	Restaurant/Entertainment	17,000 sq. ft.						

Note:

Uses identified in *italics* are existing uses removed in order to develop proposed project.

began construction on several of these roadway improvements in July of this year, and anticipates completion of these measures by the end of the first quarter of 2014. Therefore, these ongoing improvements, which are described in detail below, are expected to be installed well before the year 2016 completion date of the proposed Parcel 44 redevelopment project, and as such, each of the improvements was included as the baseline (pre-project) condition at the effected intersections for the forecast "future" (year 2016) analysis scenarios (the County's "Existing Plus Ambient Growth Only" scenario, and LADOT's "Without Project" conditions).

- Admiralty Way and Palawan Way The County is currently constructing improvements to restripe the northbound approach of Palawan Way to convert the existing left-turn lane to a shared left-turn/through lane (the existing shared through/right-turn lane would remain), as well as to install a new right-turn only lane on the westbound approach of Admiralty Way, resulting in a future lane configuration of one left-turn lane, two through lanes, and right-turn only lane, although the eastbound approach would continue to exhibit its current configuration of one left-turn lane, one through lane, and one shared through/right-turn lane. Due to the proposed "shared through/left-turn lane" configuration on the northbound Palawan Way approach, this improvement is assumed to also require modification of the existing traffic signal to provide north/south "split" phasing operation.
- Admiralty Way and Bali Way This intersection is currently being improved to add a second southbound left-turn lane on Admiralty Way at Bali Way, resulting in a final lane configuration for this approach of two left-turn lanes, one through lane, and one shared through/right-turn lane. The remaining approaches to this intersection would remain unchanged from their current configurations. This improvement can be implemented without the need for any roadway widenings along Admiralty Way.
- Admiralty Way and Mindanao Way The roadway improvements currently being constructed at this location will install a second southbound left-turn lane on Admiralty Way at Mindanao Way (in addition to the existing one left-turn lane, one through lane, and one shared through/right-turn lane), although all other approaches at this intersection will remain unchanged. The signal phasing at this intersection will continue to exhibit the current east-west "split" phase operations.

The County has also recently approved an improvement to the currently STOP-sign controlled intersection at Washington Boulevard and Palawan Way to install a new traffic signal and to reconfigure the northbound approach of Palawan Way to provide dual left-turn lanes in addition

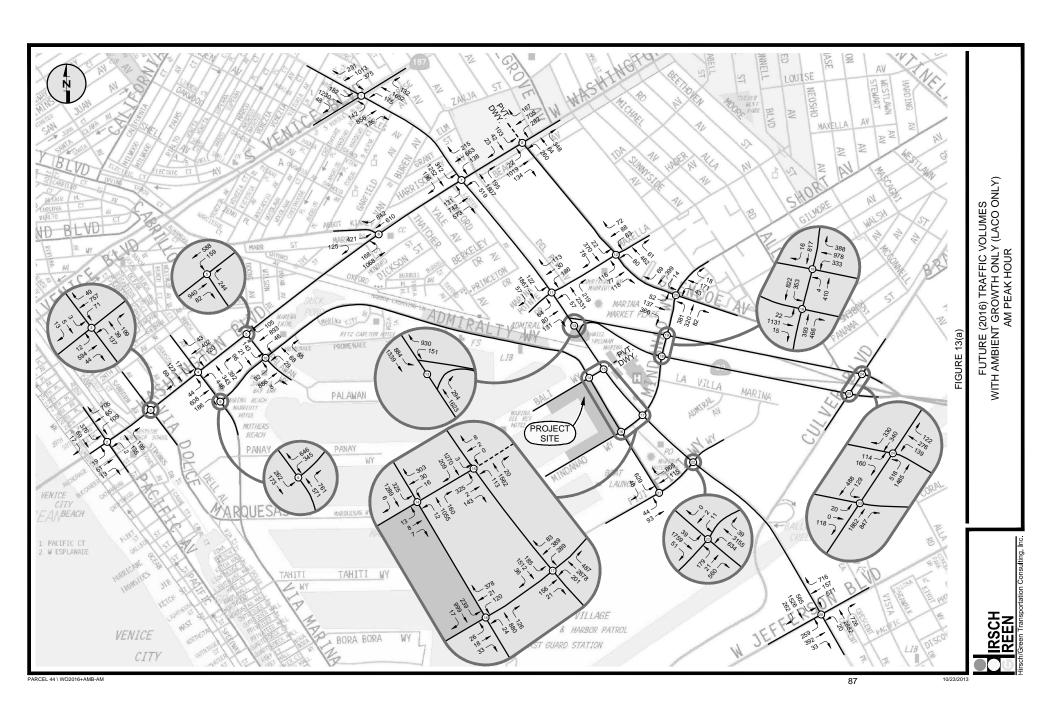
to the existing right-turn only lane. The reconfiguration of the northbound approach of this intersection and the installation of a new traffic signal, which is not included in the updated Marina del Rey LUP "Revised Intersection Improvements" list, is designed to address increasing "pass-through" traffic in the area due primarily to developments located outside the Marina, and to relieve growing congestion at the nearby intersections of Via Marina and Admiralty Way, and Washington Boulevard and Via Marina/Ocean Avenue. The planned improvement will provide an alternative outlet for vehicles traveling westbound through the Marina with destinations to the north and west (in Venice and City of Santa Monica), and is expected to reduce the amount of traffic currently making the northbound left turn from Via Marina to Washington Boulevard, and improve the operations at this and other nearby intersections. However, although approved, there is no definitive timeline for installation of this measure; since the improvement cannot be quaranteed by the future (2016) study year, its effects are not incorporated into this analysis.

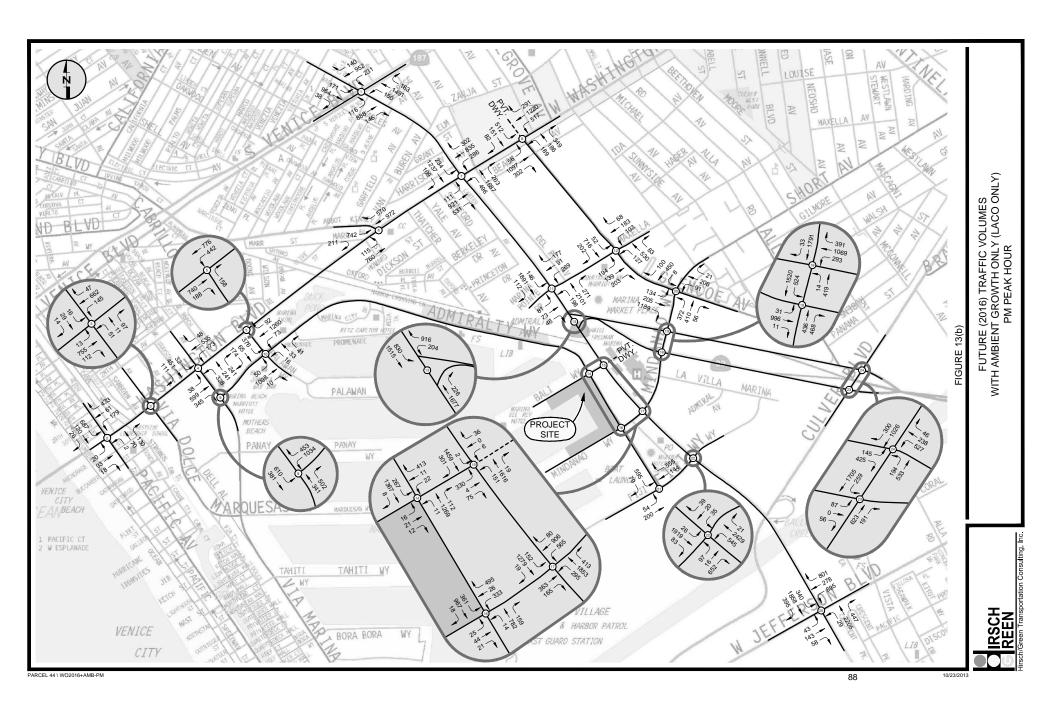
No other significant roadway or traffic signal improvements within the study area were identified in either the City of Los Angeles Capital Improvements Program ("CIP") or Los Angeles County Department of Public Works records for implementation by the anticipated 2016 completion date of the proposed project. Further, although it is possible that some or all of the related projects identified earlier will be required to implement localized roadway improvements to mitigate any specific traffic impacts associated with those projects, installation of any such measures cannot be known or guaranteed at this time, and as such, no related projects "mitigation" improvements are assumed in this analysis. Therefore, the analysis of the future year 2016 conditions assumed that the future roadway network geometries and intersection capacities would remain generally unchanged from the current conditions assumed in the analysis of "Existing (2013)" conditions, with the exception of those specific LUP-related improvements noted earlier.

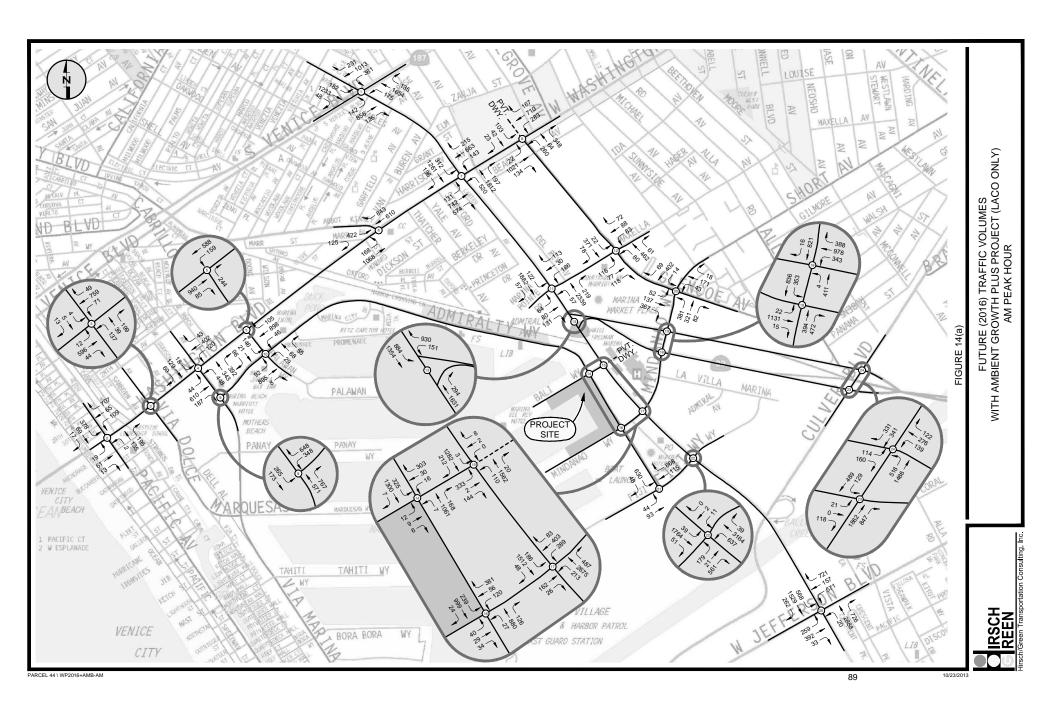
Analysis of Future (2016) Traffic Conditions

Using the assumptions and information described in the preceding pages, the future study year (2016) traffic volumes at each of the 25 study intersections were estimated. However, as noted earlier in this report, the study intersections are located within two different jurisdictions, each of which evaluates future conditions, and project-related traffic impacts, in a slightly different manner. Although the proposed project itself is located within the County of Los Angeles, only five of the 25 study intersections (no. 9, 10, 14, 16, and 21) are under the exclusive jurisdiction of the County, with the remainder shared with (no. 3, 4, 5, 15, 17, and 22) or located entirely within and/or operated and maintained by the City of Los Angeles, including intersections adjacent to the Marina along both Washington Boulevard and Lincoln Boulevard.

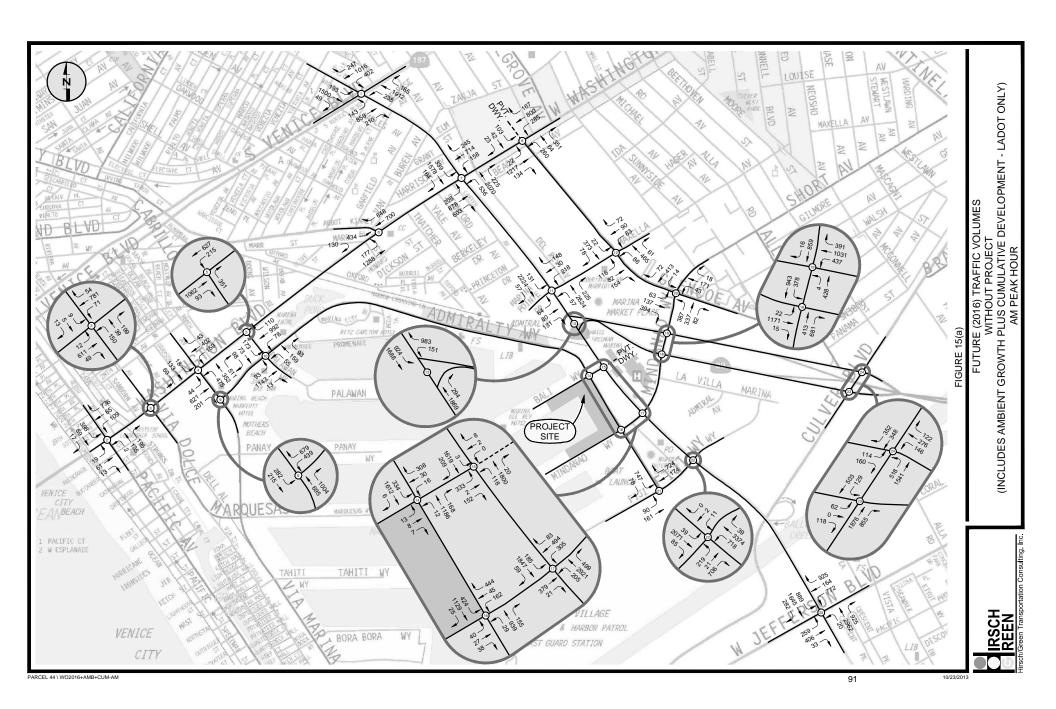
The County Department of Public Works utilizes a two-step process in the evaluation of future conditions and the assessment of potential project impacts. First, project-specific impacts on the future conditions are identified by using only the anticipated ambient growth traffic increases in the existing traffic ("With Ambient Growth Only" scenario) as the baseline, and then adding the project-specific traffic to this scenario (producing the "With Ambient Growth Plus Project" conditions) in order to identify the incremental effects of the project itself. This methodology separates potential project-specific traffic impacts from those that may be associated with cumulative development (related projects) in the study area, and allows for the identification of any traffic impacts which could result from development of the proposed project alone. Mitigation of these project-specific impacts is considered to be the responsibility of the individual project alone, through installation of acceptable roadway and/or traffic signal improvements or other measures directly, or through contribution to funding mechanisms designed to improve locations significantly impacted by the project.

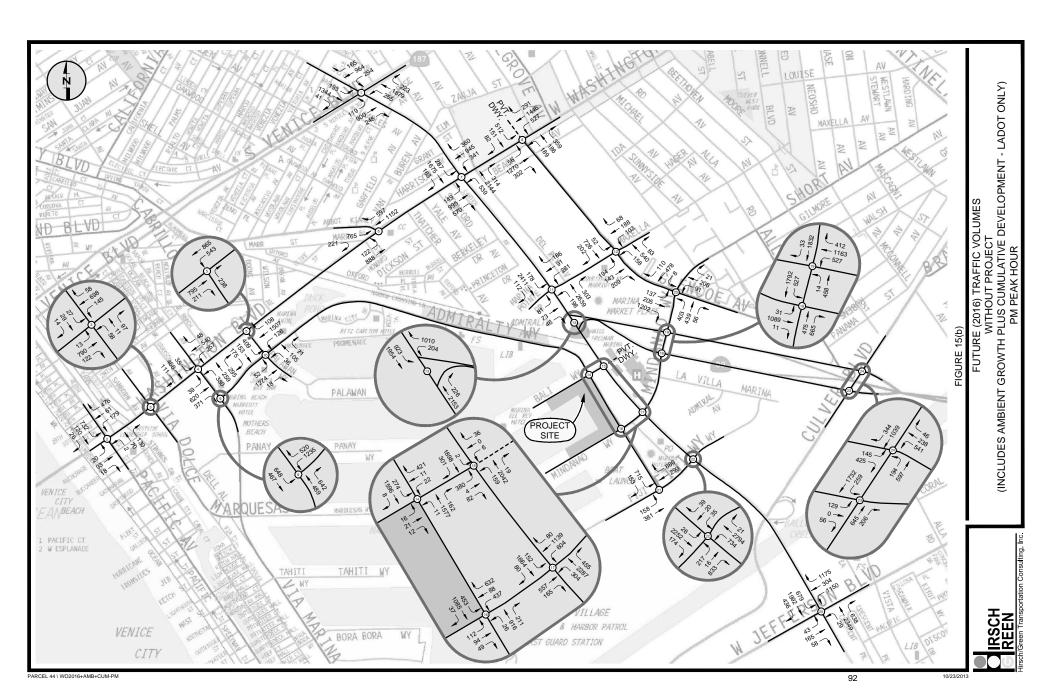

Next, the cumulative traffic generated by the 30 identified related projects in the study area is added to the "With Ambient Growth Plus Project" traffic volume forecasts, to create the final "With Cumulative Development" traffic scenario, which includes all anticipated traffic increases within the study area, including those of the proposed project. These forecast conditions are then again compared to the earlier "With Ambient Growth Only" scenario to determine the potential cumulative impacts of all expected traffic increases in the study area for the future study year. This step allows for the identification of potential long-term roadway improvements that may be necessary to mitigate total anticipated traffic growth in the study area, but which are beyond the ability of any particular development to implement.

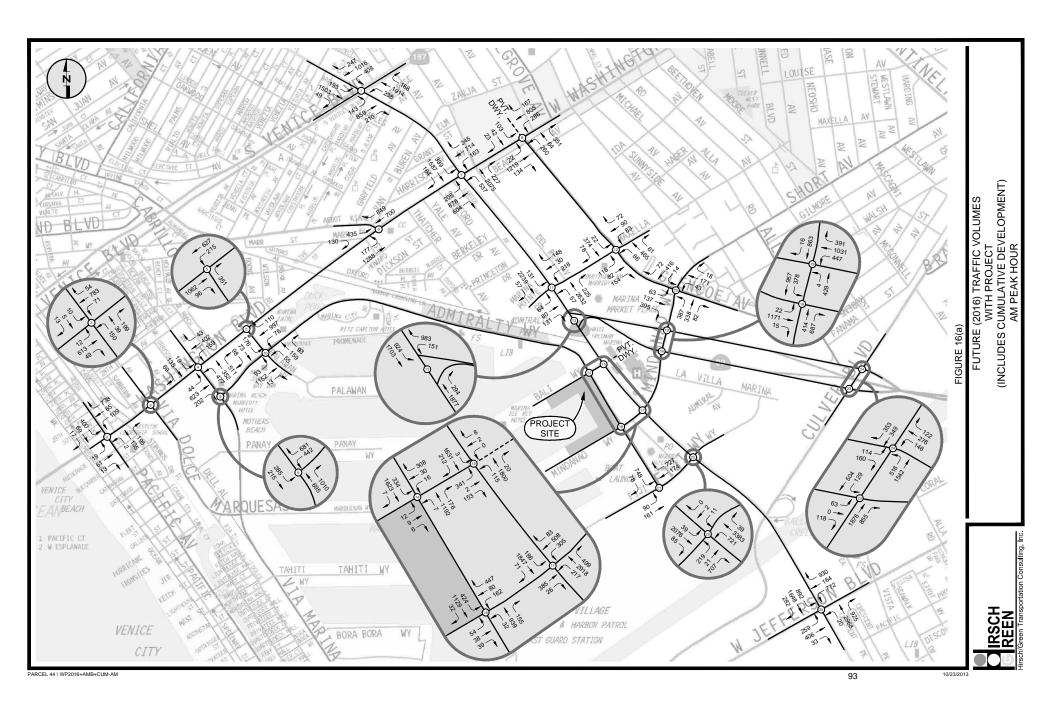

To address the combined effects of both project-specific and cumulative development traffic impacts, the County has identified a series of improvements for roadways and/or intersections located in and around the Marina. These improvements are funded wholly or in part by the Marina del Rey traffic impact mitigation fees, originally identified in the LUP's now-superseded Transportation Improvement Program ("TIP") and also incorporated into the recent LUP updates. As part of the evaluation of potential project traffic impacts on the intersections under the jurisdiction of the County within Marina del Rey, the project's "fair share" contributions to any such cumulative improvements are also identified, as a percentage of the total incremental cumulative impacts. This analysis methodology was used to identify future conditions, including both project-specific and cumulative (project plus related projects) impacts, only for those study intersections identified earlier as within Marina del Rey and under the County's jurisdiction.

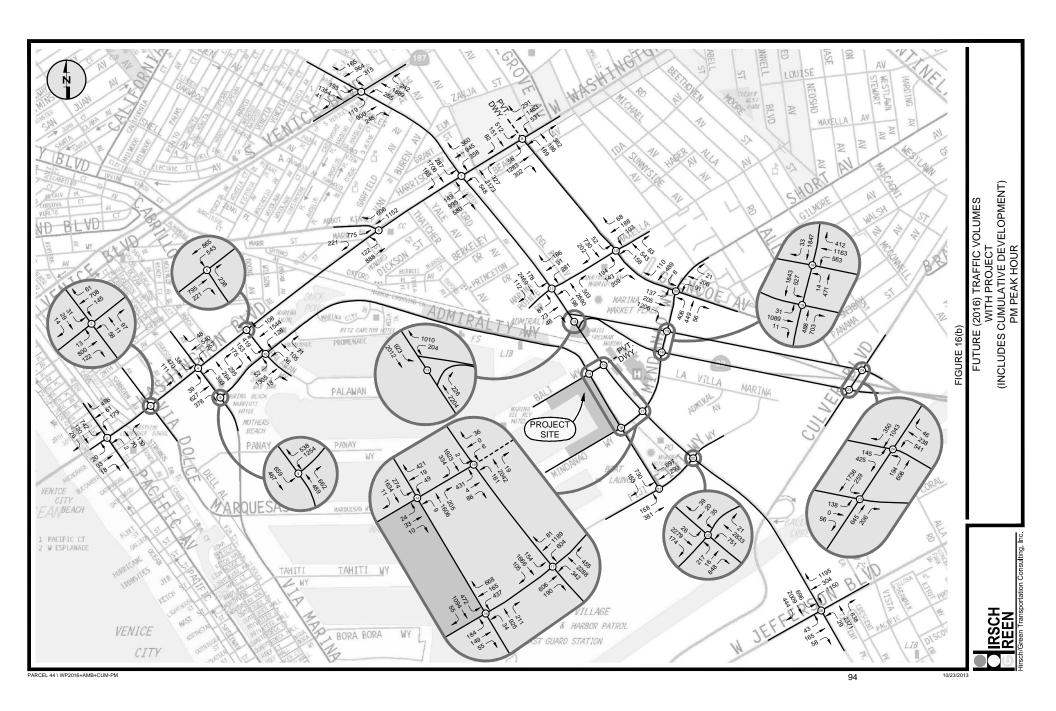

The City of Los Angeles (LADOT) does not specifically evaluate or identify the potential impacts of cumulative development on the area intersections, but rather combines the effects of both the forecast ambient traffic growth and traffic generated by related projects to estimate the future "Without Project" conditions. The project-related incremental traffic volumes are then added to this no-project baseline to form the City's "With Project" traffic forecasts, against which the incremental impacts of the proposed project are identified and evaluated. Like the County, LADOT also requires individual projects to mitigate any identified project-specific impacts. While the LADOT impact analysis methodology does not specifically identify either cumulative impacts or cumulative mitigation requirements at intersections under its jurisdiction, it is of note that the forecast LADOT "With Project" conditions are identical to those produced under the County's "With Cumulative Development" traffic forecast scenario.

Further, the inclusion of traffic generated by the related projects in the pre-project future year baseline traffic conditions produces higher "Without Project" intersection LOS values against which the project's incremental traffic additions are compared, increasing the potential for project-specific impacts as compared to the County's evaluation methodology. As described later in this report, both LADOT and the County Department of Public Works utilize the same significance criteria to evaluate project traffic impacts at study intersections. However, these criteria exhibit smaller thresholds for significance as intersection LOS increases, with higher baseline ("Without Project") conditions resulting in smaller project traffic increments being identified as "significant", and potentially resulting in project-specific impacts (and therefore requiring associated mitigation improvements) that would otherwise not be identified under the County's analysis methodology. In general, however, both analysis methodologies produce approximately equivalent results regarding the determination of project traffic impacts.


The future (year 2016) traffic volumes for the intersection conditions analyses described above were developed by combining the appropriate ambient traffic growth forecasts, related projects traffic estimates, and net project-specific traffic additions as noted for each analysis scenario. The County's "Ambient Growth Only" conditions are shown in Figures 13(a) and 13(b) for the AM and PM peak hour, respectively, while the "With Ambient Growth Plus Project" conditions are shown in Figure 14(a) for the AM peak hour, and in Figure 14(b) for the PM peak hour. Similarly, the LADOT "Without Project" traffic volumes are shown for the AM and PM peak hours in Figures 15(a) and 15(b), respectively. Finally, LADOT's "With Project" traffic volume scenario (which is the same as the County's "With Cumulative Development" conditions) is shown in Figure 16(a) for the AM peak hour and in Figure 16(b) for the PM peak hour.







The traffic volumes shown in Figures 13 through 16 were then analyzed using the same CMA methodologies and procedures described earlier in the evaluation of the year 2013 "Existing" conditions, in order to identify the forecast future traffic conditions in the study area both with and without development of the proposed Parcel 44 project. Note that Figures 13 through 16 identify the forecast future traffic volumes at each of the 25 study intersections for each of the various traffic scenarios described above, regardless of whether they are under the exclusive jurisdiction of the County or the City of Los Angeles, or exhibit shared jurisdiction.

However, for purposes of this study, only those analysis scenarios and/or intersections appropriate to either the County's analysis methodology or LADOT's analysis methodology were included in the analyses for each of the two jurisdictions. As such, the intersections under the exclusive jurisdiction of the County (intersections 9, 10, 14, 16, and 21) were not evaluated for the LADOT analysis scenarios, nor were those intersections under the exclusive jurisdiction of the City of Los Angeles evaluated for the County's analysis scenarios, although it should be noted that the intersections exhibiting shared City/County jurisdiction were also evaluated using the LADOT scenarios, since these locations typically exhibit only one approach (or 25 percent of the intersection) within the County's jurisdiction. The results of the analysis of future conditions, including both the County and LADOT methodologies, are summarized in Table 12.

Project-Specific Impact Analysis - Los Angeles County Intersections

This evaluation is appropriate only for the five intersections under the County's jurisdiction; Admiralty Way and Via Marina, Admiralty Way and Palawan Way, Admiralty Way and Bali Way, Admiralty Way and Mindanao Way, and Admiralty Way and Fiji Way. The future benchmark "With Ambient Growth Only" traffic volumes for this scenario, shown in Figures 13(a) and 13(b), include only the expected ambient traffic growth (0.6 percent annually) at these intersections, which reflect the County's methodology for forecasting the future (year 2016) "without project" conditions, to which the net peak hour traffic generated by the proposed project were added to determine the potential near-term incremental effects of the project at each study intersection.

As shown in Table 12 for the "With Ambient Growth Only" conditions, operational levels of service at the subject intersections are not anticipated to change substantially from the existing 2013 conditions as a result of the anticipated ambient traffic growth, with each of the five County jurisdiction intersections expected to continue to exhibit LOS C or better conditions during both the AM and PM peak hours, including the intersection of Admiralty Way and Via Marina, which will continue to exhibit acceptable LOS D operations during the PM peak hour.

Table 12
Critical Movement Analysis Summary
Future (2016) Without and With Project Conditions

			County Only Methodology					LADOT Method	lology	Co	Project			
Int		Peak	Existing Plus Peak Ambient			Existing Plus Ambient Plus Project			Without Project		roject (Includes Cumulative)		Percent of Total
Int. No.	Intersection	Peak Hour	CMA	LOS	CMA	LOS	Impact	CMA	LOS	CMA	LOS	Project Impact	Cumulative Impact	of Total Impact
1	Venice Boulevard and Lincoln Blvd.	AM PM	n/a n/a		n/a n/a	_	n/a n/a	1.159 1.139	F F	1.161 1.150	F F	0.002 0.011 *	n/a n/a	n/a n/a
2	Washington Blvd. and Pacific Ave.	AM PM	n/a n/a	_	n/a n/a	-	n/a n/a	0.567 0.722	A C	0.568 0.729	A	0.001 0.007	n/a n/a	n/a n/a
3	Washington Blvd. and Via Dolce/Dell Ave.	AM PM	n/a n/a	_	n/a n/a	_	n/a n/a	0.286 0.345	A A	0.288 0.351	A A	0.002 0.006	n/a n/a	n/a n/a
4	Washington Blvd. and Via Marina/Ocean Ave.	AM PM	n/a n/a	_	n/a n/a	_	n/a n/a	0.674 0.885	B D	0.677 0.894	C D	0.003 0.009	n/a n/a	n/a n/a
5	Washington Blvd. and Palawan Wy. ^[1]	AM PM	n/a n/a	-	n/a n/a	_	n/a n/a	0.914 0.983	E E	0.914 0.983	E E	0.000 0.000	n/a n/a	n/a n/a
6	Washington Blvd. and Abbot Kinney Blvd.	AM PM	n/a n/a	-	n/a n/a	_	n/a n/a	0.583 0.694	A B	0.584 0.697	A B	0.001 0.003	n/a n/a	n/a n/a
7	Washington Blvd. and Lincoln Blvd.	AM PM	n/a n/a	_	n/a n/a	_	n/a n/a	0.974 1.109	E F	0.978 1.126	E F	0.004 0.017 *	n/a n/a	n/a n/a
8	Washington Blvd. and Glencoe Ave.	AM PM	n/a n/a	_	n/a n/a	-	n/a n/a	0.720 1.123	C F	0.722 1.131	C F	0.002 0.008	n/a n/a	n/a n/a
9	Admiralty Wy. and Via Marina [2]	AM PM	0.418 0.847	A D	0.421 0.861	A D	0.003 0.014	n/a n/a	_	0.515 1.018	A F	n/a n/a	0.097 0.171 *	3.1% 8.2%
10	Admiralty Wy. and Palawan Wy. ^[2]	AM PM	0.431 0.673	A B	0.435 0.692	A B	0.004 0.019	n/a n/a	_	0.595 0.847	B D	n/a n/a	0.164 0.174 *	2.4% 10.9%

Table 12 (continued)
Critical Movement Analysis Summary
Future (2016) Without and With Project Conditions

			Existing		Only Meth			LADO1	lology			DOT Meth	odology Cumulative)	Project Percent
Int.		Peak	Ambi			Existing Plus Ambient Plus Project		Without Project		AAICH	roject (Project		of Total
No.	Intersection	Hour	CMA	LOS	CMA	LOS	Impact	CMA	LOS	CMA	LOS	Impact	Impact	Impact
11	Lincoln Blvd. and Maxella Ave.	AM PM	n/a n/a		n/a n/a		n/a n/a	0.752 0.805	C D	0.753 0.818	C D	0.001 0.013	n/a n/a	n/a n/a
12	Maxella Ave. and Glencoe Ave.	AM PM	n/a n/a	-	n/a n/a	_	n/a n/a	0.356 0.529	A A	0.356 0.531	A A	0.000 0.002	n/a n/a	n/a n/a
13	Lincoln Blvd. and Marina Expwy.	AM PM	n/a n/a		n/a n/a	_	n/a n/a	0.821 0.892	D D	0.823 0.904	D E	0.002 0.012 *	n/a n/a	n/a n/a
14	Admiralty Wy. and Bali Wy. ^[2]	AM PM	0.538 0.621	B B	0.541 0.656	B B	0.003 0.035	n/a n/a	_	0.596 0.791	B C	n/a n/a	0.058 0.170 *	5.2% 20.6%
15	Lincoln Blvd. and Bali Wy.	AM PM	n/a n/a	_	n/a n/a	_	n/a n/a	0.558 0.719	A C	0.563 0.753	A C	0.005 0.034	n/a n/a	n/a n/a
16	Admiralty Wy. and Mindanao Wy. ^[2]	AM PM	0.578 0.649	A B	0.568 0.685	A C	-0.010 0.036	n/a n/a	_	0.655 0.893	B D	n/a n/a	0.077 0.244 *	-13.0% 14.8%
17	Lincoln Blvd. and Mindanao Wy.	AM PM	n/a n/a	— i	n/a n/a	_	n/a n/a	1.011 1.069	F F	1.015 1.109	F F	0.004 0.040 *	n/a n/a	n/a n/a
18	Mindanao Wy. and EB Marina Expwy.	AM PM	n/a n/a	_	n/a n/a	-	n/a n/a	0.718 0.915	C E	0.720 0.933	C E	0.002 0.018 *	n/a n/a	n/a n/a
19	Mindanao Wy. and WB Marina Expwy.	AM PM	n/a n/a		n/a n/a	_	n/a n/a	0.470 0.755	A C	0.471 0.758	A C	0.001 0.003	n/a n/a	n/a n/a
20	Mindanao Wy. and Glencoe Ave.	AM PM	n/a n/a	_	n/a n/a	_	n/a n/a	0.481 1.092	A F	0.483 1.100	A F	0.002 0.008	n/a n/a	n/a n/a

Table 12 (continued) Critical Movement Analysis Summary Future (2016) Without and With Project Conditions

				County	Only Meti	hodolog	1 y	LADO1 Method	1.00	Co	Project			
			Existing Plus		Existing Plus Ambient		Without		With Project (Includes Cumulative)				Percent	
Int.		Peak	Ambient		Plus Project		Project				Project	Cumulative	of Total	
No.	Intersection	Hour	CMA	LOS	CMA	LOS	Impact	CMA	LOS	CMA	LOS	Impact	Impact	<u>Impact</u>
21	Admiralty Wy.	AM	0.237		0.237		0.000	n/a		0.350	Α	n/a	0.113	0.0%
	and Fiji Wy. ^[2]	PM	0.250	Α	0.256	Α	0.006	n/a	_	0.473	Α	n/a	0.223	2.7%
22	Lincoln Blvd.	AM	n/a		n/a	-	n/a	0.923	E	0.925	E	0.002	n/a	n/a
	and Fiji Wy.	PM	n/a	x = x /2	n/a	-	n/a	0.974	E	0.987	Ε	0.013 *	n/a	n/a
23	Culver Blvd.	AM	n/a		n/a	-	n/a	0.481	Α	0.481	Α	0.000	n/a	n/a
	and Marina Fwy. EB Ramps	PM	n/a		n/a	-	n/a	0.563	Α	0.571	Α	0.008	n/a	n/a
24	Culver Blvd.	AM	n/a	(n/a	-	n/a	0.690	В	0.691	В	0.001	n/a	n/a
	and Marina Fwy. WB Ramp	PM	n/a		n/a		n/a	0.821	D	0.822	D	0.001	n/a	n/a
25	Lincoln Blvd.	AM	n/a	7,	n/a	-	n/a	1.366	F	1.368	F	0.002	n/a	n/a
	and Jefferson Blvd.	PM	n/a		n/a		n/a	1.112	F	1.123	F	0.011 *	n/a	n/a

Notes:

^[1] Unsignalized intersection; capacity assumed as 1,200 vehicles per hour.

^[2] Los Angeles County intersection.

[&]quot;*" Significant impact per Los Angeles County Department of Public Works *Traffic Impact Analysis Report Guidelines*, January 1, 1997, or LADOT *Traffic Study Policies and Procedures*, June 2013.

Once developed, the net additional traffic generated by the proposed project will also have an effect on the operations of the five County study intersections; as also shown in Table 12, the addition of project-related traffic is expected to result in nominal incremental increases in the CMA values at each of the subject study intersections. However, such increases will, for the most part, be relatively nominal, and the additional project-related trips are not expected to result in changes to the forecast future intersection levels of service at any of the intersections under the exclusive jurisdiction of the County. As a result, each of these intersections is forecast to continue to exhibit acceptable (LOS D or better) operations in the future year (2016) following the addition of net new traffic generated by the proposed project.

Additionally, applying the County's intersection impact significance criteria to the analysis results summarized in Table 12 indicates that the proposed project's potential significant impact at the site-adjacent intersection of Admiralty Way and Mindanao Way (during the PM peak hour under the "Existing Plus Project" conditions analyses shown earlier in Table 8) would no longer occur (reduced to less-than-significant levels), due primarily to the increase in intersection capacity resulting from completion of the ongoing installation of the new dual southbound left-turn lanes at that location. Therefore, the proposed project is not anticipated to create significant impacts at any of the five County-only study intersections under the forecast future (year 2016) conditions, and no project-specific mitigation measures are warranted for these locations.

Project-Specific Impact Analysis – City of Los Angeles and Shared Jurisdiction Intersections

The City of Los Angeles (LADOT) project traffic impact evaluation methodology is applicable to those 20 study intersections operated by or otherwise under either sole jurisdiction of the City (intersections 1, 2, 6 through 8, 11 through 13, 18 through 20, and 23 through 25) or exhibiting shared jurisdiction with the County (intersections 3, 4, 5, 15, 17, and 22). Unlike the County's project-impact identification methodology, which evaluates incremental project traffic additions to a future baseline condition that includes only anticipated ambient traffic growth, the City's project-specific impact evaluation methodology uses a future baseline traffic condition that includes both the anticipated annual ambient traffic growth (0.6 percent annually) and additional traffic generated by the 30 identified related projects.

As shown in Table 12 for the "LADOT Only Methodology – Without Project" conditions, by the future study year of 2016, operational levels of service at several of the City and/or City/County shared jurisdiction intersections are forecast to deteriorate from their existing conditions, primarily as a result of anticipated increases in area traffic generated by the 30 related projects

identified earlier, with a total of 10 intersection exhibiting undesirable LOS E or F operations during one or both of the peak hours, five more (Washington Boulevard and Palawan Way, Washington Boulevard and Lincoln Boulevard, Lincoln Boulevard and Mindanao Way, Mindanao Way and eastbound Marina Expressway, and Lincoln Boulevard and Fiji Way) than currently exhibit such conditions. Additionally, as indicated in bold type in Table 12, four of the five new LOS E/F intersections will exhibit these undesirable operations during both the AM and PM peak hours, while the intersection of Mindanao Way and eastbound Marina Expressway will exhibit LOS E during the PM peak hour, but remain at acceptable LOS C operations during the AM peak hour. Additionally, the four intersections which currently exhibit LOS E or F conditions are forecast to continue to operate at unacceptable levels of service during the same peak periods as under the existing conditions, with both Venice Boulevard and Lincoln Boulevard, and Lincoln Boulevard and Jefferson Boulevard forecast to operate at LOS F during both the AM and PM peak hours (deteriorating from their existing LOS E and LOS D conditions, respectively, to LOS F operations during the PM peak hour), while both Washington Boulevard and Glencoe Avenue/Costco Plaza Driveway, and Mindanao Way and Glencoe Avenue will remain at LOS F during the PM peak hour, although the AM peak hour conditions at both intersections will continue to exhibit acceptable LOS D or better operations.

As with the County-only intersections described earlier, the addition of project-specific traffic at the 20 City and/or shared City/County study intersections is expected to result in relatively nominal incremental increases in the CMA values at most of the subject locations. Additionally, as shown in Table 12, similar to the project-specific impacts at the five County intersections, the additional project-related traffic would not be expected to result in changes to the forecast future (year 2016) "Without Project" intersection levels of service at any of the 20 City and/or shared City/County intersections, with the exception of the City-only intersection of Lincoln Boulevard and Marina Expressway, which could be reduced from its forecast "Without Project" acceptable LOS D operations to undesirable LOS E conditions during the PM peak hour, although this location will continue to exhibit acceptable LOS D operations during the AM peak hour.

Further, based once again on the impact evaluation criteria summarized previously in Table 9, the proposed project could result in significant impacts at a total of seven of the 20 City-only or shared City/County jurisdiction study locations; Venice Boulevard and Lincoln Boulevard, Washington Boulevard and Lincoln Boulevard, Lincoln Boulevard and Marina Expressway, Lincoln Boulevard and Mindanao Way, Mindanao Way and eastbound Marina Expressway, Lincoln Boulevard and Fiji Way, and Lincoln Boulevard and Jefferson Boulevard, each of which

is significantly impacted during the PM peak hour only. As with the previously described "Existing With Project" scenario impacts, potential roadway and/or intersection improvements designed to address these significant project-related traffic impacts are described and evaluated later in the "Mitigation Measures" section of this report (no project-specific significant impacts are expected to occur under the County-only "With Ambient Growth Plus Project" scenario).

Cumulative Impact Analysis – Los Angeles County Intersections Only

Finally, the cumulative traffic effects of ongoing and proposed development within or surrounding the study area, including the project itself, were evaluated for the five County intersections. The future (2016) cumulative development scenario AM and PM peak hour traffic volumes include the previously-described traffic increases resulting from the anticipated annual ambient growth, traffic generated by the 30 identified related projects, and from the Parcel 44 project itself; these volumes are therefore identical to those identified for the City methodology "With Project" conditions described previously. However, in order to identify the potential cumulative effects of both project-specific and related projects' traffic additions, the forecast "With Project" (including cumulative development traffic) conditions were compared against the County's "With Ambient Growth" scenario (rather than the City's "Without Project" conditions).

The results of the analysis of these forecast cumulative conditions indicate that the addition of traffic generated by the identified 30 "related projects", along with the incremental new traffic generated by the proposed Parcel 44 project, is expected to result in substantial deterioration in the operations at one of the County-jurisdiction study intersections. As shown in Table 12, if all of the related projects identified in Table 10 are developed and occupied as currently proposed, the intersection of Admiralty Way and Via Marina could be reduced from its current acceptable operations (LOS A during the AM peak hour, LOS D during the PM peak hour) to undesirable LOS F operations during the PM peak hour (again, shown in bold text in Table 12), although this location is forecast to remain at its current LOS A conditions during the AM peak hour.

Additionally, the intersections of both Admiralty Way and Palawan Way, and Admiralty Way and Mindanao Way could exhibit declines in operational levels, from their existing LOS B to LOS D operations during the PM peak hour, although both locations are forecast to continue to exhibit good levels of service (LOS A and LOS B, respectively) during the AM peak hour. Similarly, the intersection of Admiralty Way and Bali Way could be reduced from its current LOS B conditions to LOS C operations, also during the PM peak hour, but is expected to remain at LOS A during the AM peak hour. However, despite these potential changes in level of service, the forecast

cumulative conditions at each of these three locations are expected to remain at acceptable levels (LOS D or better) during both peak hours. No cumulative development-related changes to the levels of service at the intersection of Admiralty Way and Fiji Way are anticipated, as this location is forecast to continue to operate at LOS A during both the AM and PM peak hours.

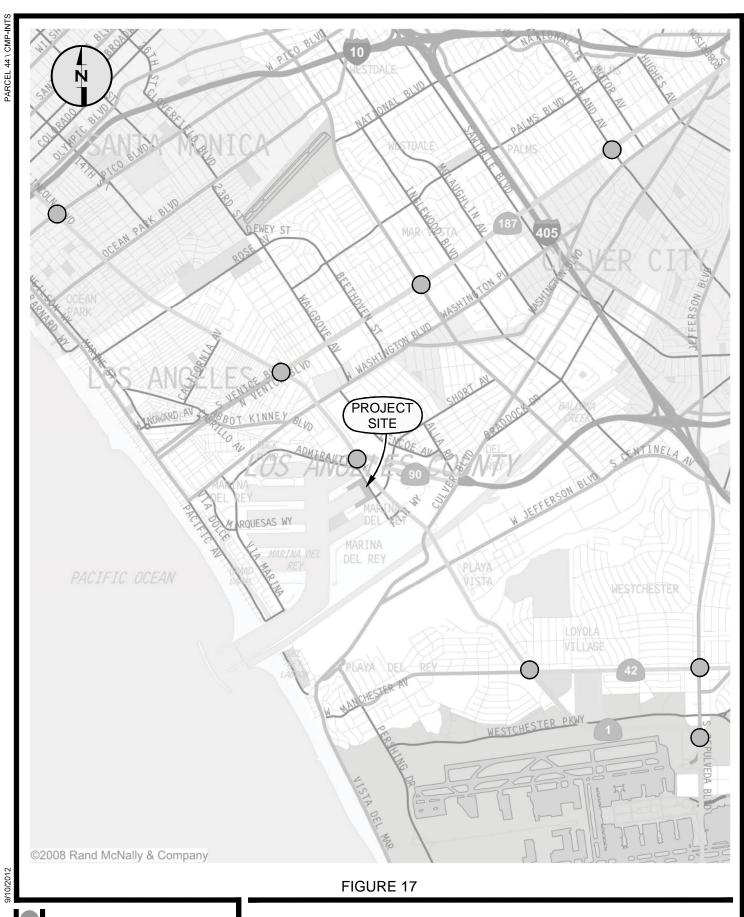
Again using the intersection impact evaluation criteria shown earlier in Table 9, the significance of the incremental cumulative traffic impacts at these five County intersections were assessed. As summarized in Table 12, the anticipated cumulative development traffic additions to these County intersections (including traffic from the proposed Parcel 44 project) could produce significant impacts at four of the five subject intersections (Admiralty Way and Fiji Way is not significantly impacted), each during the PM peak hour only. Further, as noted previously, although the proposed project itself is expected to result in a significant impact at only one of these five County-only jurisdiction intersections (at Admiralty Way and Mindanao Way during the PM peak hour, under the "Existing Plus Project" scenario only), it will contribute incrementally to each of the four cumulative significant impacts to some degree, and as such, the magnitude (percent) of the Parcel 44 project's specific contributions toward the total cumulative impacts were also identified. As indicated in Table 12, the Parcel 44 project itself is expected to contribute between approximately eight percent (Admiralty Way and Via Marina) and 21 percent (Admiralty Way and Mindanao Way) of the total incremental cumulative impacts (not cumulative volumes; it is important to make this distinction) during the PM peak hour, when each of the impacts occur. Measures designed to address these potential cumulative significant impacts are identified and analyzed later in the "Mitigation Measures" section of this report.

Project Impacts on Regional Transportation System

To address increasing public concern that traffic congestion was impacting the quality of life and economic vitality of the State of California, the Los Angeles County Congestion Management Program ("CMP")⁵ was enacted to provide the analytical basis for transportation decisions through the State Transportation Improvement Program ("STIP") process. A countywide approach has been established by the Metropolitan Transportation Authority ("Metro"), the local CMP agency, to implement the statutory requirements of the CMP, and has identified a network of key roadways and intersections, including all state highways and principal arterials within the County, and has established procedures for monitoring and tracking Level of Service standards throughout the network. The CMP project traffic impact analysis ("TIA") guidelines require

⁵ 2010 Congestion Management Program for Los Angeles County, Los Angeles County Metropolitan Transportation Authority, Los Angeles, 2010.

detailed analyses of all CMP arterial monitoring intersections where a project could add a total of 50 or more trips (all directions) during either peak hour, as well as for all freeway segments where a project could add 150 or more trips in either direction during the peak hours.


CMP Arterial Monitoring Intersection Impacts

As noted in the preceding discussion, the CMP requires that detailed analyses be conducted for any of these locations where the proposed project is anticipated to add 50 or more total trips during either the weekday AM or PM peak hours. The current CMP (2010) identifies eight arterial monitoring intersections within approximately three miles of the project site. Six of the CMP intersections are located within the City of Los Angeles, while one is located within the City of Santa Monica, and one is located within the City of Culver City. The eight CMP arterial monitoring intersections located within the project vicinity are listed below, and are shown in relation to the Parcel 44 project site in Figure 17.

- Lincoln Boulevard and Pico Boulevard (Santa Monica)
- Venice Boulevard and Lincoln Boulevard (Los Angeles)
- Venice Boulevard and Centinela Avenue (Los Angeles)
- Venice Boulevard and Overland Avenue (Culver City)
- o Lincoln Boulevard and the Marina Expressway (SR-90) (Los Angeles)
- Lincoln Boulevard and Manchester Avenue (Los Angeles)
- Manchester Avenue and Sepulveda Boulevard (Los Angeles)
- Lincoln Boulevard and Sepulveda Boulevard (Los Angeles)

Two of the CMP arterial monitoring intersections, Venice Boulevard and Lincoln Boulevard, and Lincoln Boulevard and the Marina Expressway (intersections 1 and 13, respectively) are already examined in detail as part of the 25 study intersections analyzed earlier in this document, and therefore do not need to be re-analyzed to meet the CMP requirements. However, for the remaining six locations, the CMP requires that detailed analyses be conducted for any of these locations where the proposed project could be anticipated to add 50 or more total trips during either the AM or PM peak hours, and therefore, the potential net project-related traffic additions to each of these CMP arterial monitoring intersection locations were assessed.

A review of the project's anticipated traffic travel patterns into, out of, and through the study vicinity, shown previously in Figure 4, indicates that project traffic will disperse throughout the area roadway network outside the immediate study vicinity, and that project traffic volume

IRSCH REEN

Hirsch/Green Transportation Consulting, Inc.

CMP INTERSECTION MONITORING LOCATIONS

additions to any of the CMP monitoring intersections are expected to be substantially less than the 50-trip threshold. Specifically, Figure 4 shows that only about five percent (5%) of the project's trips are expected to travel on Lincoln Boulevard (north of Venice Boulevard) to or from the CMP arterial monitoring intersection at Lincoln Boulevard and Pico Boulevard. As such, based on the project's anticipated net trip generation summarized earlier in Table 2, and as shown previously in Figures 5(a) and 5(b), which depict the project's net peak hour traffic volumes at each of the study intersections, a total of only about five net new project-related trips (total both directions) are expected to travel beyond the study area and potentially affect the CMP intersection at Lincoln Boulevard and Pico Boulevard during the AM peak hour, with a total of approximately 20 net new project trips doing so during the PM peak hour.

Similarly, approximately 10 percent of the project's trips are expected to travel to or from the east of the study area on Venice Boulevard (east of Lincoln Boulevard), potentially effecting the two CMP arterial monitoring intersections at Venice Boulevard and Centinela Avenue, and Venice Boulevard and Overland Avenue. Assuming conservatively that project traffic does not disperse onto other roadways or otherwise deviate from Venice Boulevard before it reaches these two locations, the project could result in a total of approximately nine net project trips during the AM peak hour, and a total of approximately 40 net trips during the PM peak hour travelling travel through these two CMP intersections, as again shown in Figures 5(a) and 5(b).

Finally, an additional approximately 10 percent of the project's trips are anticipated to enter or leave the study area to the south along Lincoln Boulevard (south of Jefferson Boulevard), potentially travelling through one or more of the CMP locations (Lincoln Boulevard and Manchester Avenue, Manchester Avenue and Sepulveda Boulevard, and Lincoln Boulevard and Sepulveda Boulevard) to the south of the project site. As also shown previously in Figure 5(a), a total of approximately nine project trips are anticipated to travel along Lincoln Boulevard to or from these CMP intersections during the AM peak hour, while Figure 5(b) shows that a total of approximately 39 such project-related trips could occur during the PM peak hour.

It should be noted that these project traffic estimates are considered to be highly conservative, particularly at the more distant CMP intersections, since as noted earlier, all project traffic leaving the study area was assumed to travel through these intersections, although it is likely that project traffic will disperse into residential neighborhoods or divert to other roadways along the anticipated travel paths, reducing the amount of potential project traffic actually reaching the CMP arterial monitoring locations. However, even using these conservative assumptions, the

net project traffic additions to any of the eight nearest CMP arterial monitoring intersections will be substantially below the 50-trip threshold for requiring a detailed analysis. Further, even these conservative estimates would not result in significant impacts; the volumes are simply too small to produce measurable effects. Therefore, based on these evaluations, the net project trip additions through the nearest CMP arterial monitoring intersections will be well below the levels at which a significant impact would be created, and as such, no further analyses are warranted.

CMP Freeway Segment Impacts

An examination was also made of the potential for project-related freeway impacts within the project study area. The CMP requires that detailed freeway impact analyses be prepared when a project is expected to add 150 or more peak hour trips in any direction to the area freeway system. As shown previously in Table 2, the proposed project is expected to generate fewer than 150 net new directional trips during the AM peak hour, although it is anticipated to result in more than 150 net directional trips (in both the "inbound" and "outbound" directions) during the PM peak hour. However, as shown earlier in Figure 4 (Project Geographic Trip Distributions), only a fraction of the project's total trips are anticipated to travel on the area freeways, with about 15 percent utilizing the Marina Expressway/Freeway to access the project site, while a total of approximately 15 percent of the project's traffic will travel to and from the north of the project vicinity (north of Culver Boulevard) and an additional 10 percent will travel to and from the south of the study area (south of Jefferson Boulevard) on the San Diego (I-405) Freeway.

Based on these trip distributions, the project could increase traffic on the "freeway" segments of the Marina Expressway/Freeway (between the San Diego Freeway and Culver Boulevard) by approximately nine net westbound and five net eastbound trips to during the AM peak hour, and by approximately 30 net westbound and 29 net eastbound trips during the PM peak hour. The project could also add approximately nine net southbound and five net northbound trips during the AM peak hour, and approximately 31 net southbound and 28 net northbound trips during the PM peak hour to the segments of the San Diego Freeway north of Culver Boulevard, while the project could add approximately four net northbound trips and one net southbound trip during the AM peak hour, and 19 net northbound and 18 net southbound trips during the PM peak hour to the San Diego Freeway segments to the south of Jefferson Boulevard. Therefore, the proposed project will add fewer than 25 percent of the CMP's minimum 150-trip (directional) peak hour thresholds to any segment of these nearby regional transportation facilities. As such, no significant freeway mainline impacts are expected, and no further analysis is warranted.

Project Impacts on Area Transit Facilities

As described earlier in this report, in order to present the most conservative analysis of the potential traffic impacts of the project to the nearby study intersections, no significant additional use of public transportation by project employees or visitors beyond that intrinsically included in the "Marina-specific" LUP or ITE trip generation rates was assumed. However, for purposes of assessing potential project-related impacts to the area transit system, it was assumed that up to approximately five percent (5%) of the vehicular trips generated by the proposed project could instead utilize the available existing public transportation (bus) service in the project vicinity as a regular mode of travel. This assumption is considered to be highly conservative, since most of the uses anticipated for the proposed project do not lend themselves to transit utilization.

Using this approach, the number of project trips that might travel to and from the project via the existing transit services was calculated. Based on the project trip calculations shown earlier in Table 2, it was estimated that approximately 188 of the project's net new daily trips, including four trips (three inbound, one outbound) during the AM peak hour, and 19 trips (10 inbound, nine outbound) during the PM peak hour, could potentially travel to and from the project site via the area's public transit facilities rather than traveling in privately-owned vehicles. Further assuming an average vehicle occupancy ("AVO") of 1.2 persons per vehicle (which is typical of the Southern California region) in order to convert the vehicle trips noted above to "person trips", the proposed project could result in a potential net incremental increase in area transit ridership of approximately 225 persons per day, including five persons (three inbound, two outbound) during the AM peak hour, and 23 persons (12 inbound, 11 outbound) during the PM peak hour, assuming that all project-related transit usage would occur as a result of new bus ridership.

While it is acknowledged that bus utilization in the project vicinity can be heavy during the peak weekday commute periods, this nominal level of new rider demand would likely be divided among several bus lines providing direct service to the project site. These lines alone provide a combined total of between 20 and 30 buses per hour serving the project site during both the weekday AM and PM peak commute periods, with a combined total of over 300 buses per day. As a result, the potential project-related increases in ridership on any single bus are expected to be nominal (an average of two or fewer new riders per bus during the peak commute periods). Therefore, based on the assumptions described earlier, the proposed project is not expected to result in any significant transit-related impacts to the existing bus service in the study area, and as such, no mitigation measures in this regard are warranted.

MITIGATION MEASURES

As described in the preceding report, the proposed Parcel 44 redevelopment project could result in significant impacts at a total of eight intersections, during the PM peak hour only, under one or both of the "Existing With Project" and "Future With Project" scenarios analyzed in this study, including one location under the sole jurisdiction of the County; at the site-adjacent intersection of Admiralty Way and Mindanao Way (impacted only under the "Existing With Project" scenario), five intersections under the exclusive jurisdiction of the City of Los Angeles; Lincoln Boulevard and Venice Boulevard, and Lincoln Boulevard and Washington Boulevard (each location impacted under both the "Existing With Project" and LADOT's "Future With Project" scenarios), Lincoln Boulevard and Marina Expressway, Mindanao Way and eastbound Marina Expressway, and Lincoln Boulevard and Jefferson Boulevard (each location impacted only under LADOT's "Future With Project" scenario), and two intersections under joint County/City jurisdiction, Lincoln Boulevard and Mindanao Way (impacted under both the "Existing With Project" and LADOT's "Future With Project" scenarios), and Lincoln Boulevard and Fiji Way (impacted only under LADOT's "Future With Project" scenario).

The Marina del Rey Specific Plan ("Specific Plan"), which incorporates the recently-adopted Marina del Rey Land Use Plan ("LUP") Amendment, identifies a number of transportation and circulation improvements that are designed to mitigate the traffic generation of ongoing development in Marina del Rey, of which the proposed Parcel 44 project is a part. The LUP's "Revised Set of Intersection Improvements", which supersede the previous version of the LUP's Transportation Improvement Program ("TIP") roadway improvement measures, include both local Marina and sub-regional cumulative roadway and/or intersection improvements that are designed to address both the incremental (project-specific) and cumulative traffic impacts from all projects developed within Marina del Rey itself (including the proposed project), as well as from increases in local and regional traffic demand created by other developments outside the County's jurisdiction that utilize the Marina roadway system.

The roadway improvements identified in the current LUP are funded (in part) by a traffic impact mitigation fee imposed by the County of Los Angeles, which all projects within the Marina, including the proposed development, are required to pay. These fees provide "fair share" contributions from each Marina development project toward the identified improvements based on the number of net new PM peak hour trips generated by each project. The County's current traffic impact mitigation fee structure identifies a fee amount of \$5,690 per PM peak hour trip.

Therefore, based on the anticipated project trip generation of 411 net new PM peak hour trips (per Los Angeles County Department of Public Works policy, the number of project-related trips applicable to the traffic impact mitigation fee does not include the total 24-trip PM peak hour pass-by traffic reductions used to analyze the proposed project's potential traffic impacts, as described earlier in this report), the proposed Parcel 44 redevelopment project will be required to pay a total of approximately \$2,338,590 in traffic impact mitigation fees. As noted above, these fees will be applied toward the project's "fair share" costs of implementing the roadway and intersection improvements described in the Marina del Rey Specific Plan LUP.

The County's Department of Public Works has expressed that it prefers to coordinate and implement the local and regional roadway improvements identified in the Specific Plan LUP itself, in order to reduce overall construction time and minimize traffic disruptions associated with these improvements. Therefore, payment of the traffic impact mitigation fee noted above is the recommended method of addressing the proposed project's traffic impact mitigation, rather than the incremental or partial construction of any of the relevant Specific Plan roadway improvements by the project applicant. However, should the County determine that the immediate implementation of roadway improvements is necessary to address the potential project-specific traffic impacts of proposed Parcel 44 development project identified earlier, the following measures are recommended for each of the eight significantly-impacted locations.

Project-Specific Mitigation Measures

Los Angeles County Intersections

o Admiralty Way and Mindanao Way — Although as shown earlier in Table 7, the project could result in a significant impact at this intersection during the PM peak hour under the "Existing With Project" scenario, this location was assumed only to be improved with the project-required improvements to the eastbound approach of Mindanao Way for the analysis of potential project-related impacts for that scenario. However, as described earlier in this report, the County is currently underway with, and is nearing completion on improvements to Admiralty Way that will install new southbound dual left-turn lanes at this intersection. As a result, as further shown in Table 11, once the ongoing installation of the new dual southbound left-turn lanes is completed, the project's impacts will become less-than-significant (during both peak hours). Therefore, no improvements to this intersection (beyond the project-required improvement to eastbound Mindanao Way and the ongoing improvements being installed by the County) are necessary.

Shared Los Angeles County/Los Angeles City Intersections

- o Lincoln Boulevard and Mindanao Way This intersection is under the shared jurisdiction of the County and City of Los Angeles. The "Revised Set of Intersection Improvements" contained in the updated LUP does not identify any roadway improvements for this location, although the (now-superseded) Transportation Improvement Program ("TIP") of the prior LUP included an improvement to install a new northbound right-turn only lane on Lincoln Boulevard at Mindanao Way. However, as described earlier in this report, this measure has already been installed, and a review of this intersection indicates that it currently provides exclusive left-turn and right-turn lanes, along with three through lanes, on the northbound approach, a left-turn lane, and three through lanes (including a shared through/right-turn lane) on the southbound approach, dual left-turn lanes along with two through lanes (including a shared through/right-turn lane) for the westbound approach, and two through lanes (including a shared through/right-turn lane) on the eastbound approach (eastbound left turns are prohibited at this intersection). There are no additional rights-of-way available to widen any of the intersection approaches, and as such, no feasible improvements are available at this location.
- Lincoln Boulevard and Fiji Way This intersection is also under the shared jurisdiction of the County and City of Los Angeles, and as a result, the updated LUP does not identify any roadway improvements for this location, although the previous TIP included a measure to install a second eastbound left-turn lane on Fiji Way at Lincoln Boulevard (this recommendation has since been abandoned). This intersection currently provides dual left-turn lanes plus three through lanes (including a shared through/right-turn lane) on the northbound approach, a left-turn lane and three through lanes (including a shared through/right-turn lane) on the southbound approach, a left-turn lane, a through lane, and a right-turn only ("free right") lane on the eastbound approach, and a single lane (shared left-turn/through/right-turn lane) on the westbound approach. No additional rights-of-way are currently available, and no further improvements are feasible.

City of Los Angeles Intersections

The Marina del Rey Specific Plan does not include intersections that are not under the full or partial jurisdiction of the County, and as a result, the LUP does not identify any programmed improvements at any of the five intersections listed below, each of which is located wholly within and operated under the jurisdiction of the City of Los Angeles.

Additionally, as noted earlier in this report, all of the intersections in the study area, including the locations listed below, have been improved with the City's ATSAC/ATCS traffic signal coordination system, and as such, no further signal-related operational improvements are currently available. Further, detailed field surveys conducted at each of these intersections, which are also provided below, indicate that many of the locations currently exhibit capacity enhancements beyond the typical intersection improvements (including additional left-turn lanes or exclusive right-turn only lanes). Finally, research of these locations indicated that there are currently no additional rights-of-way available to widen any of the approaches at any of these intersections, and as such, no further improvements to address the potential project impacts at these locations are feasible.

- <u>Lincoln Boulevard and Venice Boulevard</u> This intersection is already improved with dual left-turn lanes on each approach, in addition to exclusive right-turn only lanes on both the eastbound and westbound approaches (each with right-turn overlap phases concurrent with the northbound and southbound left-turn phases).
- <u>Lincoln Boulevard and Washington Boulevard</u> Similar to Lincoln Boulevard and Venice Boulevard, this intersection is also currently improved with dual left-turn lanes on each approach, plus exclusive right-turn only lanes (including right-turn overlap phases concurrent with the northbound and southbound left-turn phases) on both the eastbound and westbound approaches.
- <u>Lincoln Boulevard and Marina Expressway</u> This location is currently improved to provide both dual left-turn and dual right-turn lanes on the westbound approach of the Marina Expressway, as well as dual left-turns for southbound Lincoln Boulevard (left-turns for northbound travel are not permitted at this location).
- Mindanao Way and Eastbound Marina Expressway Improvements were recently completed at this intersection to install dual left-turn lanes on the southbound approach of Mindanao Way (onto the eastbound Marina Expressway), while the eastbound approach of the Marina Expressway is flared at the intersection in order to provide an exclusive left-turn lane (in addition to its typical two through lanes).
- <u>Lincoln Boulevard and Jefferson Boulevard</u> This intersection has recently been reconstructed to substantially enhance its capacity and operations (as mitigation for the adjacent Playa Vista development project), particularly in the northbound and

southbound directions, and currently provides an exclusive right-turn only lane on the northbound approach, plus dual left-turn lanes on the southbound approach, and dual left-turn and dual right-turn lanes on the westbound approach.

Therefore, based on these observations and evaluations, of the eight potential project-specific significant impacts identified in this analysis, only the impact at the site-adjacent intersection of Admiralty Way and Mindanao Way (which occurs only under the "Existing Plus Project" analysis scenario) exhibits any feasible mitigation; the County's installation of dual left-turn lanes on the southbound approach of Admiralty Way, which is currently under construction and scheduled for completion in the first quarter of 2014, will reduce the proposed project's potential impact at this location to less-than-significant levels, and as discussed earlier and shown in Table 11, the project's impact at this intersection are not significant under the any of the future (year 2016) analysis scenarios. However, no feasible roadway or traffic signal improvements are available at any of the remaining seven locations, and as shown in Tables 13(a) and 13(b), the potential project-specific impacts at these intersections will remain significant and unavoidable.

Table 13(a)

Critical Movement Analysis Summary

Existing (2013) With Project-Specific Mitigation Conditions

(Includes Los Angeles County, City of Los Angeles, and Shared Jurisdiction Intersections)

Int.		Peak	Without Project		With Project			With Project Plus Project-Specific Mit.		
No.	Intersection	Hour	CMA	LOS	CMA	LOS	Impact	CMA	LOS	Impact
1	Venice Boulevard and Lincoln Boulevard	AM PM	1.026 0.944	F E	1.028 0.954	F E	0.002 0.010 *	None F	easible Unchange	(Impact
7	Washington Boulevard and Lincoln Boulevard	AM PM	0.819 0.897	D D	0.822 0.914	D E	0.003 0.017 *	None Feasible (Impact Unchanged)		
16	Admiralty Way and Mindanao Way [1], [2]	AM PM	0.565 0.669	A B	0.556 0.721	A C	-0.009 0.052 *	0.556 0.672	A B	-0.009 0.003
17	Lincoln Boulevard and Mindanao Way ^[3]	AM PM	0.847 0.861	D D	0.851 0.891	D D	0.004 0.030 *	None F	easible Unchange	(Impact ed)

Notes:

^[1] Los Angeles County intersection.

^{[2] &}quot;Mitigation" includes only ongoing County-installed dual southbound left-turn lanes on Admiralty Way.

^[3] Shared County/City of Los Angeles intersection.

[&]quot;*" Significant impact per Los Angeles County Department of Public Works *Traffic Impact Analysis Report Guidelines*, January 1, 1997, or LADOT *Traffic Study Policies and Procedures*, June 2013.

Table 13(b)

Critical Movement Analysis Summary

Future (2016) With Project Plus Project-Specific Mitigation
(City of Los Angeles or Shared County/City Intersections Only)

140.41

Int.		Peak	Without Project		With Project			With Project Plus Project-Specific Mit.		
No.	Intersection	Hour	CMA	LOS	CMA	LOS	Impact	СМА	LOS	Impact
1	Venice Boulevard	AM	1.159	F	1.161	F	0.002	None	<u> </u>	(Impact
	and Lincoln Boulevard	PM	1.139	F	1.150	F	0.011 *		d)	
7	Washington Boulevard	AM	0.974	Ε	0.978	Ε	0.004	None	Feasible	(Impact
	and Lincoln Boulevard	PM	1.109	F	1.126	F	0.017 *		ed)	
13	Lincoln Boulevard	AM	0.821	D	0.823	Α	0.002	None	Feasible	(Impact
	and Marina Expressway	PM	0.892	D	0.904	E	0.012 *		Unchange	ed)
17	Lincoln Boulevard	AM	1.011	F	1.015	Ε	0.004	None	Feasible	(Impact
	and Mindanao Way	PM	1.069	F	1.109	F	0.040 *		Unchange	ed)
18	Mindanao Way	AM	0.718	С	0.720	С	0.002	None	Feasible	(Impact
	and EB Marina Expressway	PM	0.915	Е	0.933	F	0.018 *		Unchange	ed)
22	Lincoln Boulevard	AM	0.923	E	0.925	E	0.002	None	Feasible	(Impact
	and Fiji Way	PM	0.974	Ε	0.987	Е	0.013 *		ed)	
22	Lincoln Boulevard	AM	1.366	E	1.368	E	0.002	None	Feasible	(Impact
	and Jefferson Boulevard	PM	1.112	Ε	1.123	Ε	0.011 *		Unchange	ed)

Notes:

Cumulative Mitigation Measures

In addition to the project-specific traffic impacts described in the preceding section of this report, the analysis of potential cumulative traffic impacts at the five study intersections under the exclusive jurisdiction of the County also indicated that traffic resulting from total development throughout the project vicinity, including the proposed project as well as projects located in the City of Los Angeles (and outside the County's jurisdiction), could produce significant impacts at four locations; Admiralty Way and Via Marina, Admiralty Way and Palawan Way, Admiralty Way and Bali Way, and Admiralty Way and Mindanao Way, each during the PM peak hour only.

As described earlier, the roadway improvements identified in the current LUP are designed to address traffic growth due to cumulative development within and surrounding the Marina, and the traffic impact mitigation fees identified in the LUP \$5,690 per net PM peak hour trip) are

MON B

[&]quot;*" Significant impact per LADOT Traffic Study Policies and Procedures, June 2013.

designated toward implementation of these measures. Therefore, payment of the proposed Parcel 44 project's \$2,338,590 Marina del Rey traffic impact mitigation fee (described and calculated earlier in this section) is intended to mitigate the proposed project's incremental contributions toward cumulative traffic growth and its resulting impacts in the study area.

As such, the roadway improvements listed in the LUP (and funded by the traffic impact mitigation fees) were reviewed to identity which measures may be effective in addressing the cumulative impacts in the study area. These roadway improvements are described below.

- Admiralty Way and Via Marina Two potential roadway improvement alternatives are identified in the Specific Plan to address cumulative traffic impacts at this intersection:
 - 1) The first roadway improvement alternative ("LUP A") includes the installation of a third left-turn lane (in addition to the two existing right-turn only lanes) on the westbound approach of Admiralty Way at Via Marina, and would also convert one of the three existing southbound through lanes to a new left-turn lane (resulting in a final southbound configuration of two left-turn lanes and two through lanes). The northbound approach of this intersection would remain unchanged, and continue to provide two through lanes and one right-turn only lane. The Specific Plan does not identify whether roadway widenings are necessary to implement this improvement.
 - 2) The second alternative ("LUP B") would reconstruct this intersection to realign Admiralty Way and the south leg of Via Marina to operate as a "through roadway", with the north leg of Via Marina intersecting the realigned Admiralty Way/Via Marina roadway in a "T" configuration. The resulting intersection would include two through lanes in each direction along realigned Admiralty Way/Via Marina, with one westbound right-turn lane and dual eastbound left-turn lanes from this roadway onto the north leg of Via Marina, while the southbound approach of Via Marina at the intersection would provide two left-turn lanes and a single right-turn lane.
- Admiralty Way and Palawan Way There are also two potential roadway improvements identified in the Specific Plan's LUP to address the cumulative impact at this intersection:
 - 1) In addition to the current County improvements to restripe northbound Palawan Way to convert the existing left-turn lane to a shared left-turn/through lane (with the existing shared through/right-turn lane remaining unchanged), and to add a new exclusive westbound right-turn only lane on Admiralty Way, the first improvement

alternative ("LUP A") would restripe the southbound approach of Palawan Way to convert the existing through lane to a shared left-turn/through lane (but leave the existing left-turn and right-turn lanes unchanged), and would further improve the westbound approach of Admiralty Way to provide an additional through lane (west of the intersection with Palaway Way). This alternative improvement would also convert the new westbound right-turn only lane to a shared through/right-turn lane, to provide a future lane configuration of one left-turn lane, two through lanes, and one shared through/right-turn lane. The eastbound approach would continue to exhibit its current configuration of one left-turn lane, one through lane, and one shared through/right-turn lane. As with the ongoing improvement at this location, due to the proposed "shared through/left-turn lane" configuration for southbound Palawan Way, this alternative will require modification of the existing traffic signal to provide north/south opposed phasing operation.

- 2) The second Specific Plan roadway improvement alternative ("LUP B") is similar to the LUP A alternative described above, and would again modify westbound Admiralty Way to provide a third westbound lane west of the intersection, and convert the new westbound right-turn only lane to a shared through/right-turn lane (again with no changes to the eastbound approach lane configuration). However, this alternative would also restripe northbound Palawan Way to convert the existing shared through/right-turn lane to an exclusive right-turn only lane, while keeping the new shared left-turn/through lane currently being constructed. Additionally, this alternative would modify the southbound approach of Palawan Way to add a second left-turn lane (resulting in a final southbound lane configuration of two left-turn lanes, one through lane, and one right-turn only lane). As with the LUP A alternative, the traffic signal would be modified to operate with opposed north/south phasing.
- Admiralty Way and Bali Way The LUP improvement to add a second left-turn lane on southbound Admiralty Way at Bali Way, resulting in a final lane configuration for this approach of two left-turn lanes, one through lane, and one shared through/right-turn lane is currently under construction, and no further improvements are proposed.
- Admiralty Way and Mindanao Way In addition to the ongoing improvements to this intersection being installed by the County to provide a second southbound left-turn lane on Admiralty Way at Mindanao Way, and the project-required improvement to widen the south side of Mindanao Way to install a new shared through/right-turn lane on the

eastbound approach of this street (and convert the current shared through/right-turn lane to a shared left-turn/through lane) described earlier (which is also part of the overall LUP improvement at this location), the remaining LUP improvements at this intersection would restripe the westbound approach of Mindanao Way to convert the existing shared left-turn/through lane to a shared left-turn/through/right-turn lane. The traffic signal phasing at this location will continue to exhibit the current east-west "split" phase operations, due to the proposed new eastbound/westbound lane configurations.

Similar to the "project-specific" mitigation measures described earlier, the effectiveness of these recommended cumulative impact mitigation measures was evaluated, again using the same intersection analysis techniques as described previously, but assuming that the recommended cumulative roadway improvement measures described above were installed. The results of the "With Cumulative Mitigation" analysis are summarized in Table 14.

Table 14

Critical Movement Analysis Summary

Future (2016) With Cumulative Development Plus Cumulative Mitigation Conditions

(Los Angeles County Intersections Only)

			Existing Ambi		With Cumulative				With Cumulative Development Plus			
Int.		Peak	Growth Only		Development			Mit.	Cumulative Mitigation			
No.	Intersection	Hour	CMA	LOS	CMA	LOS	Impact	Alt.	CMA	LOS	Impact	
9	Admiralty Way and Via Marina	AM PM	0.418 0.847	A D	0.515 1.018	A F	0.097 0.171 *	LUP A	0.384 0.648	A B	-0.034 -0.199	
								LUP B	0.701 0.783	C C	0.283 * -0.064	
10	Admiralty Way and Palawan Way	AM PM	0.431 0.673	A B	0.595 0.847	B D	0.164 0.174 *	LUP A	0.558 0.727	A C	0.127 0.054 *	
								LUP B	0.581 0.712	A C	0.150 0.039	
14	Admiralty Way and Bali Way	AM PM	0.538 0.621	A B	0.596 0.791	A C	0.058 0.170 *		No Change [1]			
16	Admiralty Way and Mindanao Way	AM PM	0.578 0.649	A B	0.655 0.893	C D	0.077 * 0.244 *		0.610 0.841	B D	0.032 0.192 *	

Notes:

[&]quot;*" Significant impact per Los Angeles County Department of Public Works Traffic Impact Analysis Report Guidelines, January 1, 1997.

^[1] LUP improvement currently under construction, and is included in baseline "With Cumulative Development" scenario.

As shown in Table 14, the potential PM peak hour significant traffic impact resulting from the anticipated increases in traffic due to ambient traffic growth and the addition of traffic generated by cumulative development in the project vicinity (including the proposed Parcel 44 project) can be reduced to a less-than-significant level at the intersection of Admiralty Way and Via Marina through implementation of LUP alternative improvement "A"; LUP alternative improvement "B" would reduce the cumulative PM peak hour impact at this location to less-than-significant levels, but would actually create a new secondary significant impact during the AM peak hour. Similarly, installation of LUP alternative improvement "B" at Admiralty Way and Palawan Way would reduce the PM peak hour cumulative impact at this location to less-than-significant levels, while LUP alternative improvement "A" would reduce but not fully mitigate the impact. Therefore, it is recommended that LUP alternative improvement "A" be installed at the intersection of Admiralty Way and Via Marina, while LUP alternative improvement "B" be implemented at the intersection of Admiralty Way and Palawan Way in order to address the potential impacts of forecast future traffic growth in the project vicinity.

However, as also shown in Table 14, the intersection improvements identified in the current Marina del Rey LUP update are not expected to be sufficient to mitigate the anticipated cumulative impacts at the two site-adjacent intersections of Admiralty Way and Bali Way, and Admiralty Way and Mindanao Way. Further, an examination of these locations indicated that there are no additional feasible roadway improvement or mitigation alternatives available beyond the measures identified in the updated LUP, and as a result, the potential cumulative traffic impacts at both intersections will remain significant and unavoidable (although it is important to note that, as described earlier in this section, the project-specific impacts of the proposed Parcel 44 project at Admiralty Way and Mindanao Way will be fully mitigated, and no project-specific impacts are identified at the intersection of Admiralty Way and Bali Way).

Nonetheless, as also shown in Table 14, it should be recognized that, while not fully mitigating all potential traffic impacts associated with anticipated cumulative development in and around the Marina, the implementation of the recommended LUP update roadway improvements at the intersection of Admiralty Way and Mindanao Way are expected to maintain the operations of the intersection at acceptable LOS D conditions during the PM peak hour (and LOS B operations during the AM peak hour) even with the increases in vehicular demands at this location due to the addition of traffic associated with cumulative development in the area. Additionally, the recommended ongoing LUP improvement at Admiralty Way and Bali Way (to also install new dual left-turn lanes for southbound Admiralty Way) are anticipated to keep the operations of that

intersection at acceptable forecast LOS C conditions during the PM peak hour (and at LOS A during the AM peak hour). Further, as also shown in Table 14, the two other County-jurisdiction intersections significantly impacted by cumulative development (Admiralty Way and Via Marina, and Admiralty Way and Palawan Way) are also anticipated to operate at acceptable levels of service (LOS D or better) during both peak hours following the implementation of either of the two LUP alternative mitigation measures at these intersections (including those alternatives that do not fully mitigate the potential cumulative impacts); the remaining County-jurisdiction intersection of Admiralty Way and Fiji Way, which is not anticipated to experience any significant cumulative traffic impacts, is forecast to exhibit acceptable operational conditions during both peak hours without any additional roadway improvements. As such, while potential significant cumulative traffic impacts may remain at the site-adjacent intersections of Admiralty Way and Mindanao Way, and Admiralty Way and Bali Way following implementation of the LUP intersection and/or roadway improvements identified for these location, these measures will result in benefits to the traffic flows in the project vicinity and throughout the Marina, and reduce the potential for future vehicular queuing and congestion in the study area.

As described earlier, the County Department of Public Works has historically expressed that it prefers to implement the roadway improvements identified in the Marina del Rey LUP, of which both the project-specific and cumulative mitigation measures recommended are a part, as a single major roadway improvement project in order to minimize traffic disruptions and reduce construction time. As such, payment of the identified traffic impact mitigation fee is the recommended approach to address both the project-specific as well as cumulative impacts of the proposed Parcel 44 project, rather than the actual construction of any of the improvements by the project itself. However, it should also be noted that no feasible alternative improvements to either the project-specific or cumulative mitigation measures, beyond those already described, have been identified at any of the significantly impacted intersections. Therefore, should the recommended mitigation improvement(s) not be accepted by the County, the potential traffic impacts identified in this analysis would remain significant and unavoidable.

Additional Non-Mitigation Roadway and/or Infrastructure Improvements

In addition to these intersection and roadway improvements, which are recommend specifically to address both the project-specific and cumulative traffic impacts (including those from the proposed project itself), as described earlier in the "Project-Required Roadway Improvements" section of this report, the proposed project will also be required to implement a number of upgrades and/or improvements to the existing roadways, sidewalks and other transportation

infrastructure facilities adjacent to the site to the satisfaction of the County's Department of Public Works. These additional measures, which are not necessarily associated with any specific traffic impacts produced by the proposed project, but which will enhance vehicular traffic flows into and out of the project site, and/or improve safety for bicycle and pedestrian activity in the immediate project area, are summarized for convenience in the following paragraphs.

As part of its development, the project proposes to construct a new site access driveway on Admiralty Way (eliminating the two existing driveways along this frontage), approximately opposite an existing driveway and opening in the median island that provide access to an existing medical/commercial office development on the east side of the street. The construction of the new project driveway will also include the installation of a new northbound left-turn lane at the existing median opening on Admiralty Way, to allow vehicles to enter the site from that direction of Admiralty Way (a move that is currently not allowed). Additionally, the project will construct a new deceleration lane on the Admiralty Way approach to the site driveway, to minimize disruptions to southbound through traffic flows from project-related traffic slowing to enter the project's new driveway. It should be noted that, although the analyses summarized in this report indicate that installation of a traffic signal at the project's new Admiralty Way driveway is not warranted either under current (year 2013) or foreseeable future (year 2020) conditions, the County Department of Public Works has noted that the approval of the proposed project should include a condition that, should the project desire it, or if actual future traffic conditions trigger the need for a traffic signal at this location within a designated period of time (recommended by the County as a five-year period), the proposed project should be responsible for the design and construction/installation of such a signal.

Other project site access-related improvements include modifications to several median islands along each of the site frontages (Admiralty Way, Mindanao Way, and Bali Way) to provide new openings in the medians to allow access to and from the site driveways, or to extend the existing medians to close openings adjacent to some of the existing driveways that will be removed as part of the project. The proposed project will also be required to improve the existing sidewalks adjacent to the project site to provide an eight-foot wide sidewalk along the entire Admiralty Way frontage, along with eight-foot wide sidewalks between Admiralty Way and the existing Marvin Braude Bike Path, and five-foot wide sidewalks provided along the remainder of the project frontages on both Mindanao Way and Bali Way. Modifications will also be required along the project's Mindanao Way frontage to reduce the width of the median islands by approximately two feet (from the existing six feet to four feet), including removal of

the existing median trees and their replacement with compatible plantings, in order to provide for two westbound travel lanes along this segment of the roadway, and to increase the curb return radii adjacent to the project site at the intersections of Admiralty Way and Mindanao Way, and at Admiralty Way and Bali Way from 25 feet to 35 feet. Further, the County has indicated that it will require the project to improve the intersection of Admiralty Way and Mindanao Way by widening the south side of Mindanao Way west of Admiralty Way to install a third eastbound travel lane (this measure is a part of the programmed LUP improvements at this intersection).

The County has also indicated that it will require the project to provide several additional improvements that are not related specifically to the project's operations or potential impacts. These include, at a minimum, improvements to the existing Marvin Braude Bike Path crossings at both Bali Way and Mindanao Way to install new speed humps in advance of the bicycle path crossing in both directions on both streets. Additional upgrades may also include elevating the bicycle crossing slightly above the grade of the roadways (such as with a speed table or other such device), installation of flashing lights and improved signage indicating a bicycle crossing, colored or textured pavement treatments for the crossings, or a combination of these or other measures, although no specific improvements have yet been identified by the County.

Finally, both the County Department of Public Works, an Department of Beaches and Harbors have indicated that the existing (non-project) access driveways to both Public Parking Lot No. 5 (on the north side of Bali Way) and to the parking lot serving the Marina del Rey Visitor's Center (on the south side of Mindanao Way) should be relocated in order to align these driveways opposite the new proposed project driveways, as well as to minimize future conflicts between both existing and project-related vehicular traffic and bicyclists/pedestrians using the bike path.

As noted earlier in this report, while conceptual roadway and other infrastructure improvements proposed by the project and/or required by the County are shown in Figure 7, detailed plans of all requested/required roadway improvement measures will be submitted to both the County's Department of Public Works, and Department of Beaches and Harbors for review and approval, with all agreed-upon improvements required to be completed, to the satisfaction of the County, prior to the issuance of any certificates of occupancy for any of the proposed project.

Parking-Related Mitigation Measures

Finally, as also described earlier in this study, the proposed project will include approximately 477 on-site vehicular parking spaces (including a total of approximately 34 tandem spaces) and 76 bicycle parking spaces to serve its various uses. While the number of bicycle spaces is

adequate to meet the County's current Zoning Code, the number of vehicular parking spaces proposed will be about seven (7) spaces deficient of the 484 vehicular parking spaces required for the new development (including both the landside and waterside portions of the redevelopment project). However, a shared parking analysis prepared for the proposed project, accounting for the variability in parking needs for the various project components throughout the day, indicates that the actual maximum parking demands anticipated for the new development will be somewhat lower than that identified using the "static" Zoning Code parking ratios, with a peak demand of approximately 457 vehicular parking spaces, or about 20 spaces fewer than are proposed to be provided. As such, the project's proposed 477-space parking supply will be sufficient to accommodate the anticipated peak parking demand periods, which occur generally during an approximately two-hour period in the middle part of a typical weekday (the project's peak weekend vehicular parking demands are expected to be considerably lower, at a maximum of approximately 398 spaces), and as such, no on-site parking shortages or "overflow" parking onto adjacent streets or public parking areas are anticipated.

It is important to note that the shared parking analyses also indicated that, during the peak weekday parking demand activity (from approximately 12:00 noon to 12:00 PM), the total parking demands for the project are expected to exceed the 443 "self-park" spaces provided (not counting the 34 tandem spaces), and therefore will necessitate use of approximately 20 of the tandem spaces to accommodate the anticipated parking demands during this period. However, throughout the remainder of the typical weekday activity, the total project parking demands are expected to be less than 443 spaces, and as such, use of tandem spaces will not be needed, and all project-related parking can be accommodated within the "self-park" spaces. Therefore, it is recommended that any valet or parking attendant assisted parking for the project be required only during the peak weekday parking activity periods from approximately 11:00 AM to about 3:00 PM. No use of the tandem spaces will be necessary on weekends, and as such, no valet or attendant assisted parking requirement is warranted.

Other Project-Impact Mitigation Measures

A review of the proposed configuration and anticipated operation of the project's on-site parking and internal vehicular circulation scheme indicates that it will be acceptable, and will provide sufficient driveway entry and exit capacity at all site access locations to accommodate the anticipated site-related traffic demands. Further, both on-street and internal (on-site) vehicular queuing and/or congestion is expected to be minimal, and no significant impacts with respect to

site access or internal vehicular circulation are anticipated. Additionally, the installation of the improvements to the site-adjacent bicycle path expected to be required by the County is expected to address any potential existing or future (project-related) impacts to bicycle and pedestrian activity in the project vicinity. As such, no project site access-related or on-site vehicular, pedestrian, or bicycle mitigation measures, other than the driveway and/or median island modification described earlier in this study, are warranted.

Finally, the proposed Parcel 44 redevelopment project is not anticipated to produce sufficient net new traffic to create significant impacts to any of the surrounding CMP arterial monitoring intersections or freeway segments, nor are any significant impacts to the public transit facilities serving the study area anticipated. Therefore, no project mitigation measures associated with either of these issues are necessary.

APPENDICES

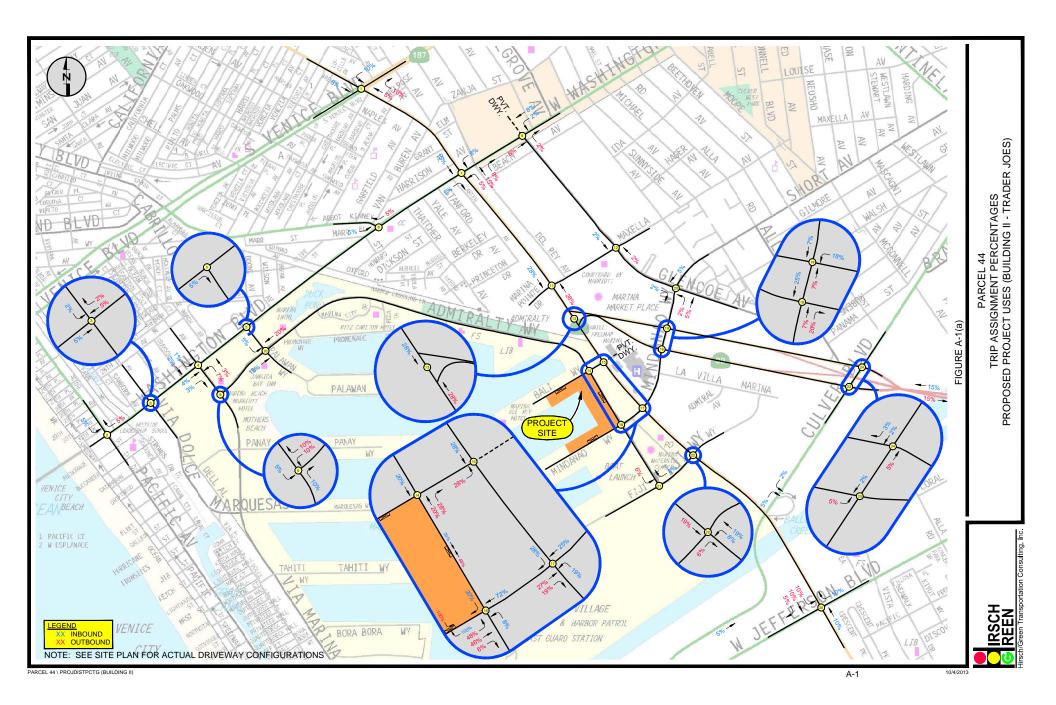
(Contained in Separate Document)

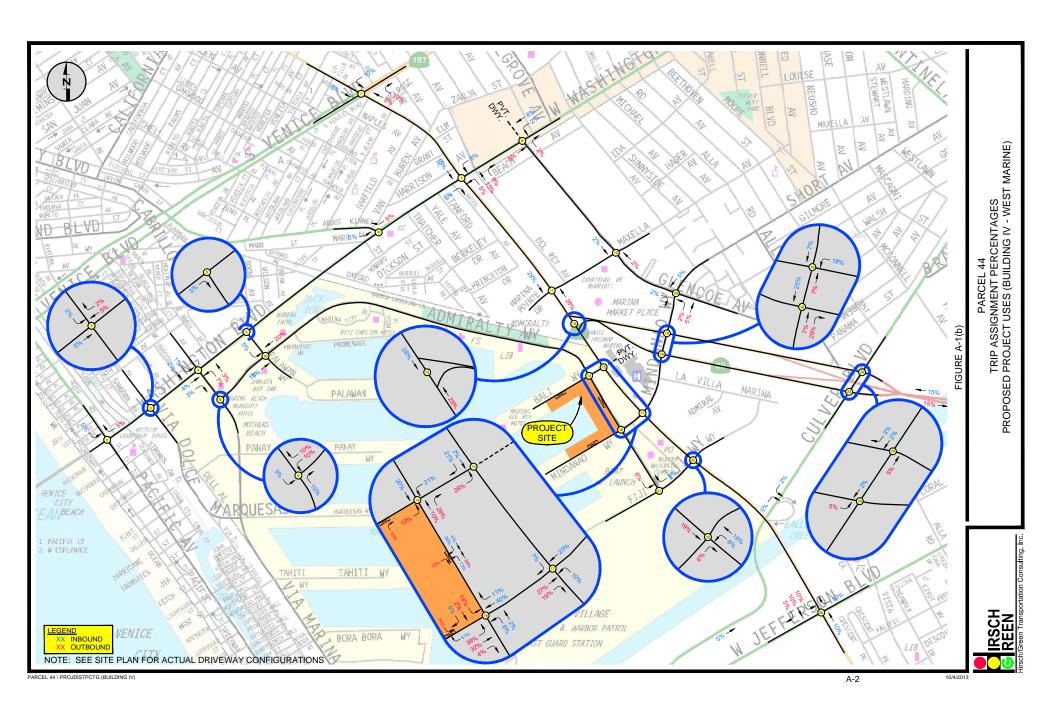
TRAFFIC IMPACT ANALYSIS REPORT - APPENDIX VOLUME I (A-F)

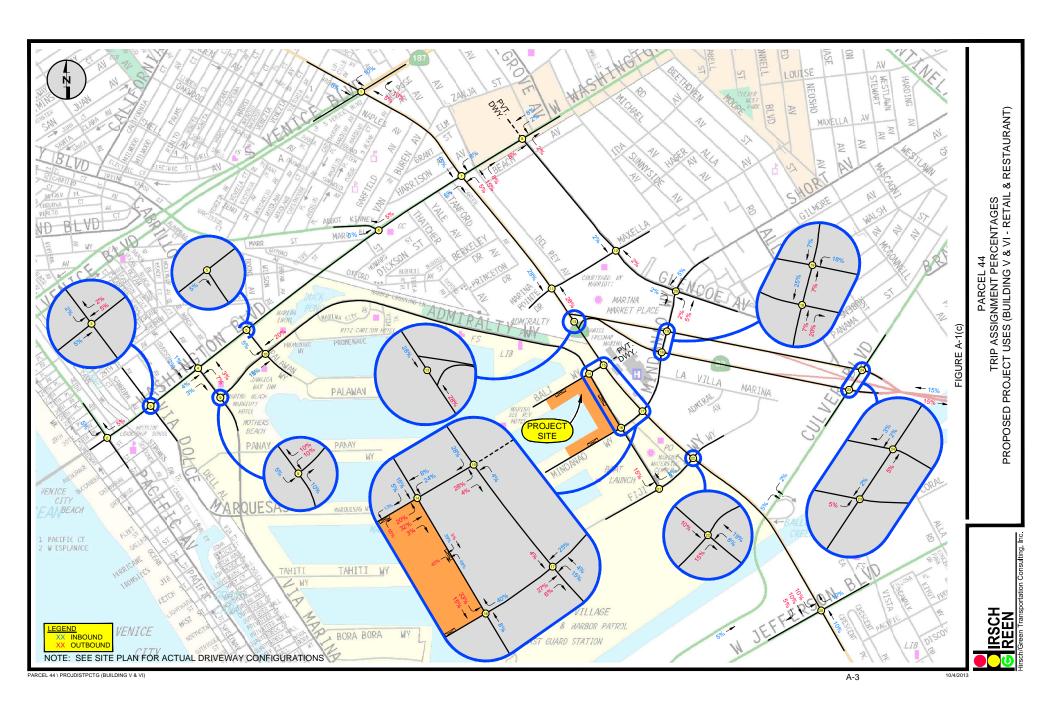
Proposed Commercial Redevelopment of Parcel 44 on Admiralty Way between Bali Way and Mindanao Way in Marina del Rey, California

Prepared for:

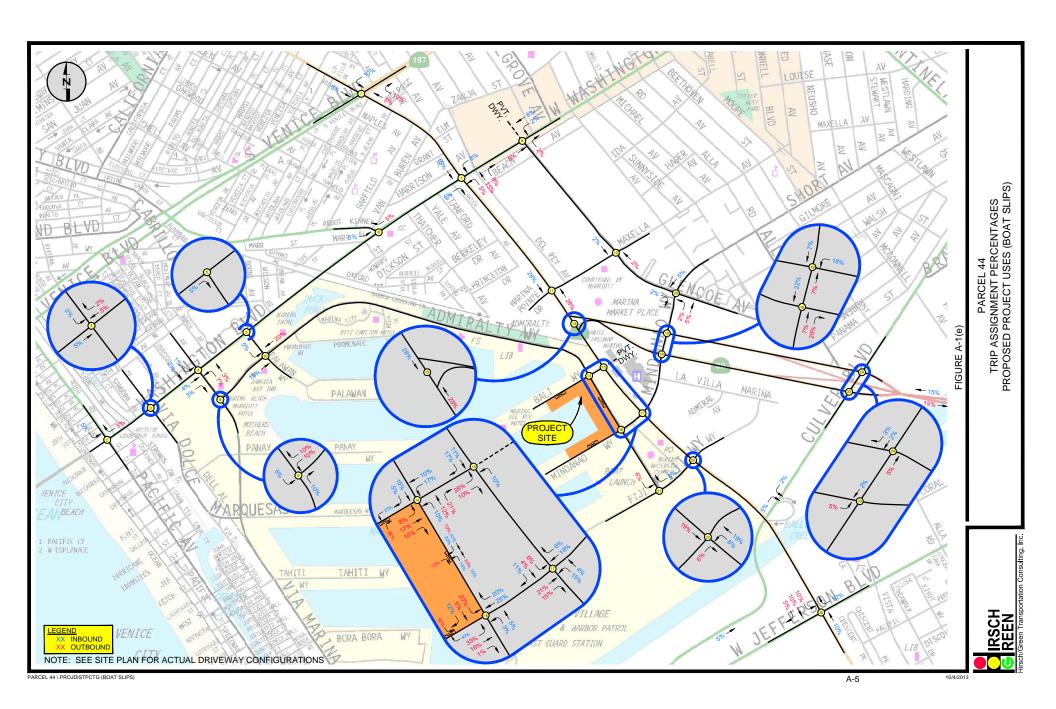
Pacific Ocean Management, LLC 13575 Mindanao Way Marina del Rey, California 90292

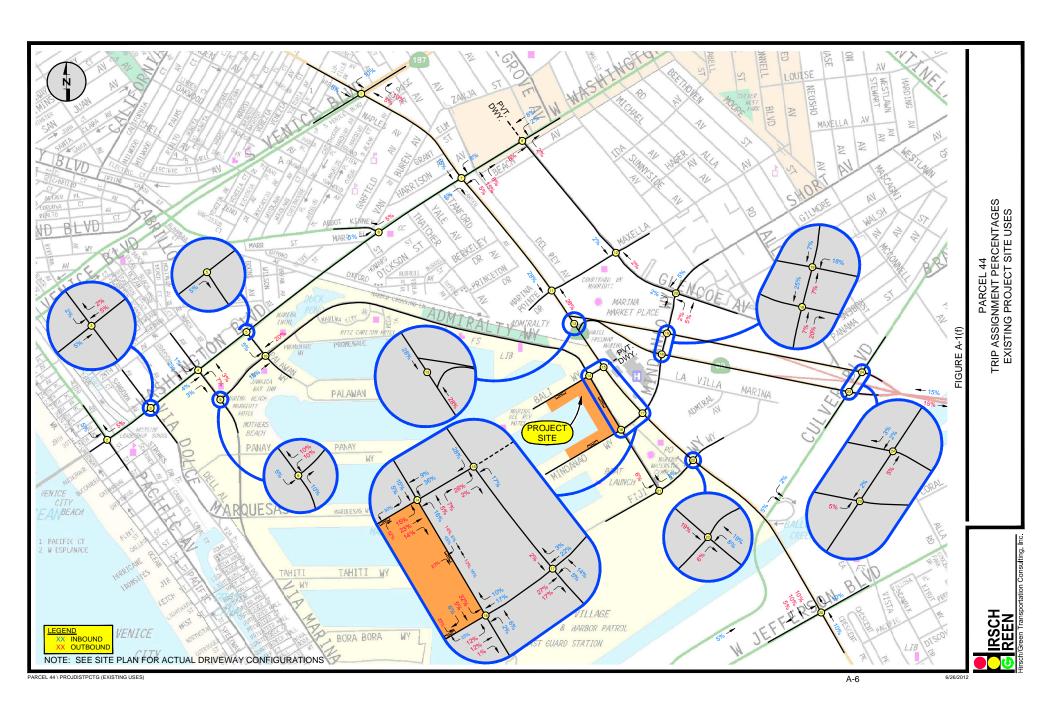

Prepared by:

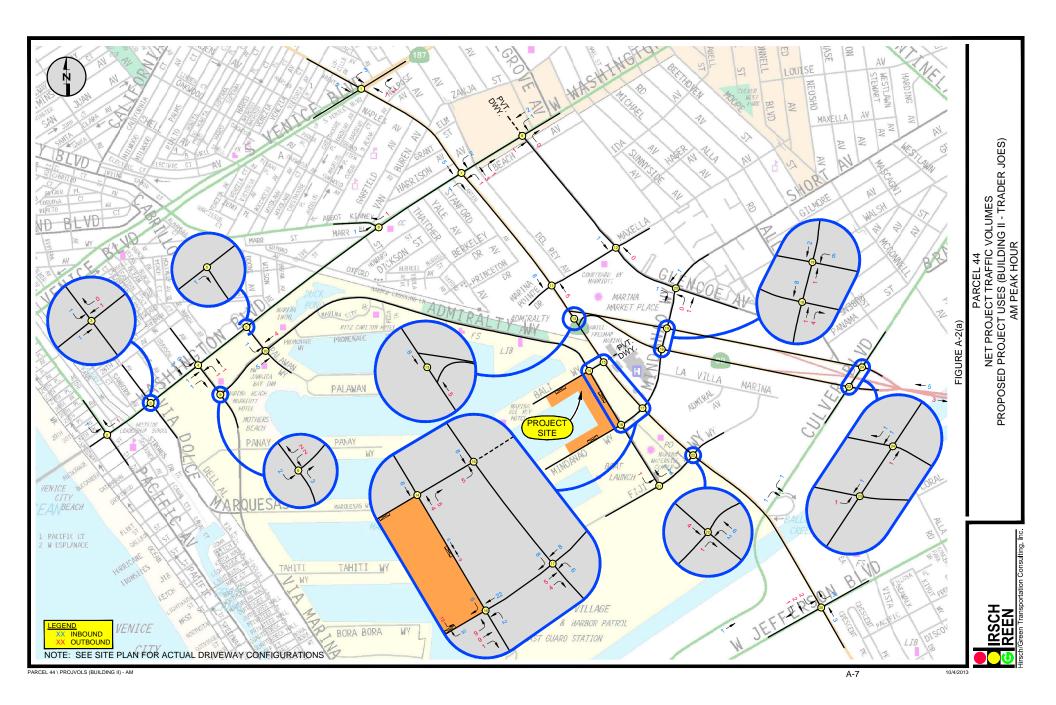


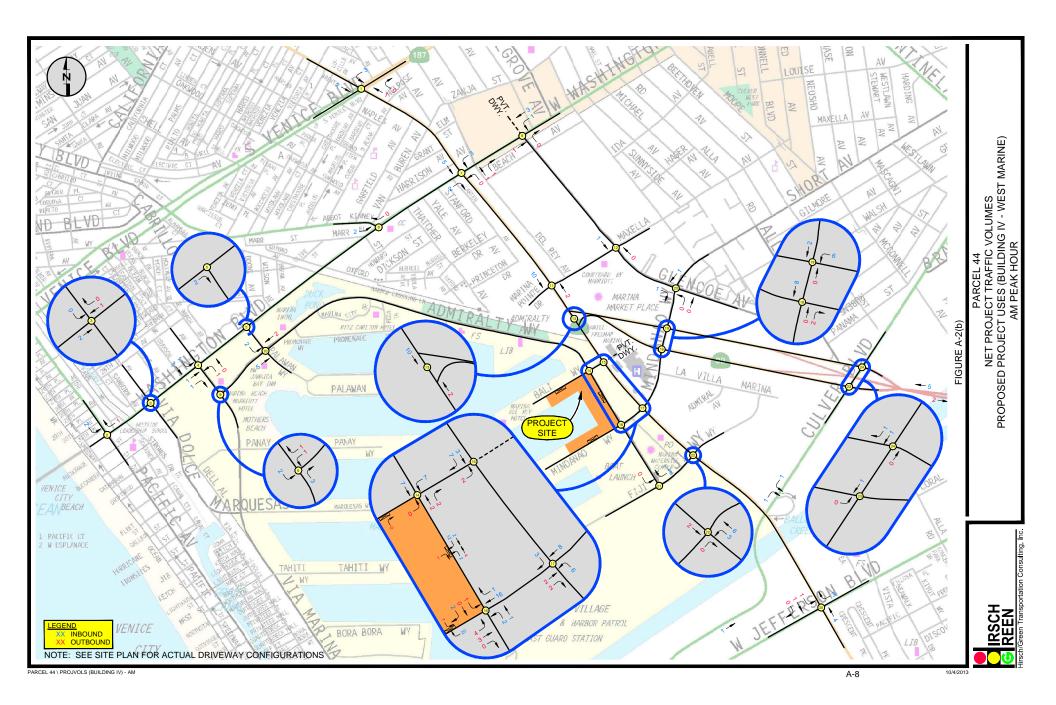


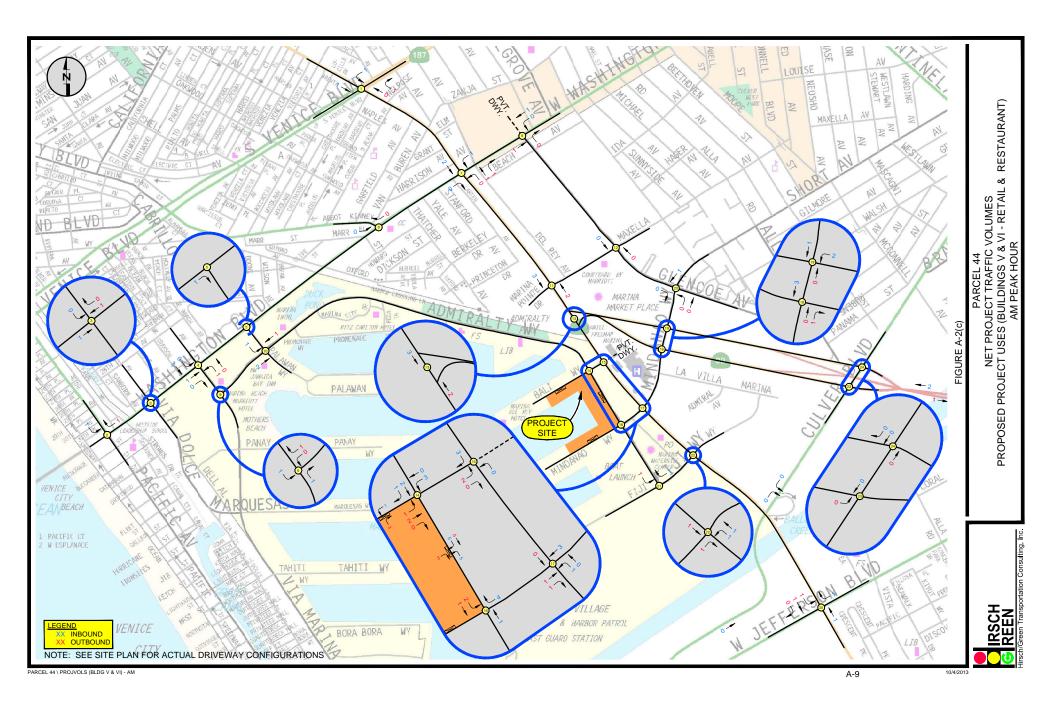
APPENDIX A INDIVIDUAL PROJECT COMPONENT AND EXISTING USES TRIP ASSIGNMENT PERCENTAGES AND AM AND PM PEAK HOUR TRAFFIC VOLUMES

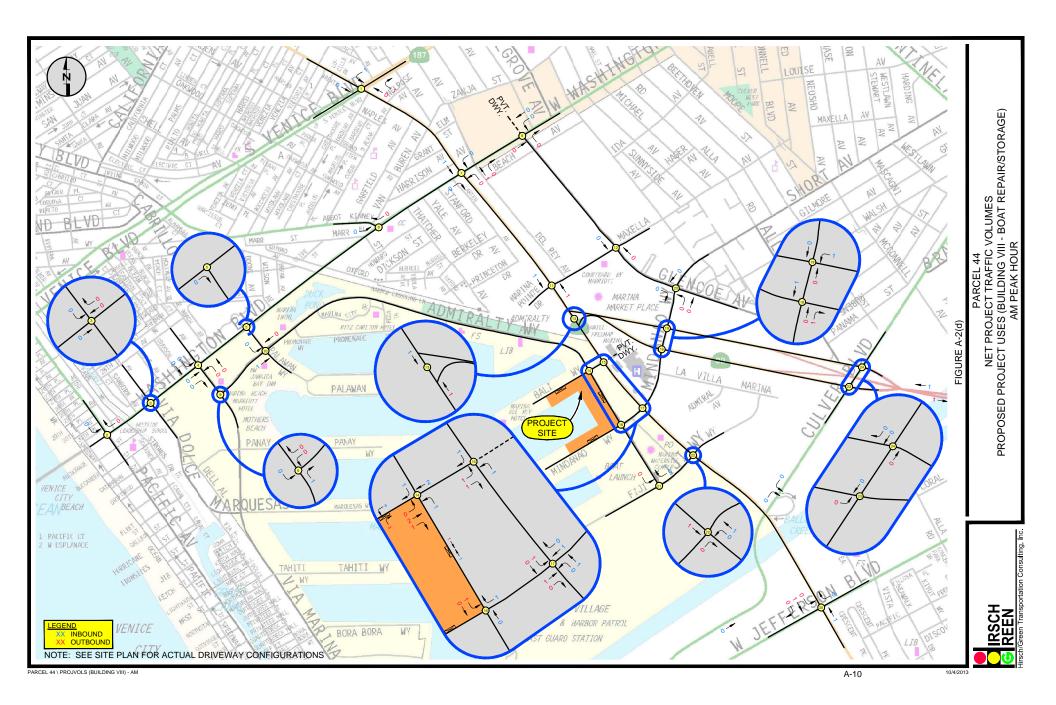


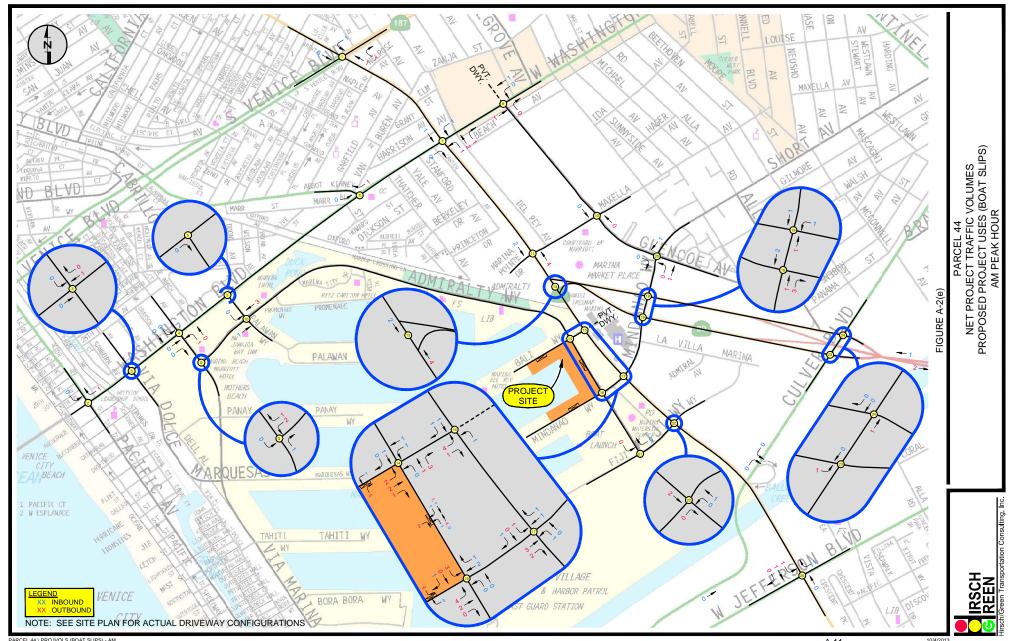


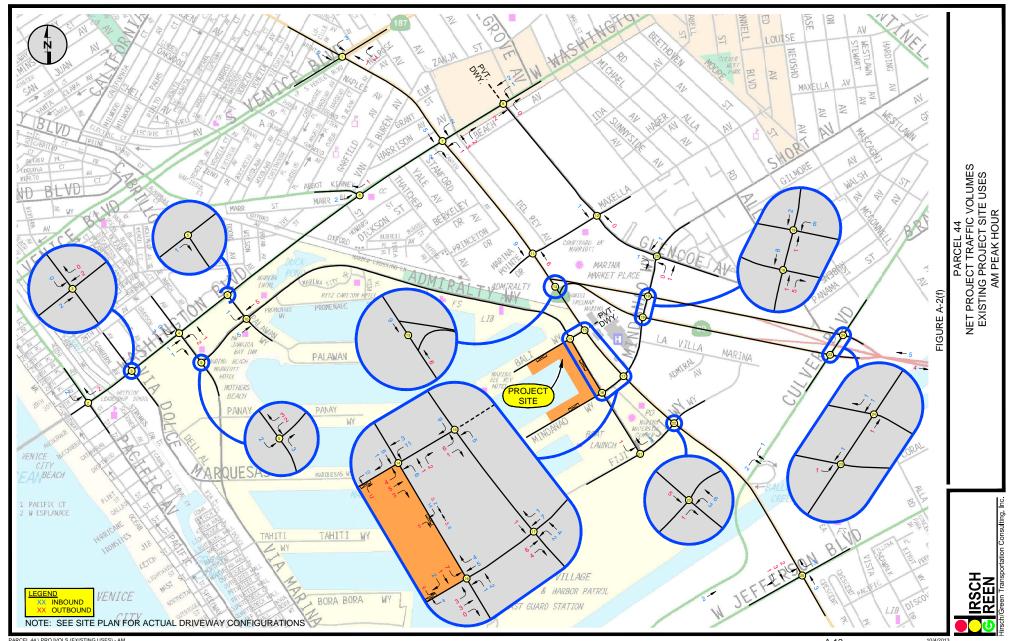




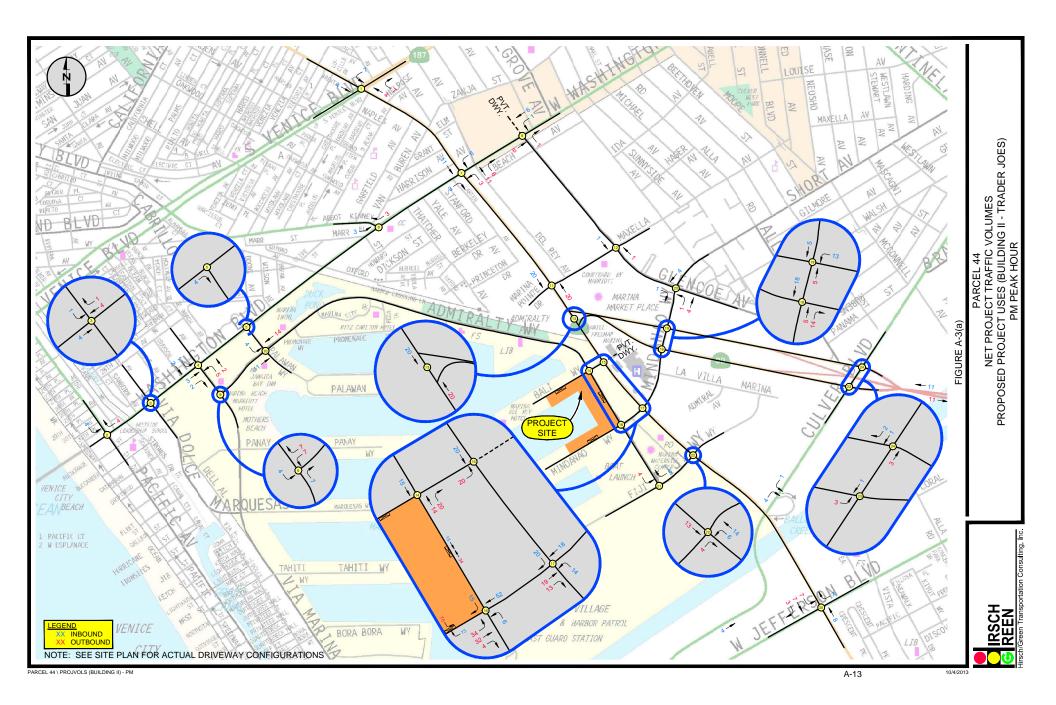


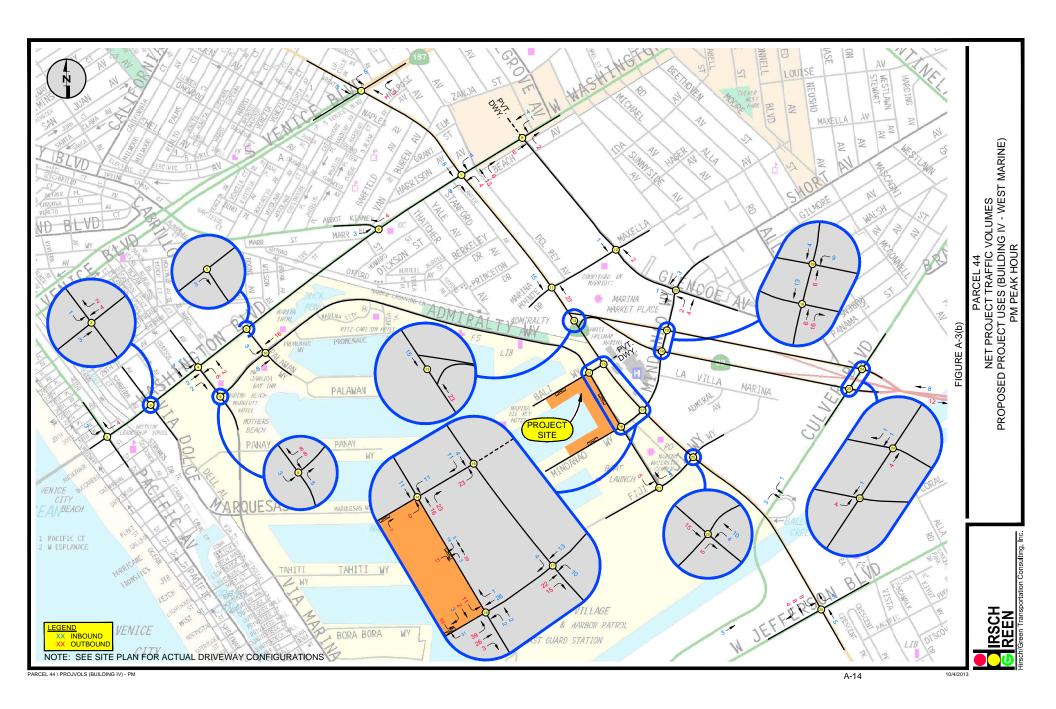


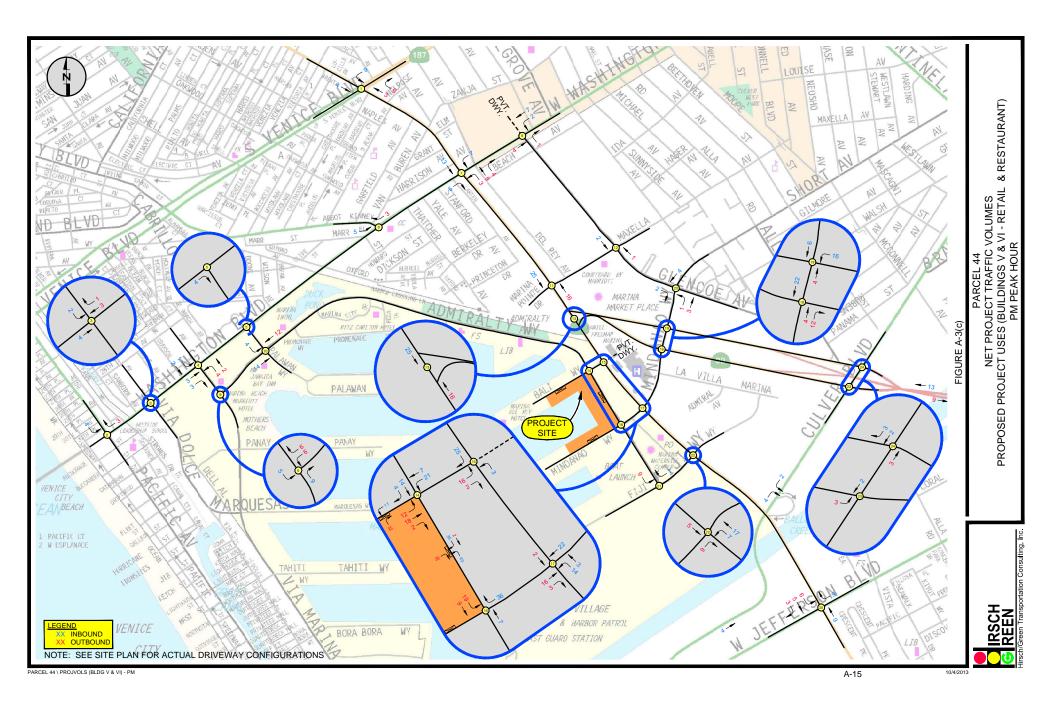


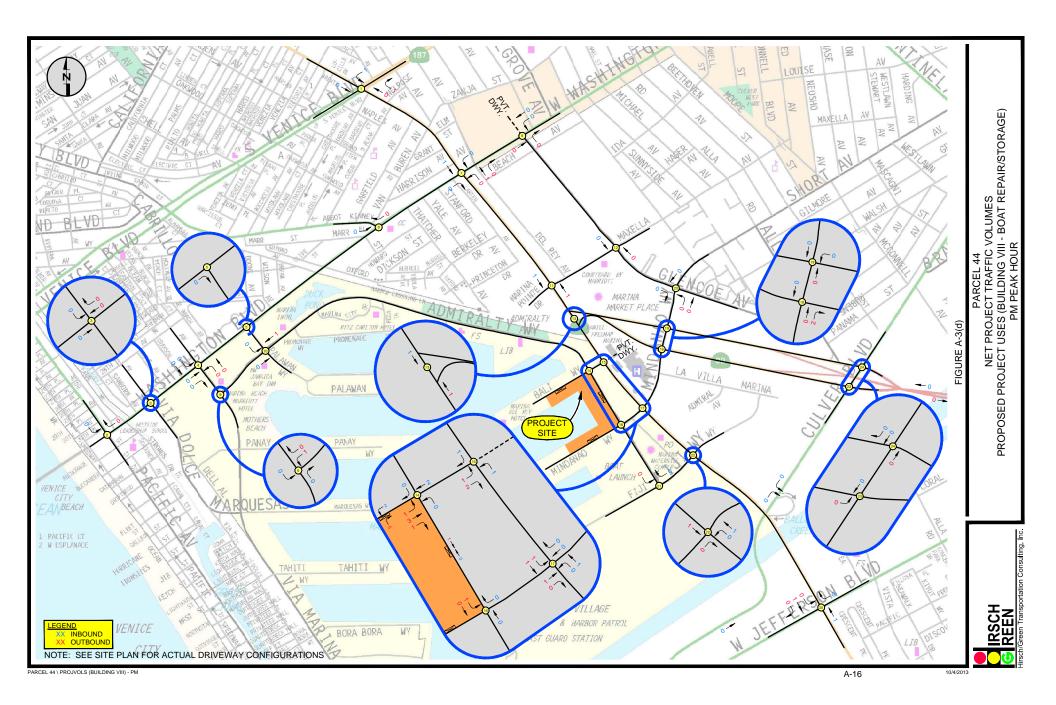


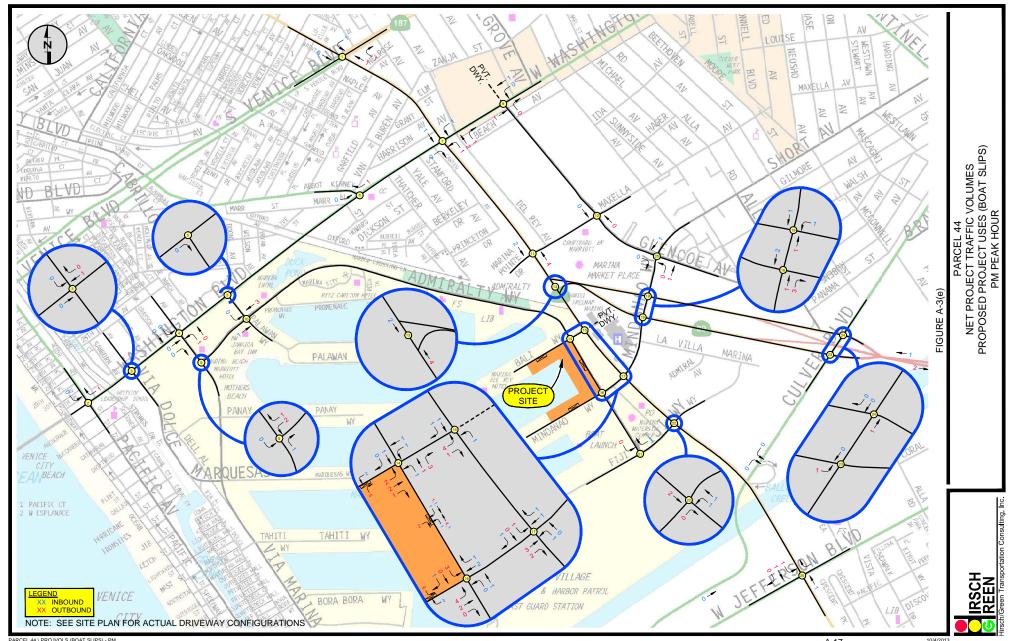


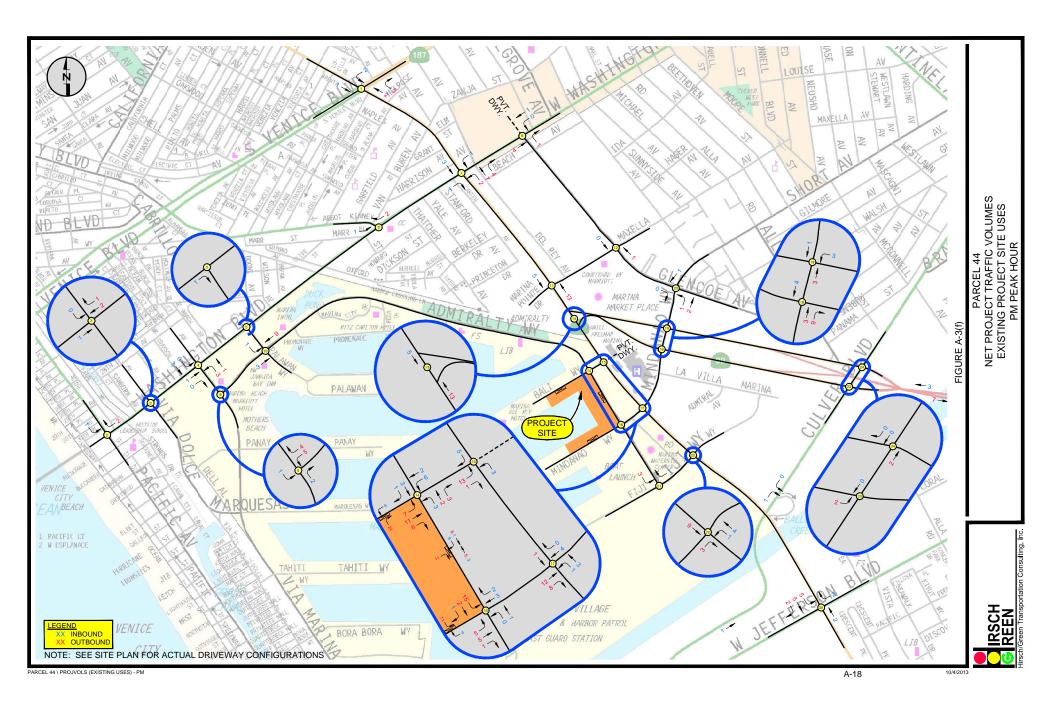


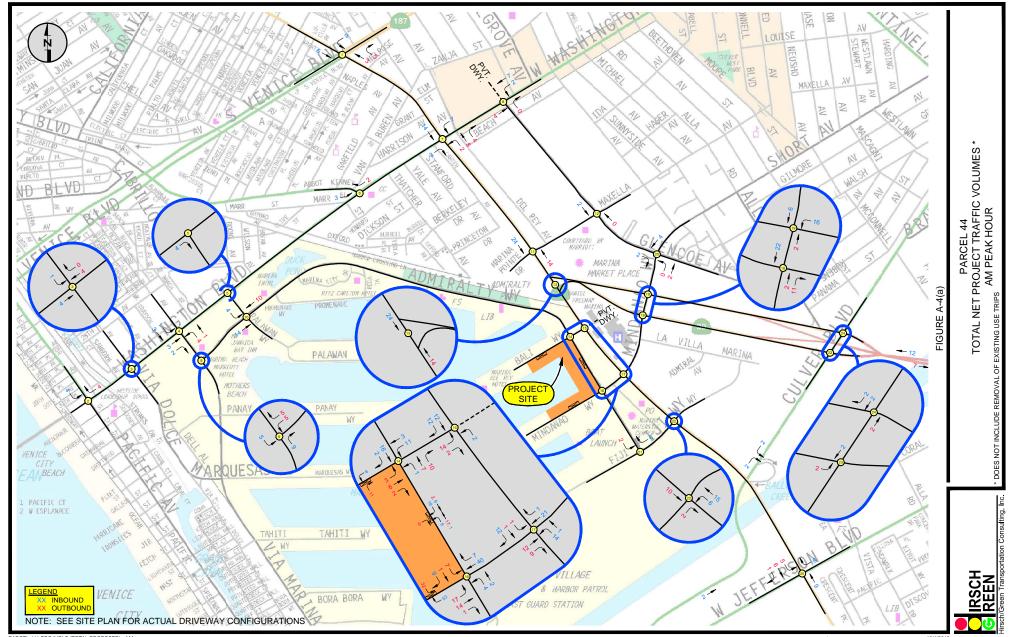


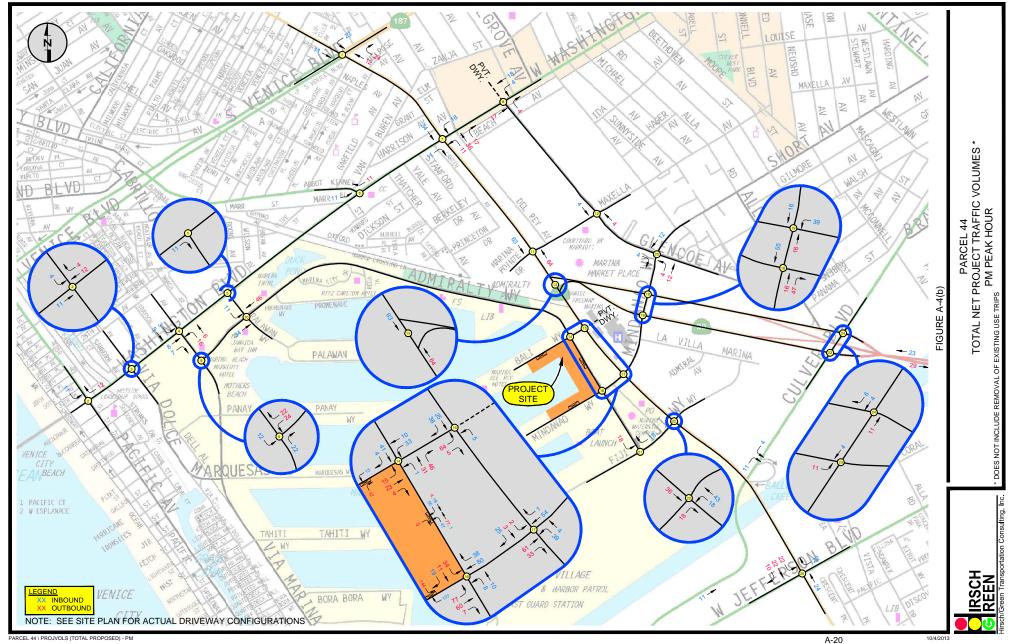











PARCEL 44 \ PROJVOLS (BOAT SLIPS) - PM

A-17

APPENDIX B PROPOSED PARCEL 44 PROJECT SHARED PARKING ANALYSIS

The shared parking evaluations for the proposed project utilize the assumptions and analysis methodologies identified in the 2nd Edition of the Urban Land Institute's *Shared Parking* manual⁶. This document provides parking accumulation profiles (hourly parking use percentages) for a variety of land uses, including the retail (including the supermarket), restaurant, and office uses proposed to occupy the new Parcel 44 project. Note, however, that the ULI data does not include parking accumulation profiles for the project's proposed "community room", "yacht club", "boat slips", or "boat storage" uses. For purposes of this study, the parking accumulation curves for the community room use were estimated based on the anticipated usage of that facility, while the remaining uses (yacht club, boat slips, and boat storage) were assumed to exhibit parking demands similar to retail employee demands. The parking accumulation curves used in this analysis are shown in Table B-1, which is provided at the end of this appendix.

The ULI parking accumulation curves identify the amount of parking typically utilized by each of the various land uses during typical hours of operation (generally between about 6:00 AM and 12:00 midnight) as a percentage of the maximum (100 percent) parking demand for each use. The ULI parking accumulation profiles also distinguish between the parking demands for both visitors/patrons and for employees for the various uses. However, the County's Zoning Code parking ratios intrinsically include parking for both visitors and employees, and as such, provide only a single, total parking requirement ratio. Therefore, again for purposes of this assessment, the County's parking requirement ratios were separated into "visitor/patron" and "employee" parking categories using the ratio between the parking demands for each use identified in the ULI Shared Parking publication (Table 2-2 of that document). Based on these assumptions, the parking demands for each of the various project component uses were estimated, and are shown in Tables B-2(a) and B-2(b) (for weekday and weekend conditions, respectively).

As shown in these tables, the total baseline weekday parking demands for the proposed project (which are used to identify the maximum, 100 percent parking demands for the site) are the same (484 spaces) as identified previously in Table 4 of this report, although the anticipated weekend parking demands are expected to be somewhat lower (447 spaces), due to the reduced use of the proposed project's "office" components. However, the baseline parking calculations shown in Tables B-2(a) and B-2(b) also include adjustments in the parking demands for several of the project's uses (including the proposed general retail, supermarket, restaurant, and office uses) to account for transit utilization by their employees, which will

_

⁶ Shared Parking, Second Edition, Urban Land Institute, Washington, D.C., 2005.

reduce the overall parking demands for the subject uses; these adjustments are considered to be appropriate considering the reductions in vehicular parking requirements allowed by the County associated with the provision of on-site bicycle parking spaces in excess of that otherwise required by the Zoning Code (which include requirements based on proximity of public transit services to the project site), as described earlier in this report. Additionally, slight reductions in the maximum parking demands for the boat slip and boat storage uses were also applied, since it is anticipated that there will be some (albeit, minor) "internal interaction" between these uses and other on-site retail or office uses (including the proposed yacht club). Overall, these transit utilization and/or internal interaction activities are expected to reduce the proposed project's weekday peak parking demand by about 2.7 percent (to about 471 spaces), while the weekend peak project parking demands would be reduced by about 2.9 percent (to a total of approximately 434 spaces). Finally, the ULI parking accumulation curves for each of the various uses were then applied to these adjusted County Zoning Code parking requirements (which as noted earlier, are assumed to represent the maximum parking demand for each use), in order to identify the hourly parking needs for each of the various uses, for both typical weekday and weekend conditions.

It is of note that despite the relatively nominal reductions in the proposed project's baseline parking demand calculations described above, the values shown in Tables B-2(a) and B-2(b) are still considered to be conservative. The ULI Shared Parking methodology also allows for the consideration of seasonal variation in site activity, and its associated effects on the parking demands for various uses. Surveys of the developments included in the ULI publication indicate that different land uses experience variations in activity levels depending on the time of year; for instance, typical retail uses show their peak activity during the late year holiday shopping season; shopping activity is generally reduced during the summer months as compared to the winter holiday season. Conversely, restaurant patronage peaks during the summer months as compared to reduced activity levels during the winter months.

However, in order to provide the most conservative analysis of the project's potential parking needs, and further due to the unique conditions throughout the Southern California region and in Marina del Rey specifically, the seasonal trends identified in the ULI data were not incorporated into this analysis. This conservative assumption was used to account for the year-round moderate weather and the anticipated utilization of the project (and surrounding area) as a tourist destination during the winter months when restaurant and hotel utilizations are typically

less than during the summer. Therefore, the shared parking demand analysis for the project assumed that each of the project's proposed uses would exhibit a 100 percent activity level throughout the year, with no seasonal reductions to their parking utilizations. This methodology thus presents a worst case assessment of potential parking demands for the site.

Further, as briefly noted earlier in this report, the proposed project's overall 484-space vehicular parking supply is divided into several parking areas within the site, to accommodate, to the extent feasible, the parking demands associated with each of the project's individual component uses (or combination of uses within the various buildings) in locations adjacent to or in close proximity to the intended users. The individual parking areas, shown in Figure B-1, include approximately 109 vehicular parking spaces provided in the site's southwestern parking lot ("Parking Area 1"), located on Mindanao Way west of the Marvin Braude Bike Path and which is anticipated to primarily serve Building II (Trader Joe's or similar specialty market), while approximately 164 vehicular parking spaces (including nine of the 34 tandem spaces) are located in the parking area at the southeast corner of the project site ("Parking Area 2"), fronting Admiralty Way between Mindanao Way and the project's new Admiralty Way driveway, and which is expected to primarily serve Buildings IV and V (housing West Marine, all of the proposed office space, including the Marine Administration Offices, approximately one-third of the general retail uses, and one of the proposed restaurants). Approximately 94 vehicular parking spaces (including the remaining 25 tandem spaces) are located in the parking area at the northeast corner of the site, fronting Admiralty Way between the new Admiralty Way driveway and Bali Way, with the final approximately 110 vehicular parking spaces provided in the site's northwestern parking lot along Bali Way (west of the Marvin Braude Bike Path); together, these areas (collectively designated as "Parking Area 3") provide a total of approximately 204 vehicular spaces, and are intended to serve Buildings VI and VIII, which house the remaining retail and restaurant uses (Building VI) as well the proposed yacht club, boat repair, and boat dry/mast-up storage (Building VIII). Additionally, it should be noted that each of the three on-site parking areas described in this paragraph will also be utilized for parking for the 148 boat slips (to be developed under previously-approved CDP No. 5-11-131) included in the proposed redevelopment of the Parcel 44 site.

Locating adequate parking near its associated uses reduces the potential for "overparking" of individual parking lot areas within the project site, thereby reducing on-site traffic congestion as well as minimizing the walking distances for project patrons between their parking space and

their on-site destination. Therefore, this shared parking analysis was expanded to evaluate not only the anticipated total parking demand for the proposed project, but also the adequacy of each of these individual on-site parking areas in meeting the anticipated parking demands of the anticipated individual component uses, as discussed later in this appendix, and as such, the baseline parking demands for the individual project components and/or groups of uses within the various project buildings is also identified in Tables B-2(a) and B-2(b).

Finally, in order to determine the hourly parking utilizations associated with each of the project's proposed individual uses or groups of uses within each of the new on-site buildings, and to evaluate the effectiveness of the shared parking activity on the overall parking demands for the proposed project (including each of the three individual on-site parking areas described earlier), the hourly parking accumulation curves shown in Table B-1 were applied to the corresponding (adjusted) parking demand values shown in Tables B-2(a) and B-2(b). The results of the shared parking analysis are shown for both the typical weekday and weekend conditions in Table B-3.

As indicated in Table B-3, during typical weekday activity at the site, and considering the effects of shared parking on the overall project parking demands, the proposed project is anticipated to exhibit a maximum parking demand of approximately 457 total vehicular spaces, between approximately 1:00 and 2:00 PM, or about 20 spaces fewer than are proposed to be provided. As also shown in Table B-3, during this weekday peak parking demand period, Parking Area 1 is expected to provide adequate parking to meet its anticipated individual parking demand of approximately 92 spaces, which is about 17 spaces less than the 109 spaces provided. Conversely, Parking Area 2 could exhibit a parking shortage of approximately 30 spaces during the weekday peak demand time, with a total of approximately 194 spaces needed compared to the 164 spaces provided. However, as further shown in Table B-1, Parking Area 3 will provide a surplus of approximately 33 vehicular parking spaces, which alone is sufficient to accommodate the 30-space parking deficiency in Parking Area 2 during the peak demand period, although it should also be noted that the 17 surplus parking spaces in Parking Area 1, as described above, can also be used to accommodate some of the Parking Area 2 demands.

In fact, this situation is true for each of the time periods shown in Table B-3 (approximately 10:00 AM to 7:00 PM) during which individual Parking Area 2 could exhibit some level of parking "shortage". It is important to note that the individual parking areas described in this shared parking evaluation, and particularly those along the site's Admiralty Way frontage, although based on the most likely division of parking demands associated with the nearest buildings or

individual uses, are in fact, arbitrary distinctions that do not reflect any actual physical obstacles that would prevent patrons parked in one of these individual areas from walking to nearby uses assumed to be served by either of the other identified on-site parking areas. As such, any "excess" parking demands generated from the assumed Parking Area 2 uses could easily park within the two sections of either Parking Area 1 (along Mindanao Way) or Parking Area 2 (at the northeast corner of the project site, or along Bali Way) without experiencing any meaningful reduction in convenience, especially since Building IV (housing West Marine, and which is expected to produce the majority of the Parking Area 2 demands) can be easily accessed by drivers using Parking Area 1 via the new pedestrian promenade along Basin G, while both Building V (assumed in the parking demands for Parking Area 2) and Building VI (assumed to be served by Parking Area 3) each exhibit convenient pedestrian access from the Bali Way parking section of Parking Area 3 also via the new pedestrian promenade along Basin G. Therefore, the potential parking "deficiency" noted for Parking Area 2 during the peak parking demand periods are not expected to result in any significant on-site parking impacts, nor do they reflect any anticipated overall inadequacy in the project's proposed parking supply.

Further, as described earlier in this report, approximately 34 of the project's proposed total of approximately 477 on-site vehicular parking spaces, located within both Parking Area 2 and Parking Area 3, are configured as tandem spaces, leaving approximately 443 "self-park" or "direct access" spaces, or about 14 spaces fewer than the anticipated peak weekday parking demand of approximately 457 spaces shown in Table B-1. As such, during this time period, and in fact, beginning at approximately 12:00 noon and continuing to approximately 2:00 PM, the anticipated parking demand for the proposed project will exceed 443 spaces, and as such, up to about 14 of the 34 tandem spaces will be needed in order to meet these parking needs (although up to approximately 20 of the tandem spaces will still be available during these times). Therefore, tandem spaces would only be needed for a few hours during the typical weekday mid-day period, and as such, it is recommended that any valet or attendant assisted parking required for the proposed project be limited to the peak parking demand time periods between approximately 11:00 AM to 3:00 PM; since as also shown in Table B-3, the project's maximum weekday parking demands for the hours preceding and following the mid-day peak activity levels are not expected to exceed the available 443 self-park spaces (although a "secondary" parking demand peak of approximately 433 spaces occurs between about 6:00 and 7:00 PM), the proposed project is expected to be able to accommodate its parking demands during these times without the use of any of the tandem parking spaces.

Finally, the project's peak parking demands during typical weekend activity is expected to be considerably less than on weekdays, again due to the reduction in parking demand associated with the proposed office uses. As also shown in Table B-3, on typical weekends, the maximum parking demand for the proposed project is expected to be approximately 398 spaces (between approximately 6:00 and 7:00 PM, and therefore, the proposed project's anticipated weekend parking demands can be accommodated without the use of any of the 34 tandem spaces. As a result, no requirement for valet or attendant assisted parking is warranted during weekends.

Therefore, based on the shared parking analyses summarized in Table B-3, the proposed project will provide more than adequate parking to meet its expected maximum parking needs at all times of the day throughout the year, and as such, no parking shortages or "overflow" parking into adjacent commercial or public parking areas or on nearby streets due to on-site parking shortages is anticipated, and no significant parking-related impacts are expected. Additionally, with the exception of the peak demand period on weekdays between approximately 11:00 AM and 3:00 PM, the proposed tandem spaces, located along the site's Admiralty Way frontage or on the north side of Building IV (West Marine), can be "blocked off" during normal operations of the project's tenants, and no valet or attendant assist parking operations will typically be required outside of this approximately four-hour period. As such, when not needed to accommodate the peak parking demands of the project, the tandem parking spaces could be utilized as public parking for special events (such as concerts at nearby Burton Chace Park, or during the annual July 4th fireworks show) occurring elsewhere in the Marina.

Table B-1 Parcel 44 Project Shared Parking Demand Calculations

ULI Shared Parking Utilization Curves
Fine/Casual Dining Restaurant

Estimated Parking Utilization Curves (uses not in ULI data)

					0	marca i aikii	g Cillizatio	ii Oui vos					LJU	matea i aiking	othization ou	1 403
	Shopp	ing Center (T	yp) - includ	les market	F	ine/Casual Dir	ning Resta	urant		Off	fice			(uses not in	n ULI data)	
Time	We	ekday	We	eekend	We	ekday	We	eekend	We	eekday	We	eekend	Commur	nity Room	Boat S	Slips ^[1]
of Day	Visitor	Employee	Visitor	Employee	Visitor	Employee	Visitor	Employee	Visitor	Employee	Visitor	Employee	Weekday	Weekend	Weekday	Weekend
6:00 AM	1%	10%	1%	10%	0%	0%	0%	0%	0%	3%	0%	0%	0%	0%	10%	10%
7:00 AM	5%	15%	5%	15%	0%	20%	0%	20%	1%	30%	20%	20%	10%	15%	15%	15%
8:00 AM	15%	40%	10%	40%	0%	50%	0%	30%	20%	75%	60%	60%	20%	30%	40%	40%
9:00 AM	35%	75%	30%	75%	0%	75%	0%	60%	60%	95%	80%	80%	50%	50%	75%	75%
10:00 AM	65%	85%	50%	85%	15%	90%	0%	75%	100%	100%	90%	90%	70%	75%	85%	85%
11:00 AM	85%	95%	65%	95%	40%	90%	15%	75%	45%	100%	100%	100%	80%	85%	95%	95%
12:00 PM	95%	100%	80%	100%	75%	90%	50%	75%	15%	90%	90%	90%	95%	100%	100%	100%
1:00 PM	100%	100%	90%	100%	75%	90%	55%	75%	45%	90%	80%	80%	95%	100%	100%	100%
2:00 PM	95%	100%	100%	100%	65%	90%	45%	75%	100%	100%	60%	60%	80%	100%	100%	100%
3:00 PM	90%	100%	100%	100%	40%	75%	45%	75%	45%	100%	40%	40%	70%	100%	100%	100%
4:00 PM	90%	100%	95%	100%	50%	75%	45%	75%	15%	90%	20%	20%	80%	100%	100%	100%
5:00 PM	95%	95%	90%	95%	75%	100%	60%	100%	10%	50%	10%	10%	90%	100%	95%	95%
6:00 PM	95%	95%	80%	85%	95%	100%	90%	100%	5%	25%	5%	5%	100%	100%	85%	95%
7:00 PM	95%	95%	75%	80%	100%	100%	95%	100%	2%	10%	0%	0%	100%	60%	80%	95%
8:00 PM	80%	90%	65%	75%	100%	100%	100%	100%	1%	7%	0%	0%	100%	30%	75%	90%
9:00 PM	50%	75%	50%	65%	100%	100%	90%	100%	0%	3%	0%	0%	70%	10%	65%	75%
10:00 PM	30%	40%	35%	45%	95%	100%	90%	100%	0%	1%	0%	0%	25%	0%	45%	40%
11:00 PM	10%	15%	15%	15%	75%	85%	90%	85%	0%	0%	0%	0%	0%	0%	15%	15%
12:00 AM	0%	0%	0%	0%	25%	35%	50%	50%	0%	0%	0%	0%	0%	0%	0%	0%

Note:

^[1] Utilization curves also used for "Yacht Club" and "Boat Storage" facilities

Table B-2(a) Parcel 44 Project - Marina del Rey Shared Parking Demand Calculations Weekday Conditions

oposed Use/Size	LACo Parking Requirement Ratio	Spaces Required	Internal Capture Factor	Transit Use Factor	"Walk In" Factor	Monthly Use Factor	Adjusted Parking Demand
Parking Area 1 - Buildings I & II							
386 sq. ft. Boater Bathroom	n/a (ancillary use)	0	0%	0%	0%	100%	0
13,625 sq. ft. Trader Joe's							
Visitor	3.22 / 1,000 sq. ft.	44	0%	0%	0%	100%	44
Employee	0.78 / 1,000 sq. ft.	11	0%	10%	0%	100%	10
	4.00 / 1,000 sq. ft.	55					54
Parking Area 2 - Buildings III, IV & \	<u></u>						
386 sq. ft. Boater Bathroom	n/a (ancillary use)	0	0%	0%	0%	100%	0
29,295 sq. ft. Retail (total) [1]							
Visitor	3.22 / 1,000 sq. ft.	94	0%	0%	0%	100%	94
Employee	0.78 / 1,000 sq. ft.	23	0%	10%	0%	100%	21
	4.00 / 1,000 sq. ft.	117					115
16,588 sq. ft. Offices (total) [2]							
Visitor	0.20 / 1,000 sq. ft.	3	0%	0%	0%	100%	3
Employee	2.30 / 1,000 sq. ft.	38	0%	5%	0%	100%	36
	2.50 / 1,000 sq. ft.	41					39
840 sq. ft. Community Room	4.00 / 1,000 sq. ft.	3	0%	0%	0%	100%	3
2,355 sq. ft. "Greenleaf" Restaur	ant (67 indoor and 15 outdoor	seats)					
Visitor	1.00 / 3 seats	27	0%	0%	0%	100%	27
Employee	1.00 / 600 sq. ft. *	2	0%	10%	0%	100%	2
		29					29
542 sq. ft. Boater Laundry	n/a (ancillary use)	0	0%	0%	0%	100%	0
Parking Area 3 - Buildings VI, VII &	<u>VIII</u>						
10,200 sq. ft. Retail (total) [3]							
Visitor	3.22 / 1,000 sq. ft.	33	0%	0%	0%	100%	33
Employee	0.78 / 1,000 sq. ft.	8	0%	10%	0%	100%	7
	4.00 / 1,000 sq. ft.	41					40
7,500 sq. ft. "Tin Roof" Restaura	nt (200 indoor and 100 outdoo	r seats)					
Visitor	1.00 / 3 seats	100	0%	0%	0%	100%	100
Employee	1.00 / 600 sq. ft. *	8	0%	10%	0%	100%	7
		108					107
1,150 sq. ft. Yacht Club	4.00 / 1,000 sq. ft.	5	0%	0%	0%	100%	5
69 -boat Boat Storage	0.30 / boat space	21	10%	0%	0%	100%	19
386 sq. ft. Boater Bathroom	n/a (ancillary use)	0	0%	0%	0%	100%	0
General On-Site Parking (spread th	roughout Parking Areas 1, 2	, and 3)					
148 -boat Boat Slips	0.60 / boat space	89	5%	0%	0%	100%	85
83,253 sq. ft. Total Project		509	Total	Baseline Pa	rking Require	ments	496
Less Parking Reduction for Provision	of Bicycle Parking	(25)					(25)

Notes:

^[1] Includes 25,000 sq. ft. West Marine; 3,795 sq. ft. general retail (Space "Q"); 500 sq. ft. "Greenleaf" market (Space Q-2)

^[2] Includes 2,285 sq. ft. Marine Admin. Offices (Space N-2); 5,133 sq. ft. Boat Brokers Offices (Spaces L and N-3); 9,170 sq. ft. General Offices (Spaces N-1, N-4, and N-5)

Table B-2(b) Parcel 44 Project - Marina del Rey Shared Parking Demand Calculations Weekend Conditions

pposed Use/Size	LACo Parking Requirement Ratio	Spaces Required	Internal Capture Factor	Transit Use Factor	"Walk In" Factor	Monthly Use Factor	Adjuste Parkin Demar
Parking Area 1 - Buildings I & II	-						
386 sq. ft. Boater Bathroom	n/a (ancillary use)	0	0%	0%	0%	100%	0
13,625 sq. ft. Trader Joe's							
Visitor	3.20 / 1,000 sq. ft.	44	0%	0%	0%	100%	44
Employee	0.80 / 1,000 sq. ft.	11	0%	10%	0%	100%	10
	4.00 / 1,000 sq. ft.	55					54
Parking Area 2 - Buildings III, IV & V	- -						
386 sq. ft. Boater Bathroom	n/a (ancillary use)	0	0%	0%	0%	100%	0
29,295 sq. ft. Retail (total) [1]							
Visitor	3.20 / 1,000 sq. ft.	94	0%	0%	0%	100%	94
Employee	0.80 / 1,000 sq. ft.	23	0%	10%	0%	100%	21
	4.00 / 1,000 sq. ft.	117					115
16,588 sq. ft. Offices (total) [2]							
Visitor	0.02 / 1,000 sq. ft.	0	0%	0%	5%	100%	0
Employee	0.23 / 1,000 sq. ft.	4	0%	5%	0%	100%	4
	0.25 / 1,000 sq. ft.	4					4
840 sq. ft. Community Room	4.00 / 1,000 sq. ft.	3	0%	0%	0%	100%	3
2,355 sq. ft. "Greenleaf" Restaura	ant (67 indoor and 15 outdoor	seats)					
Visitor	1.00 / 3 seats	27	0%	0%	0%	100%	27
Employee	1.00 / 600 sq. ft. *	2	0%	10%	0%	100%	2
		29					29
542 sq. ft. Boater Laundry	n/a (ancillary use)	0	0%	0%	0%	100%	0
Parking Area 3 - Buildings VI, VII & V	<u>VIII</u>						
10,200 sq. ft. Retail (total) [3]							
Visitor	3.20 / 1,000 sq. ft.	33	0%	0%	5%	100%	31
Employee	0.80 / 1,000 sq. ft.	8	0%	10%	0%	100%	7
	4.00 / 1,000 sq. ft.	41					38
7,500 sq. ft. "Tin Roof" Restaurar	nt (200 indoor and 100 outdoo	r seats)					
Visitor	1.00 / 3 seats	100	0%	0%	0%	100%	100
Employee	1.00 / 600 sq. ft. *	8	0%	10%	0%	100%	7
		108					107
1,150 sq. ft. Yacht Club	4.00 / 1,000 sq. ft.	5	0%	0%	0%	100%	5
69 -boat Boat Storage	0.30 / boat space	21	10%	0%	0%	100%	19
386 sq. ft. Boater Bathroom	n/a (ancillary use)	0	0%	0%	0%	100%	0
General On-Site Parking (spread thr	oughout Parking Areas 1, 2	, and 3)					
148 -boat Boat Slips	0.60 / boat space	89	5%	0%	0%	100%	85
83,253 sq. ft. Total Project		472			rking Require		459
Less Parking Reduction for Provision o	of Ricycle Parking	(25)			.		
Less raiking Neuuclion for Provision (n bicycle raikilly	(∠5)					(25)

Notes

^[1] Includes 25,000 sq. ft. West Marine; 3,795 sq. ft. general retail (Space "Q"); 500 sq. ft. "Greenleaf" market (Space Q-2)

^[2] Includes 2,285 sq. ft. Marine Admin. Offices (Space N-2); 5,133 sq. ft. Boat Brokers Offices (Spaces L and N-3); 9,170 sq. ft. General Offices (Spaces N-1, N-4, and N-5)

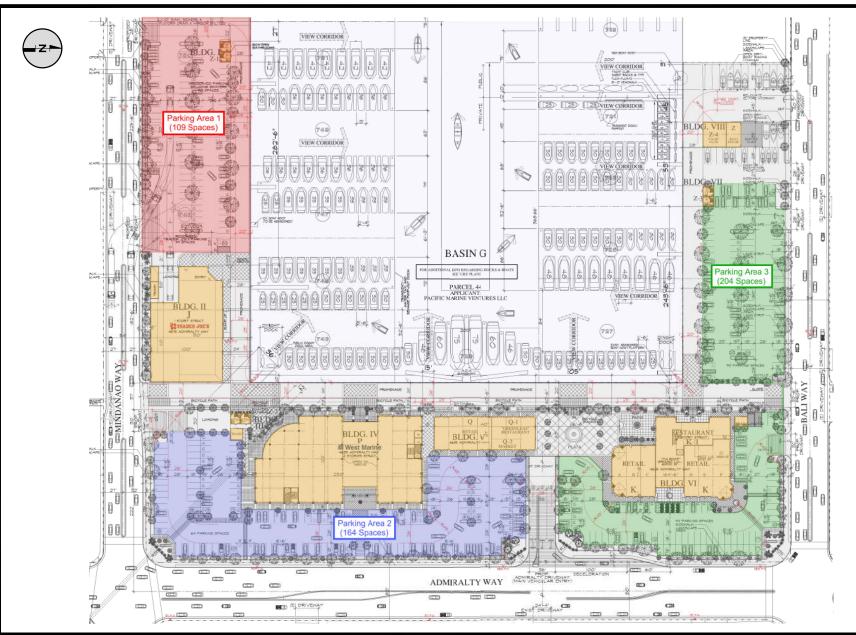


Table B-3 Parcel 44 Project Shared Parking Demand Calculations

Parking Demand Calculations - Weekday Conditions

																Hourl	y Parki	ing Demands	by Proje	ct Compor	nent														Parce	el 44 Projec	ct Site
			Pa	rking	Area 1	(Building	sl≪)							Pa	arking	Area 2 (Bui	ildings	III, IV & V)									Parking	Area 3	(Buildi	ings VI, V	II & VIII)				Overal	Parking D	emand
					(45%)	Total	Area 1									"Greenleaf			(25%)	Total	Area 2						"Tin Roof"				(30%)	Total	Area 3		Total	Total	Total
Hour Beginning		Trader		_	Boat Slips	Parking Demand	Parking Provided		Visitor	Retail Employe	e Total	Visitor	Office Employee	Total	Visitor	Restaurant r Employee	Total	Community Room	Boat	Parking Demand	Parking Provided	Surplus/ (Deficit)	Visitor	Retail Employee	Total		Restaurant Employee	_	Yacht Club	Boat Storage	Boat	Parking Demand	Parking Provided	Surplus/ (Deficit)	Parking Demand	Spaces Provided	Surplus (Deficit)
6:00 AM	0	1	<u> </u>	1	4	5	109	104	1	- 2		0		1	0		0		2	6	164	158	0	1	1	0	0	0	1	2	3	7	204	197	18	477	459
7:00 AM	2	2		4	6	10	103	99	5	3	8	0	11	11	0	0	0	ŏ	3	22	104	142	2	1	3	0	1	1	4	3	4	12	204	192	44		433
8:00 AM	7	- 4		11	15	26		83	14	8	22	1	27	28	0	1	1	1	R	60		104	5	3	8	0	1	4	,	8	10	32		172	118		359
9:00 AM	15	8		23	29	52		57	33	16	49	2	34	36	0	2	,	,	16	105		59	12	5	17	0	5	5	4	14	20	60		144	217		260
10:00 AM	29	9		38	32	70		39	61	18	79	3	36	39	4	2	6	2	18	144		20	21	6	27	15	6	21	4	16	22	90		114	304		173
11:00 AM	37	10)	47	36	83		26	80	20	100	1	36	37	11	2	13	2	20	172		(8)	28	7	35	40	6	46	5	18	25	129		75	384		93
12:00 PM	42	10)	52	38	90		19	89	21	110	0	32	32	20	2	22	3	21	188		(24)	31	7	38	75	6	81	5	19	26	169		35	447		30
1:00 PM	44	10)	54	38	92		17	94	21	115	1	32	33	20	2	22	3	21	194		(30)	33	7	40	75	6	81	5	19	26	171		33	457 *		20
2:00 PM	42	10)	52	38	90		19	89	21	110	3	36	39	18	2	20	2	21	192		(28)	31	7	38	65	6	71	5	19	26	159		45	441		36
3:00 PM	40	10)	50	38	88		21	85	21	106	1	36	37	11	2	13	2	21	179		(15)	30	7	37	40	5	45	5	19	26	132		72	399		78
4:00 PM	40	10)	50	38	88		21	85	21	106	0	32	32	14	2	16	2	21	177		(13)	30	7	37	50	5	55	5	19	26	142		62	407		70
5:00 PM	42	10)	52	36	88		21	89	20	109	0	18	18	20	2	22	3	20	172		(8)	31	7	38	75	7	82	5	18	25	168		36	428		49
6:00 PM	42	10)	52	32	84		25	89	20	109	0	9	9	26	2	28	3	18	167		(3)	31	7	38	95	7	102	4	16	22	182		22	433		44
7:00 PM	42	10)	52	30	82		27	89	20	109	0	4	4	27	2	29	3	17	162		2	31	7	38	100	7	107	4	15	21	185		19	429		48
8:00 PM	35	9		44	29	73		36	75	19	94	0	3	3	27	2	29	3	16	145		19	26	6	32	100	7	107	4	14	20	177		27	395		82
9:00 PM	22	8		30	25	55		54	47	16	63	0	1	1	27	2	29	2	14	109		55	17	5	22	100	7	107	3	12	17	161		43	325		152
10:00 PM	13	4		17	17	34		75	28	8	36	0	0	0	26	2	28	1	9	74		90	10	3	13	95	7	102	2	9	12	138		66	246		231
11:00 PM	4	2		6	6	12		97	9	3	12	0	0	0	20	2	22	0	3	37		127	3	1	4	75	6	81	1	3	4	93		111	142		335
12:00 AM	0	0		0	0	0		109	0	0	0	0	0	0	7	1	8	0	0	8		156	0	0	0	25	2	27	0	0	0	27		177	35		442

Parking Demand Calculations - Weekend Conditions

	Hourly Parking Demands by Project Component Parking Area 1 (Buildings I & II) Parking Area 2 (Buildings III, IV & V) Parking Area 3 (Buildings VI, VII & VIII)															Parc	el 44 Projec	t Site																		
			Parki	ng Area	1 (Building	s I & II)							Par	king A	Area 2 (Bu	ildings	III, IV & V)									Parking	g Area	3 (Build	lings VI, V	/II & VIII)			Overal	I Parking D	emand
Hour	_	rader Jo	o'e	(45%) Boat	Total Parking	Area 1	Surplus/		Retail			Office			Greenleaf Restauran		Community	(25%) Boat	Total Parking	Area 2 Parking	Surplus/		Retail			"Tin Roof Restauran		Yacht	Boat	(30%) Boat	Total Parking	Area 3	Surplus/	Total Parking	Total Spaces	Total Surplus/
Beginning	_	Employe		-	Demand	Provided		Visitor	- rioiun	Total	Visitor	Employee	Total			Total	Room	Slips	Demand	Provided		Visitor		Total		Employee			Storage		Demand	Provided	(Deficit)	Demand	Provided	(Deficit)
6:00 AM	0	1	1	4	5	109	104	1	2	3	0	0	0	0	0	0	0	2	5	164	159	0	1	1	0	0	0	1	2	3	7	204	197	17	477	460
7:00 AM	2	2	4	6	10		99	5	3	8	0	1	1	0	0	0	0	3	12		152	2	1	3	0	1	1	1	3	4	12		192	34		443
8:00 AM	4	4	8	15	23		86	9	8	17	0	2	2	0	1	1	1	8	29		135	3	3	6	0	2	2	2	8	10	28		176	80		397
9:00 AM	13	8	21	29	50		59	28	16	44	0	3	3	0	1	1	2	16	66		98	9	5	14	0	4	4	4	14	20	56		148	172		305
10:00 AM	22	9	31	32	63		46	47	18	65	0	4	4	0	2	2	2	18	91		73	16	6	22	0	5	5	4	16	22	69		135	223		254
11:00 AM	29	10	39	36	75		34	61	20	81	0	4	4	4	2	6	3	20	114		50	20	7	27	15	5	20	5	18	25	95		109	284		193
12:00 PM	35	10	45	38	83		26	75	21	96	0	4	4	14	2	16	3	21	140		24	25	7	32	50	5	55	5	19	26	137		67	360		117
1:00 PM	40	10	50	38	88		21	85	21	106	0	3	3	15	2	17	3	21	150		14	28	7	35	55	5	60	5	19	26	145		59	383		94
2:00 PM	44	10	54	38	92		17	94	21	115	0	2	2	12	2	14	3	21	155		9	31	7	38	45	5	50	5	19	26	138		66	385		92
3:00 PM	44	10	54	38	92		17	94	21	115	0	2	2	12	2	14	3	21	155		9	31	7	38	45	5	50	5	19	26	138		66	385		92
4:00 PM	42	10	52	38	90		19	89	21	110	0	1	1	12	2	14	3	21	149		15	29	7	36	45	5	50	5	19	26	136		68	375		102
5:00 PM	40	10	50	36	86		23	85	20	105	0	0	0	16	2	18	3	20	146		18	28	7	35	60	7	67	5	18	25	150		54	382		95
6:00 PM	35	9	44	36	80		29	75	18	93	0	0	0	24	2	26	3	20	142		22	25	6	31	90	7	97	5	18	25	176		28	398 *		79
7:00 PM	33	8	41	36	77		32	71	17	88	0	0	0	26	2	28	2	20	138		26	23	6	29	95	7	102	5	18	25	179		25	394		83
8:00 PM	29	8	37	34	71		38	61	16	77	0	0	0	27	2	29	1	19	126		38	20	5	25	100	7	107	5	17	23	177		27	374		103
9:00 PM	22	7	29	29	58		51	47	14	61	0	0	0	24	2	26	0	16	103		61	16	5	21	90	7	97	4	14	20	156		48	317		160
10:00 PM	15	5	20	15	35		74	33	9	42	0	0	0	24	2	26	0	8	76		88	11	3	14	90	7	97	2	8	10	131		73	242		235
11:00 PM	7	2	9	6	15		94	14	3	17	0	0	0	24	2	26	0	3	46		118	5	1	6	90	6	96	1	3	4	110		94	171		306
12:00 AM	0	0	0	0	0		109	0	0	0	0	0	0	14	1	15	0	0	15		149	0	0	0	50	4	54	0	0	0	54		150	69		408

^{*} Indicates peak weekday parking demand

Note:

* Indicates peak weekend parking demand

APPENDIX C

PROJECT ADMIRALTY WAY DRIVEWAY "GAP" STUDY (EXISTING CONDITIONS)

AND

FUTURE (2020) SYNCHRO ANALYSIS OF PROJECT ADMIRALTY WAY DRIVEWAY (INCLUDING PROGRAMMED LUP IMPROVEMENTS TO INSTALL DUAL SOUTHBOUND LEFT-TURN LANES ON ADMIRALTY WAY AT BOTH BALI WAY AND MINDANAO WAY)

In order to provide additional information regarding the potential operations of the proposed project's Admiralty Way driveway, including any access and/or capacity constraints resulting from existing and/or forecast future traffic volumes and congestion along Admiralty Way or at the site-adjacent intersections of Admiralty Way and Bali Way, and Admiralty Way and Mindanao Way, a detailed examination of the existing traffic flows along Admiralty Way was conducted. This supplemental analysis was used to determine whether northbound left-turn moves into this proposed new project driveway would be possible during the peak commute traffic periods, and if so, whether capacity constraints do or will exist that would limit the amount of traffic entering the driveway during the AM or PM peak commute traffic periods. This examination utilized analysis assumptions and methodologies described in the current Highway Capacity Manual ("HCM"), published by the Transportation Research Board.

The HCM identifies minimum times for "critical gaps" in traffic flows along a "major street" (in this case, Admiralty Way) that will allow an approaching vehicle to safely and comfortably make a left turn across the major street traffic at an unsignalized intersection, as will be necessary at the proposed new northbound left-turn pocket on Admiralty Way in order to access the project's proposed new driveway along that frontage. Critical gap times for such moves, identified in the HCM as "one-stage" left turns (where the subject vehicle makes a left-turn across the opposing major street traffic flow in a single movement), are based on two components, the "initial" minimum gap time needed for a driver to recognize an acceptable gap in the opposing traffic flow and initiate the turn, and the "follow-up" time, which is the incremental additional time necessary following the "initial" gap to accommodate subsequent left-turning vehicles (assuming a continuous queue of vehicles wishing to make the left-turn across the major street traffic flows.

Based on the HCM analysis methodologies, a one-stage left-turn move requires a minimum gap of 7.5 seconds between vehicles in the major street traffic flow, with a follow-up time of an additional 3.5 seconds. Therefore, based on these minimum gap times, a 7.5-second gap in the southbound Admiralty Way traffic flow would allow only one vehicle to make a left turn across the oncoming traffic into the project's proposed new Admiralty Way driveway, while two vehicles could be accommodated by an 11.0-second gap, three vehicles could safely make a left turn during a 14.5-second gap, and so on. Note that, since left-turn exits from the project's proposed Admiralty Way driveway will be prohibited, this evaluation was limited to an analysis of the availability of gaps in southbound Admiralty Way traffic to accommodate northbound left-turns from Admiralty Way into the site's new Admiralty Way driveway.

The number and duration of one-stage gaps in southbound Admiralty Way traffic were identified through field observations and counts conducted on a typical mid-week weekday (Thursday, June 7, 2012) during the same AM (7:00 to 10:00 AM) and PM (4:00 to 7:00 PM) peak commute traffic periods used to evaluate the project's potential impacts to the surrounding intersections. The results of these observations are summarized in Table C-1 for both the morning and afternoon/evening time periods. The actual observed gap data (including the number of gaps, the duration of each gap, and the time each gap occurred) are shown in Table C-2 for both the AM and PM three-hour observation periods.

As shown in Table C-1, a minimum of approximately 66 gaps per hour of sufficient duration (minimum of 7.5 seconds) to accommodate at least one northbound left-turning vehicle were observed during the AM peak period; in total, these gaps would provide sufficient time to allow a minimum of approximately 212 vehicles to execute a northbound left-turn to enter the project's proposed new Admiralty Way driveway during the most congested one hour period, which occurred between approximately 7:00 and 8:00 AM. Over the entire three-hour observation period between 7:00 and 10:00 AM, a total of approximately 226 acceptable gaps were observed, which would allow for a total of approximately 689 northbound left-turns into this driveway during that period. An average of approximately 75 acceptable gaps per hour occurred in southbound Admiralty Way traffic during the AM peak period, which would be sufficient to accommodate an average of approximately 230 vehicles per hour turning left from northbound Admiralty Way into the proposed new project driveway.

Similarly, as also shown in Table C-1, during the overall PM peak period (4:00 and 7:00 PM), a minimum of approximately 57 acceptable gaps per hour were observed during the one-hour period between approximately 4:00 and 5:00 PM, which would allow a total of approximately 190 vehicles to enter the project site via a northbound left-turn from Admiralty Way. Over the course of the entire three-hour afternoon/evening observation period, a total of approximately 201 acceptable gaps in southbound Admiralty Way were observed, which would allow for a total of approximately 633 northbound left-turns. On average, the PM peak commute traffic period exhibited approximately 75 acceptable gaps per hour in southbound Admiralty Way traffic, which would accommodate an average of approximately 211 northbound left-turning vehicles per hour from northbound Admiralty Way into the proposed new project driveway.

As described in detail and shown in Figures 6(a) and 6(b) (Project Driveway Volumes) earlier in the traffic study report, the proposed Parcel 44 redevelopment project is expected to exhibit relatively nominal demands for the proposed northbound left-turn move from Admiralty Way.

During the AM peak hour (when many of the proposed retail or office uses may not yet be at full daily operational levels), a total of only about 10 northbound left-turning vehicles per hour are anticipated, while during the PM peak hour, approximately 49 vehicles per hour would be expected to make this move to access the project site. It should also be noted that the proposed project component uses directly served by the proposed new Admiralty Way driveway (specifically, Buildings IV. V, and VI) can also be accessed via proposed driveways located along Mindanao Way and Bali Way; utilization of these additional driveways was assumed in the assignment of project trips described earlier in this report, which acts to somewhat reduce the number of vehicles that would utilize the new northbound left-turn lane on Admiralty Way.

However, even if the number of vehicles potentially using the new northbound left-turn lane were to increase, the results of the gap study indicate that there is currently more than adequate capacity during both peak hours to accommodate such increases. In fact, a review of the total anticipated driveway volumes for the entire Parcel 44 redevelopment project, described earlier in the "Project Vehicular Access and Operations" section of the traffic study, indicates that the existing minimum capacity for northbound left-turns of approximately 212 vehicles per hour during the AM peak hour actually exceeds the total number of inbound project "driveway" trips (which are not reduced by pass-by activity or by "credits" for the removal of existing site trips) during this time period; a total of approximately 94 inbound AM peak hour trips are anticipated for the entire Parcel 44 project), while during the PM peak hour, the minimum existing left-turn capacity of approximately 190 vehicles per hour represents over 80 percent of the total project inbound driveway volume of approximately 236 trips during this time period. Therefore, the proposed new northbound left-turn pocket, allowing for vehicle access directly into the project site from northbound Admiralty Way, can easily accommodate the anticipated project traffic demands under current traffic conditions in the project vicinity without the need to install a traffic signal or other traffic control devices.

Table C-1
Summary of Analysis for Inbound Traffic (Northbound Left-Turns) at Admiralty Way Project Driveway
Thursday June 7, 2012

AM Peak Period (7:00 to 10:00 AM)

Southbound Gaps for Vehicles Entering Proposed Driveway (During 1-Hour Periods)

		7:00	0 - 8:00	7:15	i - 8:15	7:30	- 8:30	7:45	- 8:45	8:00	9:00	8:15	5 - 9:15	8:30	9:30	8:45	- 9:45	9:00	- 10:00
Gap Duration	Vehicles	No. of	No. of																
(Seconds)	per Gap	Gaps	Vehicles																
7.5 - 11.0	1	11	11	14	14	13	13	15	15	19	19	21	21	24	24	22	22	21	21
11.0 - 14.5	2	15	30	22	44	19	38	19	38	18	36	13	26	17	34	21	42	20	40
14.5 - 18.0	3	11	33	9	27	11	33	9	27	10	30	9	27	7	21	7	21	5	15
18.0 - 21.5	4	7	28	8	32	11	44	11	44	10	40	11	44	9	36	8	32	9	36
21.5 - 25.0 +	5	22	110	23	115	25	125	24	120	23	115	22	110	22	110	23	115	25	125
Total	s	66	212	76	232	79	253	78	244	80	240	76	228	79	225	81	232	80	237

3-Hour Average 75 230

PM Peak Period (4:00 to 7:00 PM)

Southbound Gaps for Vehicles Entering Proposed Driveway (During 1-Hour Periods)

		4:00	- 5:00	4:15	5 - 5:15	4:30	- 5:30	4:45	- 5:45	5:00	0 - 6:00	5:15	5 - 6:15	5:30	0 - 6:30	5:45	6:45	6:00	7:00
Gap Duration	Vehicles	No. of	No. of																
(Seconds)	per Gap	Gaps	Vehicles																
7.5 - 11.0	1	14	14	15	15	16	16	15	15	15	15	17	17	18	18	19	19	18	18
11.0 - 14.5	2	5	10	8	16	14	28	16	32	18	36	17	34	10	20	10	20	10	20
14.5 - 18.0	3	7	21	11	33	10	30	13	39	10	30	6	18	8	24	6	18	10	30
18.0 - 21.5	4	10	40	11	44	8	32	7	28	7	28	9	36	11	44	12	48	14	56
21.5 - 25.0 +	5	21	105	23	115	24	120	24	120	22	110	21	105	22	110	23	115	20	100
Totals	s	57	190	68	223	72	226	75	234	72	219	70	210	69	216	70	220	72	224

3-Hour Average 67 211

Note:

Values in RED indicate minimum number of gaps and/or northbound left-turn capacity during observed periods

Table C-2

Gap Timing and Duration Data - Gaps in Southbound Admiralty Way Traffic for Vehicles Entering Proposed Admiralty Way Project Driveway via Northbound Left-Turns
Thursday June 7, 2012

AM Peak Period (7:00 AM to 10:00 AM)

7:00 -	7:15 AM	7:15 -	7:30 AM	7:30 -	7:45 AM	7:45 -	8:00 AM	8:00 - 8	3:15 AM	8:15 - 8	:30 AM	8:30 - 8	3:45 AM	8:45 - 9	:00 AM	9:00 - 9	9:15 AM	9:15 - 9	9:30 AM	9:30 -	9:45 AM	9:45 - 1	10:00 AM
	Duration		Duration		Duration		Duration		Duration		Duration		Duration		Duration		Duration		Duration		Duration		Duration
Time	of Gap (Seconds)	Time	of Gap (Seconds)	Time	of Gap (Seconds)	Time	of Gap (Seconds)	Time	of Gap (Seconds)	Time	of Gap (Seconds)	Time	of Gap (Seconds)	Time	of Gap (Seconds)	Time	of Gap (Seconds)						
7:00 AM	16	7:15 AM	64	7:30 AM	15	7:45 AM	15	8:00 AM	24	8:15 AM	30	8:30 AM	7	8:45 AM	8	9:00 AM	30	9:15 AM	42	9:30 AM	35	9:45 AM	22
7:01 AM	26	7:17 AM	10	7:30 AM	12	7:45 AM	12	8:01 AM	19	8:16 AM	8	8:30 AM	8	8:45 AM	51	9:00 AM	8	9:16 AM	24	9:31 AM	12	9:45 AM	12
7:02 AM	24	7:18 AM	22	7:31 AM	9	7:45 AM	59	8:01 AM	7	8:17 AM	12	8:30 AM	11	8:46 AM	22	9:02 AM	34	9:17 AM	15	9:31 AM	8	9:46 AM	22
7:04 AM	15	7:19 AM	8	7:31 AM	15	7:47 AM	20	8:02 AM	40	8:17 AM	19	8:31 AM	10	8:47 AM	11	9:03 AM	10	9:17 AM	6	9:32 AM	34	9:46 AM	13
7:05 AM	30	7:19 AM	7	7:32 AM	11	7:47 AM	12	8:02 AM	11	8:18 AM	20	8:32 AM	30	8:48 AM	10	9:03 AM	18	9:18 AM	27	9:32 AM	9	9:46 AM	6
7:07 AM	20	7:20 AM	12	7:32 AM	43	7:49 AM	18	8:03 AM	9	8:19 AM	30	8:32 AM	30	8:48 AM	16	9:04 AM	9	9:18 AM	11	9:33 AM	14	9:48 AM	10
7:07 AM	19	7:21 AM	14	7:33 AM	8	7:49 AM	11	8:03 AM	51	8:20 AM	18	8:33 AM	32	8:48 AM	12	9:05 AM	22	9:19 AM	15	9:33 AM	30	9:48 AM	23
7:10 AM	30	7:22 AM	11	7:34 AM	31	7:51 AM	6	8:04 AM	6	8:20 AM	27	8:34 AM	12	8:50 AM	9	9:06 AM	37	9:19 AM	7	9:34 AM	11	9:49 AM	24
7:11 AM	15	7:24 AM	8	7:34 AM	9	7:51 AM	8	8:04 AM	6	8:21 AM	14	8:35 AM	6	8:51 AM	11	9:07 AM	10	9:20 AM	13	9:34 AM	11	9:50 AM	30
7:11 AM	24	7:25 AM	25	7:34 AM	6	7:51 AM	47	8:05 AM	10	8:21 AM	16	8:35 AM	10	8:51 AM	19	9:07 AM	20	9:20 AM	10	9:35 AM	12	9:51 AM	20
7:12 AM	26	7:26 AM	12	7:35 AM	34	7:52 AM	6	8:06 AM	21	8:22 AM	16	8:36 AM	9	8:52 AM	54	9:07 AM	18	9:21 AM	20	9:35 AM	8	9:51 AM	14
7:13 AM	9	7:27 AM	16	7:36 AM	11	7:52 AM	12	8:06 AM	9	8:23 AM	17	8:36 AM	9	8:53 AM	8	9:09 AM	23	9:21 AM	10	9:36 AM	7	9:52 AM	9
		7:28 AM	13	7:37 AM	45	7:52 AM	10	8:07 AM	12	8:23 AM	22	8:36 AM	23	8:53 AM	7	9:09 AM	22	9:22 AM	7	9:36 AM	16	9:53 AM	9
		7:28 AM	16	7:38 AM	20	7:53 AM	30	8:08 AM	14	8:23 AM	6	8:37 AM	20	8:53 AM	7	9:10 AM	6	9:22 AM	40	9:36 AM	7	9:53 AM	10
		7:29 AM	21	7:39 AM	10	7:53 AM	10	8:08 AM	17	8:24 AM	15	8:38 AM	17	8:54 AM	11	9:11 AM	7	9:23 AM	6	9:37 AM	33	9:54 AM	8
				7:39 AM	25	7:55 AM	26	8:09 AM	12	8:25 AM	8	8:38 AM	7	8:54 AM	22	9:11 AM	11	9:24 AM	7	9:38 AM	32	9:54 AM	6
				7:40 AM	15	7:55 AM	6	8:09 AM	8	8:26 AM	35	8:38 AM	7	8:55 AM	9	9:12 AM	8	9:24 AM	10	9:38 AM	12	9:54 AM	8
				7:40 AM	25	7:55 AM	11	8:10 AM	56	8:28 AM	18	8:39 AM	12	8:56 AM	10	9:12 AM	10	9:24 AM	12	9:39 AM	13	9:55 AM	6
				7:42 AM	15	7:56 AM	23	8:11 AM	14	8:29 AM	6	8:40 AM	8	8:56 AM	17	9:13 AM	18	9:26 AM	8	9:40 AM	75	9:55 AM	7
				7:42 AM	21	7:57 AM	7	8:11 AM	13			8:40 AM	7	8:56 AM	17	9:14 AM	11	9:26 AM	32	9:41 AM	6	9:55 AM	16
				7:43 AM	6	7:57 AM	28	8:11 AM	6			8:40 AM	6	8:57 AM	6	9:14 AM	6	9:26 AM	10	9:42 AM	6	9:56 AM	6
				7:44 AM	13	7:58 AM	6	8:12 AM	27			8:41 AM	15	8:57 AM	35			9:27 AM	19	9:42 AM	10	9:56 AM	24
				7:44 AM	11	7:58 AM	15	8:12 AM	25			8:41 AM	12	8:58 AM	37			9:27 AM	6	9:42 AM	14	9:57 AM	31
				7:44 AM	6	7:59 AM	56	8:13 AM	22			8:42 AM	21	8:59 AM	10			9:28 AM	14	9:43 AM	13	9:58 AM	36
								8:14 AM	18			8:42 AM	/					9:29 AM	6	9:43 AM	/	9:59 AM	19
								8:14 AM	12			8:43 AM	24					9:29 AM	13	9:44 AM	20		
												8:43 AM	12					9:29 AM	11	9:44 AM	15		
												8:44 AM	ь										

PM Peak Period (4:00 PM to 7:00 PM)

4:00 -	4:15 PM	4:15 -	4:30 PM	4:30 - 4	4:45 PM	4:45 -	5:00 PM	5:00 - 5	5:15 PM	5:15 - 5	5:30 PM	5:30 - 5	:45 PM	5:45 - (6:00 PM	6:00 -	6:15 PM	6:15 -	6:30 PM	6:30 -	6:45 PM	6:45 -	7:00 PM
	Duration		Duration		Duration		Duration		Duration		Duration		Duration		Duration		Duration		Duration		Duration		Duration
	of Gap		of Gap		of Gap		of Gap		of Gap		of Gap		of Gap		of Gap		of Gap		of Gap		of Gap		of Gap
Time	(Seconds)	Time	(Seconds)	Time	(Seconds)	Time	(Seconds)	Time	(Seconds)	Time	(Seconds)	Time	(Seconds)	Time	(Seconds)	Time	(Seconds)	Time	(Seconds)	Time	(Seconds)	Time	(Seconds)
4:03 PM	7	4:15 PM	12	4:30 PM	30	4:45 PM	15	5:01 PM	17	5:15 PM	6	5:30 PM	21	5:45 PM	12	6:00 PM	13	6:15 PM	17	6:30 PM	16	6:45 PM	6
4:04 PM	14	4:15 PM	17	4:31 PM	19	4:45 PM	10	5:01 PM	23	5:16 PM	7	5:31 PM	8	5:45 PM	7	6:00 PM	10	6:15 PM	6	6:31 PM	29	6:45 PM	19
4:06 PM	31*	4:17 PM	7	4:31 PM	9	4:45 PM	9	5:02 PM	15	5:16 PM	9	5:31 PM	19	5:47 PM	48	6:02 PM	36	6:17 PM	6	6:32 PM	8	6:46 PM	26
4:10 PM	34*	4:17 PM	8	4:32 PM	15	4:46 PM	23	5:02 PM	15	5:17 PM	14	5:32 PM	14	5:48 PM	22	6:04 PM	42	6:17 PM	8	6:32 PM	35	6:47 PM	7
4:11 PM	15	4:17 PM	16	4:33 PM	29	4:46 PM	26	5:03 PM	20	5:17 PM	26	5:32 PM	6	5:49 PM	7	6:04 PM	12	6:18 PM	9	6:34 PM	37	6:47 PM	21
4:11 PM	23	4:18 PM	21	4:35 PM	10	4:47 PM	19	5:03 PM	25	5:18 PM	8	5:32 PM	14	5:49 PM	18	6:05 PM	13	6:18 PM	8	6:34 PM	8	6:47 PM	15
4:12 PM	13	4:19 PM	51	4:35 PM	21	4:48 PM	24	5:05 PM	10	5:18 PM	10	5:33 PM	16	5:50 PM	10	6:05 PM	8	6:19 PM	9	6:35 PM	10	6:48 PM	14
4:12 PM	43	4:20 PM	20	4:36 PM	25	4:49 PM	7	5:05 PM	11	5:18 PM	23	5:34 PM	15	5:50 PM	27	6:06 PM	13	6:20 PM	30	6:35 PM	11	6:49 PM	18
4:14 PM	10	4:21 PM	9	4:37 PM	10	4:50 PM	37	5:06 PM	15	5:19 PM	15	5:34 PM	14	5:52 PM	*23	6:07 PM	6	6:21 PM	15	6:35 PM	19	6:49 PM	12
4:14 PM	22	4:21 PM	6	4:37 PM	6	4:51 PM	6	5:06 PM	6	5:20 PM	13	5:36 PM	24	5:53 PM	9	6:07 PM	8	6:22 PM	21	6:36 PM	21	6:50 PM	13
		4:21 PM	6	4:38 PM	19	4:52 PM	18	5:06 PM	6	5:20 PM	8	5:37 PM	16	5:53 PM	22	6:08 PM	21	6:23 PM	23	6:37 PM	26	6:50 PM	7
		4:22 PM	10	4:38 PM	18	4:53 PM	15	5:08 PM	11	5:20 PM	8	5:38 PM	9	5:53 PM	12	6:09 PM	10	6:23 PM	22	6:38 PM	18	6:51 PM	15
		4:24 PM	34	4:39 PM	11	4:53 PM	9	5:08 PM	16	5:21 PM	49	5:38 PM	16	5:55 PM	6	6:09 PM	18	6:24 PM	28	6:38 PM	20	6:52 PM	9
		4:25 PM	30	4:39 PM	6	4:55 PM	24	5:10 PM	11	5:23 PM	23	5:38 PM	10	5:55 PM	21	6:10 PM	7	6:25 PM	8	6:39 PM	17	6:52 PM	7
		4:25 PM	9	4:40 PM	29	4:55 PM	26	5:10 PM	11	5:23 PM	9	5:40 PM	23	5:56 PM	22	6:10 PM	16	6:25 PM	10	6:39 PM	8	6:54 PM	27
		4:26 PM	7	4:41 PM	18	4:56 PM	16	5:10 PM	8	5:25 PM	11	5:40 PM	10	5:57 PM	12	6:11 PM	58	6:26 PM	29	6:40 PM	18	6:55 PM	40
		4:26 PM	6	4:42 PM	30	5:57 PM	7	5:11 PM	34	5:25 PM	12	5:41 PM	23	5:57 PM	26	6:13 PM	20	6:26 PM	7	6:41 PM	13	6:56 PM	16
		4:27 PM	35	4:43 PM	8	4:57 PM	12	5:12 PM	36	5:26 PM	41	5:42 PM	20	5:58 PM	10	6:14 PM	28	6:27 PM	6	6:41 PM	14	6:56 PM	32
		4:29 PM	19	4:44 PM	9	4:58 PM	22	5:13 PM	13	5:27 PM	11	5:43 PM	22	5:59 PM	25			6:27 PM	19	6:42 PM	10	6:58 PM	7
		4:29 PM	10			4:59 PM	25	5:14 PM	30	5:27 PM	13	5:44 PM	19					6:28 PM	26	6:43 PM	30	6:58 PM	17
						4:59 PM	24			5:28 PM	14	5:44 PM	40					6:28 PM	6	6:43 PM	28	6:58 PM	10
										5:29 PM	15*							6:28 PM	17	6:44 PM	7	6:59 PM	18
																		6:29 PM	9				

Notes

^{***} Indicates Admiralty Way Median Island *Cut* for Access to Project Admiralty Way Driveway Blocked Due to Vehicular Queue Backup (in southbound lanes) from Mindanao Way.

The intersection geometries used for the SYNCHRO analysis were the same as are currently in place at all of the studied/analyzed locations, with the exception that, as noted earlier, the County's programmed LUP dual southbound left-turn lanes were assumed to be installed at both Admiralty Way and Bali Way, and at Admiralty Way and Mindanao Way, and the project's proposed new northbound left-turn lane on Admiralty Way adjacent to the proposed new driveway location was also implemented. Additionally, since each of the subject intersections (with the exception of the unsignalized "intersection" at the proposed project driveway) are currently equipped with LADOT's ATSAC/ATCS traffic signal synchronization system, for purposes of this supplemental analysis, while the basic traffic signal phasing information for each of the studied intersections was utilized, the SYNCHRO program also assumed that all traffic signal operations would be optimized.

The future year (2020) traffic volumes at the study intersections examined in the supplemental (year 2020) cumulative analyses were derived using the same forecasting methodologies as described earlier in the report to develop the forecast future year 2016 volumes. First, the existing year 2013 traffic volumes utilized in this study were growth-factored to the year 2020 using the same 0.6 percent annual ambient growth factor (compounded annually) as before (except that, instead of three years of growth, this supplemental analysis assumed a total of seven years of ambient traffic growth). The traffic generated by the 30 related projects identified in the study area were then added to these baseline year 2020 traffic volumes; note that no additional related projects were assumed for this supplemental analysis, since the related projects list shown previously in Table 10 already includes all potential future development, both within and surrounding the Marina, currently proposed or anticipated.

Finally, the net traffic generated by the proposed Parcel 44 project itself was added, to form the "Future (2020) Cumulative Traffic Volumes" used in the SYNCHRO analysis. The resulting traffic volumes at each of the intersections included in the SYNCHRO analysis are shown in Figures C-2(a) and C-2(b) for the AM and PM peak hours, respectively. Note also that, as shown in these figures, in order to identify any potential future traffic conflicts with the operations of the existing driveway opposite the proposed new Parcel 44 driveway (on the east side of Admiralty Way, serving the existing medical/commercial office development), empirical traffic counts for this non-project driveway were also included in the analyses.

The analyses and results of the SYNCHRO evaluation are contained in the following pages.

P12122 – Marina Del Rey Parcel 44

Traffic Analysis Summary

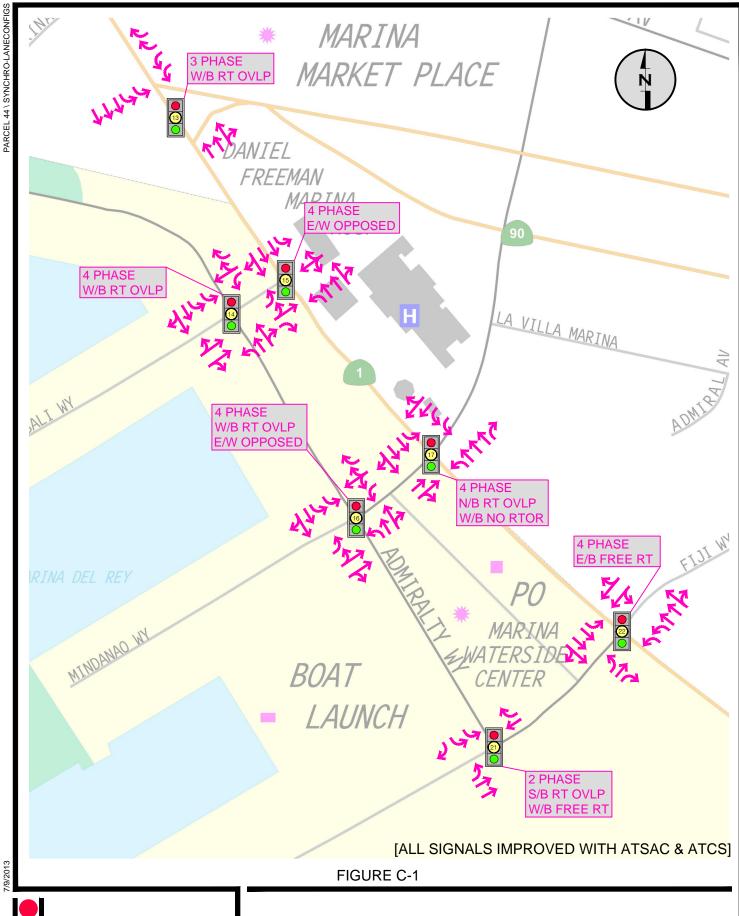
The analysis is for the future year (2020) and assumes the following proposed changes:

- Addition of a stop-controlled driveway across from existing driveway on Admiralty Way between Bali Way and Mindanao Way
- Addition of a left turn pocket for northbound traffic to enter proposed driveway
- Placement of a median to allow only right turns from existing and proposed driveways, but to allow left turns into both driveways
- Addition of a second southbound left turn bay at Admiralty Way/Bali Way and Admiralty Way/Mindanao Way

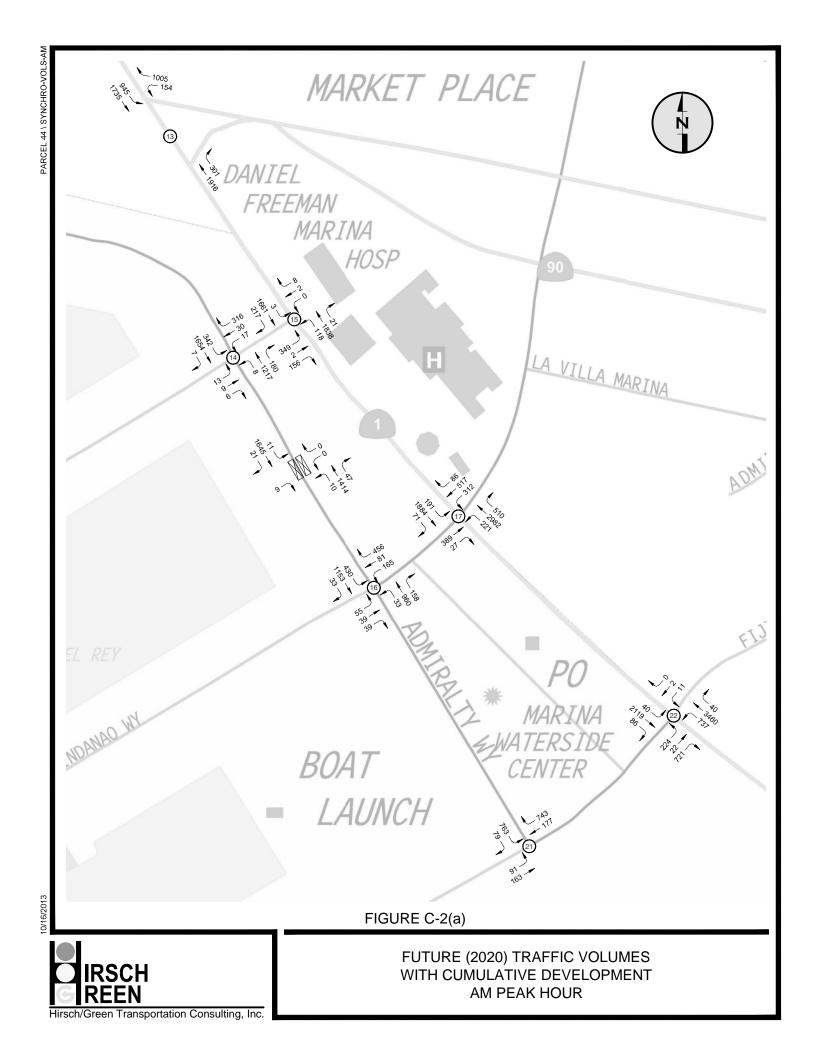
2020 intersection turn movement traffic demands were provided by others.

LOS, average delay and queue results for the study intersections (total and for key movements) are summarized below:

		AM Pe	eak		PM P	eak
	LOS	Delay (s)	95% Queue Length (ft)	LOS	Delay (s)	95% Queue Length (ft)
Admiralty Way & 1	Proposed	Existing Dri	iveway			
Intersection	В	0.1		В	0.4	
Northbound LT						
Pocket	В	15.0	2	C	17.4	14
Admiralty Way & 1	Bali Way					
Intersection	C	30.9		С	35.1	
Northbound LT						
Pocket	F	177.2	13	Е	62.3	12
Southbound LT						
Pocket	D	51.5	208	E	83.2	239
Eastbound	D	45.2	23	D	46.2	46
Admiralty Way & I	Mindana	o Way				
Intersection	D	38.8		Е	76.1	
Northbound LT						
Pocket	F	106.1	84	F	99.4	84
Southbound LT						
Pocket	Е	58.3	227	Е	65.1	343
Eastbound	Е	58.5	53	Е	57.9	167


Note:

1. LOS based on ICU methodology. Average delay for all vehicles including those that do not stop.


Key findings/conclusions:

- There is no persistent queue in the proposed northbound left-turn pocket. Left turning vehicles are able to enter the proposed driveway with an average delay of about 15 seconds.
- Proposed northbound left-turn pocket only needs to be long enough to hold 2-3 vehicles; the simulated queue is at most one car.
- Southbound left-turning vehicles at Bali Way do not overflow the dual left-turn
 pocket, however some left-turning vehicles are blocked in entering the pocket
 by the queue for the through traffic during the PM peak. This is not a problem
 during the AM peak.
- There is a low volume of northbound left-turning vehicles at **Bali Way**, however they are blocked in entering the left-turn pocket during a red light by the queue for the through traffic during the AM and PM peaks.
- The northbound queue for the through traffic at Bali Way occasionally spills over past the proposed driveway during the AM and PM peaks. We suggest that the pavement at the proposed driveway be striped to keep the intersection clear to allow for southbound left turning vehicles to enter the existing driveway
- Southbound left-turning vehicles at Mindanao Way do not overflow the dual left-turn pockets during the AM peak period and are in general not blocked in entering the pocket by the queue for the through traffic. However, <u>during the</u> <u>PM peak period these vehicles do overflow the dual left-turn pockets,</u> <u>impacting the through lanes. The resulting queue can extend beyond the</u> project driveway and even impact the Bali intersection.
- There is a low volume of northbound left-turning vehicles at Mindanao
 Way, however they are blocked in entering the left-turn pocket during a red light by the queue for the through traffic during the AM and PM peaks.
- The eastbound approach for Bali Way at Admiralty Way performs at an acceptable LOS.
- The eastbound approach for Mindanao Way at Admiralty Way is forecast to operate at LOS E; however, it is not possible to provide additional green time because the other approaches also operate at poor LOS. For example, the northbound approach has much higher volumes and performs worse.
- As noted above, the northbound left turn movements at both Bali Way and Mindanao Way do not appear to be a problem. Rather, it is more an issue of the queues for the through movements extending upstream and often blocking access to the left turn bays.
- In the southbound direction, high southbound left turn movement at Mindanao
 Way does result in queues spilling beyond the turn pocket, impacting through
 movements as well the upstream intersections at the proposed project
 driveway and at Bali Way. The southbound left turn movement at Bali
 Way does not appear to be a problem

FUTURE (2020) SYNCHRO ANALYSIS INTERSECTION LANE CONFIGURATIONS AND CONTROLS

1: Admiralty Wy & Mindanao Wy

	•	→	•	•	•	4	†	-	↓	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	49	95	161	309	293	36	1215	467	1289	
v/c Ratio	0.43	0.36	0.48	0.86	0.44	0.56	0.88	0.65	0.85	
Control Delay	69.3	37.2	36.6	42.1	1.8	93.8	46.0	60.4	29.7	
Queue Delay	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.0	
Total Delay	69.3	37.2	36.6	42.5	1.8	93.8	46.0	60.4	29.7	
Queue Length 50th (ft)	43	23	68	90	7	31	513	151	540	
Queue Length 95th (ft)	92	53	m90	m114	m10	#84	#670	227	#684	
Internal Link Dist (ft)		331		104			140		515	
Turn Bay Length (ft)			170			100		260		
Base Capacity (vph)	124	282	374	392	686	64	1374	754	1512	
Starvation Cap Reductn	0	0	0	5	11	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.40	0.34	0.43	0.80	0.43	0.56	0.88	0.62	0.85	

Intersection Summary

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	۶	→	•	•	•	•	1	†	/	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1,6	413		J.	₩	74	J.	1 13		14.54	1 13	
Volume (vph)	55	39	39	165	81	456	33	960	158	430	1153	33
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lane Util. Factor	0.91	0.91		0.95	0.91	0.95	1.00	0.95		0.97	0.95	
Frt	1.00	0.93		1.00	0.90	0.85	1.00	0.98		1.00	1.00	
Flt Protected	0.95	0.99		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1610	3147		1681	1524	1504	1770	3464		3433	3524	
Flt Permitted	0.95	0.99		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1610	3147		1681	1524	1504	1770	3464		3433	3524	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	60	42	42	179	88	496	36	1043	172	467	1253	36
RTOR Reduction (vph)	0	39	0	0	54	55	0	10	0	0	2	0
Lane Group Flow (vph)	49	56	0	161	255	238	36	1205	0	467	1287	0
Turn Type	Split	NA		Split	NA	pm+ov	Prot	NA		Prot	NA	
Protected Phases	7	7		3	3	18	5	2		18	6	
Permitted Phases						3						
Actuated Green, G (s)	8.1	8.1		25.0	25.0	52.9	4.1	49.8		27.9	53.6	
Effective Green, g (s)	9.3	9.3		26.2	26.2	51.9	3.6	51.1		27.4	54.9	
Actuated g/C Ratio	0.07	0.07		0.20	0.20	0.40	0.03	0.39		0.21	0.42	
Clearance Time (s)	5.2	5.2		5.2	5.2		3.5	5.3			5.3	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0			3.0	
Lane Grp Cap (vph)	115	225		338	307	600	49	1361		723	1488	
v/s Ratio Prot	c0.03	0.02		0.10	c0.17	0.08	0.02	0.35		c0.14	c0.37	
v/s Ratio Perm						0.07						
v/c Ratio	0.43	0.25		0.48	0.83	0.40	0.73	0.89		0.65	0.87	
Uniform Delay, d1	57.8	57.0		45.8	49.8	27.9	62.7	36.7		46.9	34.2	
Progression Factor	1.00	1.00		0.73	0.66	0.04	1.00	1.00		1.21	0.70	
Incremental Delay, d2	2.5	0.6		0.7	11.9	0.3	43.4	8.8		1.5	5.2	
Delay (s)	60.3	57.6		34.4	44.7	1.3	106.1	45.5		58.3	29.1	
Level of Service	E	E		С	D	Α	F	D		E	С	
Approach Delay (s)		58.5			25.9			47.2			36.9	
Approach LOS		E			С			D			D	
Intersection Summary												
HCM 2000 Control Delay			38.8	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capac	city ratio		0.81									
Actuated Cycle Length (s)			130.0			st time (s)			20.0			
Intersection Capacity Utilizat	tion		72.7%	IC	CU Level	of Service	;		С			
Analysis Period (min)			15									
c Critical Lane Group												


12: Admiralty Wy & Bali Wy

	→	•	←	•	4	†	-	↓	
Lane Group	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	31	18	191	185	11	1519	372	1806	
v/c Ratio	0.06	0.08	0.48	0.32	0.20	0.76	0.67	0.69	
Control Delay	35.2	48.6	18.8	27.5	55.4	41.5	58.0	12.1	
Queue Delay	0.0	0.0	1.9	6.2	0.0	0.0	0.2	0.0	
Total Delay	35.2	48.6	20.7	33.7	55.4	41.5	58.2	12.1	
Queue Length 50th (ft)	8	10	27	80	8	657	154	377	
Queue Length 95th (ft)	23	m20	m104	m163	m13	753	208	576	
Internal Link Dist (ft)	297		169			289		407	
Turn Bay Length (ft)		200		200	130		200		
Base Capacity (vph)	561	274	436	572	55	2009	554	2630	
Starvation Cap Reductn	0	0	129	329	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	14	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.06	0.07	0.62	0.76	0.20	0.76	0.69	0.69	
Intersection Summary									

m Volume for 95th percentile queue is metered by upstream signal.

	۶	→	•	•	•	•	•	†	/	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		413		J,	f)	74	J,	1 13		14.54	1 13	
Volume (vph)	13	9	6	17	30	316	10	1217	180	342	1654	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lane Util. Factor		0.95		1.00	0.95	0.95	1.00	0.95		0.97	0.95	
Frt		0.97		1.00	0.88	0.85	1.00	0.98		1.00	1.00	
Flt Protected		0.98		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)		3344		1770	1550	1504	1770	3471		3433	3537	
Flt Permitted		0.81		0.74	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)		2778		1371	1550	1504	1770	3471		3433	3537	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	14	10	7	18	33	343	11	1323	196	372	1798	8
RTOR Reduction (vph)	0	6	0	0	131	29	0	9	0	0	0	0
Lane Group Flow (vph)	0	25	0	18	60	156	11	1510	0	372	1806	0
Turn Type	Perm	NA		Perm	NA	pm+ov	Prot	NA		Prot	NA	
Protected Phases		4			8	1	5	2		1	6	
Permitted Phases	4			8		8						
Actuated Green, G (s)		21.1		21.1	21.1	44.9	2.0	71.9		23.8	93.7	
Effective Green, g (s)		22.1		22.1	22.1	42.9	1.0	73.1		22.8	94.9	
Actuated g/C Ratio		0.17		0.17	0.17	0.33	0.01	0.56		0.18	0.73	
Clearance Time (s)		5.0		5.0	5.0	3.0	3.0	5.2		3.0	5.2	
Vehicle Extension (s)		3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		472		233	263	542	13	1951		602	2582	
v/s Ratio Prot					0.04	c0.05	0.01	c0.44		0.11	c0.51	
v/s Ratio Perm		0.01		0.01		0.05						
v/c Ratio		0.05		0.08	0.23	0.29	0.85	0.77		0.62	0.70	
Uniform Delay, d1		45.2		45.4	46.6	32.2	64.4	22.1		49.6	9.7	
Progression Factor		1.00		1.13	1.43	1.23	0.82	1.81		1.00	1.00	
Incremental Delay, d2		0.0		0.1	0.4	0.2	125.0	1.9		1.9	1.6	
Delay (s)		45.2		51.3	67.1	39.8	177.6	41.9		51.5	11.3	
Level of Service		D		D	E	D	F	D		D	В	
Approach Delay (s)		45.2			53.5			42.9			18.1	
Approach LOS		D			D			D			В	
Intersection Summary												
HCM 2000 Control Delay			30.9	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capaci	ty ratio		0.68									
Actuated Cycle Length (s)			130.0			st time (s)			12.0			
Intersection Capacity Utilization	on		71.5%	IC	U Level	of Service	;		С			
Analysis Period (min)			15									
c Critical Lane Group												

	٠	→	•	•	←	4	4	†	-	\	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			77			7"	J.	ሳ ኈ		J.	^	7
Volume (veh/h)	0	0	9	0	0	0	10	1414	47	11	1645	21
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	10	0	0	0	11	1537	51	12	1788	23
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)								595			369	
pX, platoon unblocked	0.84	0.84	0.69	0.84	0.84	0.69	0.69			0.69		
vC, conflicting volume	2602	3422	894	2512	3419	794	1811			1588		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	878	1849	0	771	1846	0	1278			951		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)	_											
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	100	99	100	100	100	97			98		
cM capacity (veh/h)	196	59	749	232	59	747	372			495		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3	SB 4			
Volume Total	10	0	11	1025	563	12	894	894	23			
Volume Left	0	0	11	0	0	12	0	0	0			
Volume Right	10	0	0	0	51	0	0	0	23			
cSH	749	1700	372	1700	1700	495	1700	1700	1700			
Volume to Capacity	0.01	0.00	0.03	0.60	0.33	0.02	0.53	0.53	0.01			
Queue Length 95th (ft)	1	0	2	0	0	2	0	0	0			
Control Delay (s)	9.9	0.0	15.0	0.0	0.0	12.5	0.0	0.0	0.0			
Lane LOS	Α	Α	В			В						
Approach Delay (s)	9.9	0.0	0.1			0.1						
Approach LOS	Α	Α										
Intersection Summary												
Average Delay			0.1									
Intersection Capacity Utiliza	tion		55.5%	IC	CU Level	of Service			В			
Analysis Period (min)			15									

1: Admiralty Wy & Mindanao Wy

	•	→	•	←	•	4	†	\	↓	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	141	284	436	501	466	38	1260	523	1276	
v/c Ratio	0.70	0.67	0.99	1.14	0.69	0.56	1.12	0.91	0.95	
Control Delay	73.0	58.1	82.1	122.0	14.2	91.0	105.9	69.9	42.0	
Queue Delay	5.2	0.7	35.0	0.5	0.7	0.0	1.5	0.0	0.0	
Total Delay	78.2	58.8	117.2	122.4	14.9	91.0	107.4	69.9	42.0	
Queue Length 50th (ft)	125	116	358	~502	138	32	~636	212	558	
Queue Length 95th (ft)	206	167	m#382	m#515	m144	#84	#777	#343	#717	
Internal Link Dist (ft)		331		104			140		515	
Turn Bay Length (ft)			170			100		260		
Base Capacity (vph)	222	467	439	438	680	68	1126	573	1349	
Starvation Cap Reductn	0	0	48	22	18	0	0	0	0	
Spillback Cap Reductn	40	40	0	3	51	0	301	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.77	0.67	1.12	1.20	0.74	0.56	1.53	0.91	0.95	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	۶	→	•	•	←	•	1	†	/	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	J,	4î		J.	44	74	J,	1 13		44	ተ ኈ	
Volume (vph)	185	150	56	445	166	680	35	944	215	481	1118	56
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lane Util. Factor	0.91	0.91		0.95	0.91	0.95	1.00	0.95		0.97	0.95	
Frt	1.00	0.97		1.00	0.92	0.85	1.00	0.97		1.00	0.99	
Flt Protected	0.95	0.99		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1610	3247		1681	1549	1504	1770	3441		3433	3514	
Flt Permitted	0.95	0.99		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1610	3247		1681	1549	1504	1770	3441		3433	3514	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	201	163	61	484	180	739	38	1026	234	523	1215	61
RTOR Reduction (vph)	0	18	0	0	33	37	0	15	0	0	2	0
Lane Group Flow (vph)	141	266	0	436	468	429	38	1245	0	523	1274	0
Turn Type	Split	NA		Split	NA	pm+ov	Prot	NA		Prot	NA	
Protected Phases	7	7		3	3	18	5	2		18	6	
Permitted Phases						3						
Actuated Green, G (s)	15.1	15.1		32.8	32.8	55.0	4.4	40.7		22.2	47.8	
Effective Green, g (s)	16.3	16.3		34.0	34.0	54.0	3.9	42.0		21.7	49.1	
Actuated g/C Ratio	0.13	0.13		0.26	0.26	0.42	0.03	0.32		0.17	0.38	
Clearance Time (s)	5.2	5.2		5.2	5.2		3.5	5.3			5.3	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0			3.0	
Lane Grp Cap (vph)	201	407		439	405	624	53	1111		573	1327	
v/s Ratio Prot	c0.09	0.08		0.26	c0.30	0.11	0.02	c0.36		c0.15	0.36	
v/s Ratio Perm						0.17						
v/c Ratio	0.70	0.65		0.99	1.15	0.69	0.72	1.12		0.91	0.96	
Uniform Delay, d1	54.5	54.2		47.9	48.0	31.1	62.5	44.0		53.2	39.5	
Progression Factor	1.00	1.00		1.00	1.00	0.69	1.00	1.00		0.99	0.75	
Incremental Delay, d2	10.5	3.7		33.8	87.9	2.2	36.9	66.6		15.1	13.6	
Delay (s)	65.1	57.9		81.8	136.0	23.8	99.4	110.6		67.6	43.4	
Level of Service	E	Е		F	F	С	F	F		Е	D	
Approach Delay (s)		60.3			81.9			110.3			50.4	
Approach LOS		Е			F			F			D	
Intersection Summary												
HCM 2000 Control Delay			76.0	Н	CM 2000	Level of S	Service		Ε			
HCM 2000 Volume to Capac	city ratio		1.07									
Actuated Cycle Length (s)			130.0			st time (s)			20.0			
Intersection Capacity Utiliza	tion		91.2%	IC	CU Level	of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

12: Admiralty Wy & Bali Wy

→	•	←	•	•	†	-	. ↓	
EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
76	54	246	243	11	2004	304	1824	
0.19	0.24	0.65	0.53	0.15	0.88	1.05	0.70	
37.7	64.3	46.2	52.7	55.9	33.8	122.5	13.2	
0.0	0.0	15.1	68.9	0.0	1.7	20.9	0.0	
37.7	64.3	61.3	121.6	55.9	35.5	143.4	13.2	
23	49	142	203	9	858	~143	386	
46	m58	m183	m236	m12	m819	#239	634	
297		169			289		407	
	200		200	130		200		
490	272	431	461	122	2277	290	2603	
0	0	165	310	0	138	0	0	
5	0	0	0	0	0	60	0	
0	0	0	0	0	0	0	0	
0.16	0.20	0.92	1.61	0.09	0.94	1.32	0.70	
	76 0.19 37.7 0.0 37.7 23 46 297 490 0 5	76 54 0.19 0.24 37.7 64.3 0.0 0.0 37.7 64.3 23 49 46 m58 297 200 490 272 0 0 5 0 0 0	76 54 246 0.19 0.24 0.65 37.7 64.3 46.2 0.0 0.0 15.1 37.7 64.3 61.3 23 49 142 46 m58 m183 297 169 200 490 272 431 0 0 165 5 0 0 0 0	76 54 246 243 0.19 0.24 0.65 0.53 37.7 64.3 46.2 52.7 0.0 0.0 15.1 68.9 37.7 64.3 61.3 121.6 23 49 142 203 46 m58 m183 m236 297 169 200 490 272 431 461 0 0 165 310 5 0 0 0 0 0 0 0	76 54 246 243 11 0.19 0.24 0.65 0.53 0.15 37.7 64.3 46.2 52.7 55.9 0.0 0.0 15.1 68.9 0.0 37.7 64.3 61.3 121.6 55.9 23 49 142 203 9 46 m58 m183 m236 m12 297 169 200 130 490 272 431 461 122 0 0 165 310 0 5 0 0 0 0 0 0 0 0 0	76 54 246 243 11 2004 0.19 0.24 0.65 0.53 0.15 0.88 37.7 64.3 46.2 52.7 55.9 33.8 0.0 0.0 15.1 68.9 0.0 1.7 37.7 64.3 61.3 121.6 55.9 35.5 23 49 142 203 9 858 46 m58 m183 m236 m12 m819 297 169 289 200 200 130 490 272 431 461 122 2277 0 0 165 310 0 138 5 0 0 0 0 0 0 0 0 0 0 0	76 54 246 243 11 2004 304 0.19 0.24 0.65 0.53 0.15 0.88 1.05 37.7 64.3 46.2 52.7 55.9 33.8 122.5 0.0 0.0 15.1 68.9 0.0 1.7 20.9 37.7 64.3 61.3 121.6 55.9 35.5 143.4 23 49 142 203 9 858 ~143 46 m58 m183 m236 m12 m819 #239 297 169 289 200 200 130 200 490 272 431 461 122 2277 290 0 0 165 310 0 138 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0	76 54 246 243 11 2004 304 1824 0.19 0.24 0.65 0.53 0.15 0.88 1.05 0.70 37.7 64.3 46.2 52.7 55.9 33.8 122.5 13.2 0.0 0.0 15.1 68.9 0.0 1.7 20.9 0.0 37.7 64.3 61.3 121.6 55.9 35.5 143.4 13.2 23 49 142 203 9 858 ~143 386 46 m58 m183 m236 m12 m819 #239 634 297 169 289 407 200 200 130 200 490 272 431 461 122 2277 290 2603 0 0 165 310 0 138 0 0 5 0 0 0 0 0 <td< td=""></td<>

Intersection Summary

Queue shown is maximum after two cycles.

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

m Volume for 95th percentile queue is metered by upstream signal.

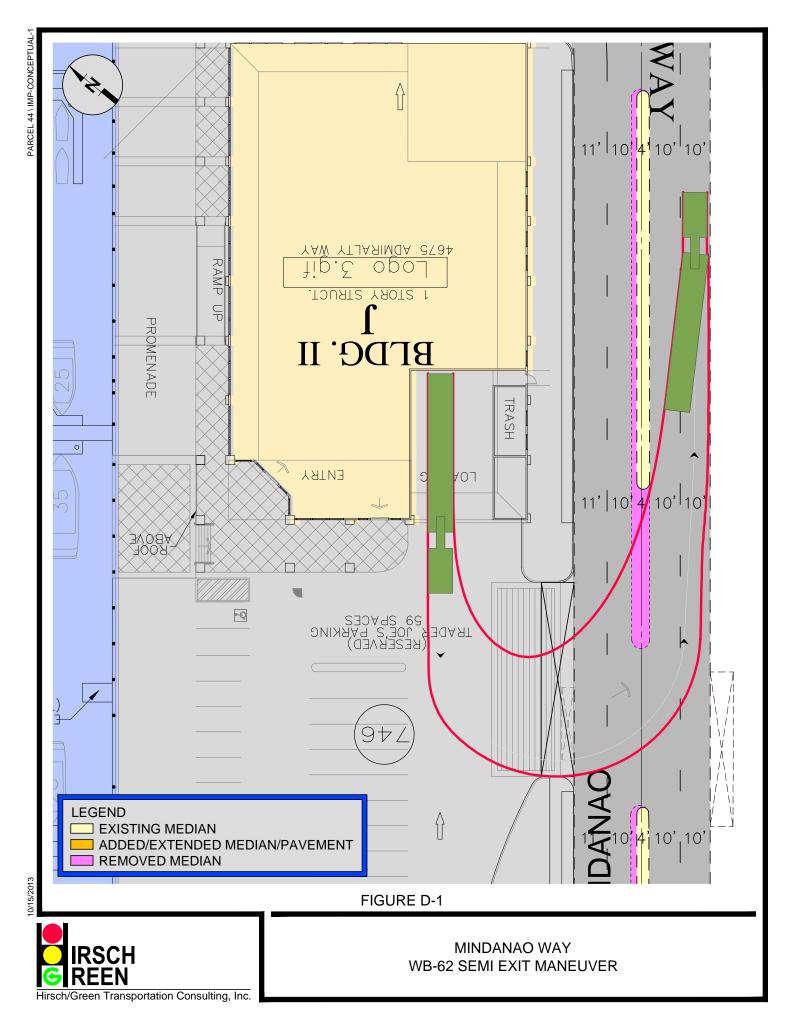
	۶	→	•	•	•	•	4	†	/	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		413		J.	ĵ»	7"	J.	ተ ኈ		ايراير	4 %	
Volume (vph)	25	34	11	50	19	431	10	1636	208	280	1667	11
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lane Util. Factor		0.95		1.00	0.95	0.95	1.00	0.95		0.97	0.95	
Frt		0.98		1.00	0.86	0.85	1.00	0.98		1.00	1.00	
Flt Protected		0.98		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)		3395		1770	1527	1504	1770	3479		3433	3536	
Flt Permitted		0.67		0.70	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)		2314		1313	1527	1504	1770	3479		3433	3536	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	27	37	12	54	21	468	11	1778	226	304	1812	12
RTOR Reduction (vph)	0	10	0	0	119	33	0	7	0	0	0	0
Lane Group Flow (vph)	0	66	0	54	127	210	11	1997	0	304	1824	0
Turn Type	Perm	NA		Perm	NA	pm+ov	Prot	NA		Prot	NA	
Protected Phases		4			8	1	5	2		1	6	
Permitted Phases	4			8		8						
Actuated Green, G (s)		21.2		21.2	21.2	35.0	2.9	81.8		13.8	92.7	
Effective Green, g (s)		22.2		22.2	22.2	33.0	1.9	83.0		12.8	93.9	
Actuated g/C Ratio		0.17		0.17	0.17	0.25	0.01	0.64		0.10	0.72	
Clearance Time (s)		5.0		5.0	5.0	3.0	3.0	5.2		3.0	5.2	
Vehicle Extension (s)		3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		395		224	260	428	25	2221		338	2554	
v/s Ratio Prot					0.08	c0.05	0.01	c0.57		c0.09	0.52	
v/s Ratio Perm		0.03		0.04		0.09						
v/c Ratio		0.17		0.24	0.49	0.49	0.44	0.90		0.90	0.71	
Uniform Delay, d1		46.0		46.6	48.7	41.3	63.5	19.9		58.0	10.4	
Progression Factor		1.00		1.42	2.16	1.65	0.91	1.60		1.00	1.00	
Incremental Delay, d2		0.2		0.3	0.7	0.4	4.7	2.6		25.2	1.7	
Delay (s)		46.2		66.5	106.1	68.5	62.3	34.5		83.2	12.1	
Level of Service		D		Ε	F	Е	Ε	С		F	В	
Approach Delay (s)		46.2			85.3			34.6			22.2	
Approach LOS		D			F			С			С	
Intersection Summary												
HCM 2000 Control Delay			35.1	Н	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capaci	ty ratio		0.82									
Actuated Cycle Length (s)			130.0	S	um of los	st time (s)			12.0			
Intersection Capacity Utilization	on		87.2%			of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

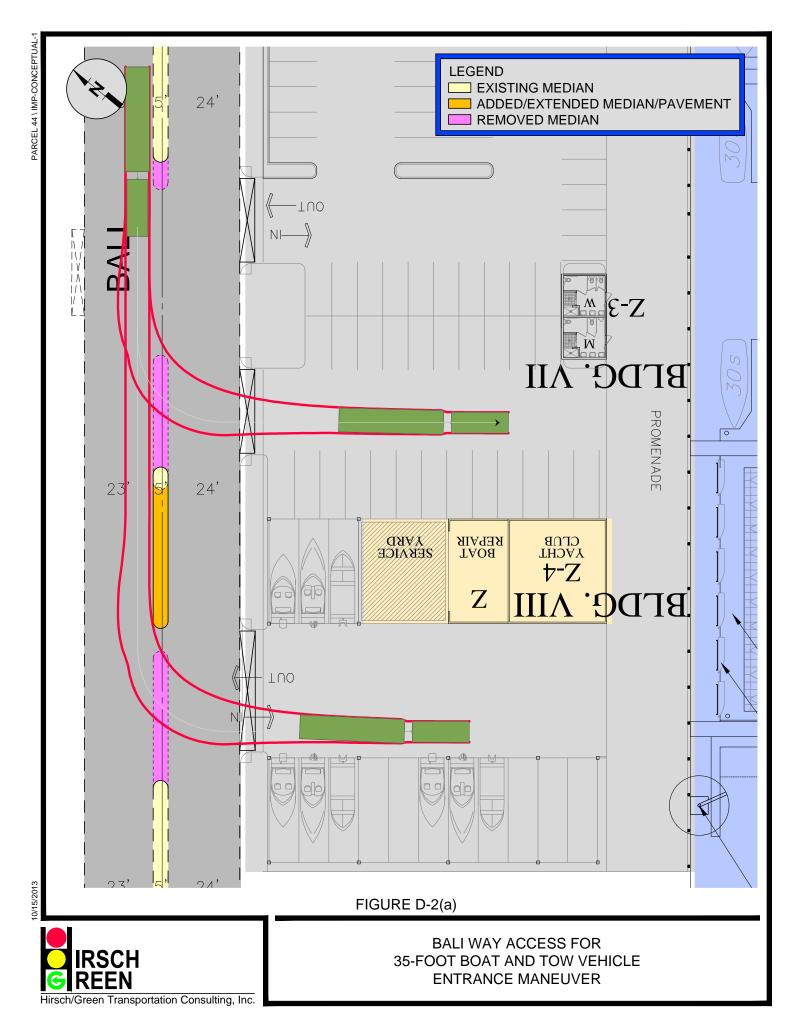
Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR		٠	→	•	•	←	•	1	†	/	/	↓	4
Volume (veh/h)	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Sign Control Stop Grade Stop Own	Lane Configurations											44	
Grade 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0		0	0	44	0		24	49	1829	6	4	1664	60
Peak Hour Factor 0.92													
Hourly flow rate (vph)	Grade		0%										
Pedestrians Lane Width (ft)	Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC3, stage 2 conf vol vC4, unblocked vol tC4, single (s) tC5, single (s) tC7, stage 1 tC8) tF (s) tC9) tF (s)	Hourly flow rate (vph)	0	0	48	0	0	26	53	1988	7	4	1809	65
Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median storage veh) None None Median storage veh) Upstream signal (ft) 595 369 pX, platoon unblocked 0.83 0.83 0.83 0.83 0.70 0.68 0.70 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage (s) 1564 1565 1589													

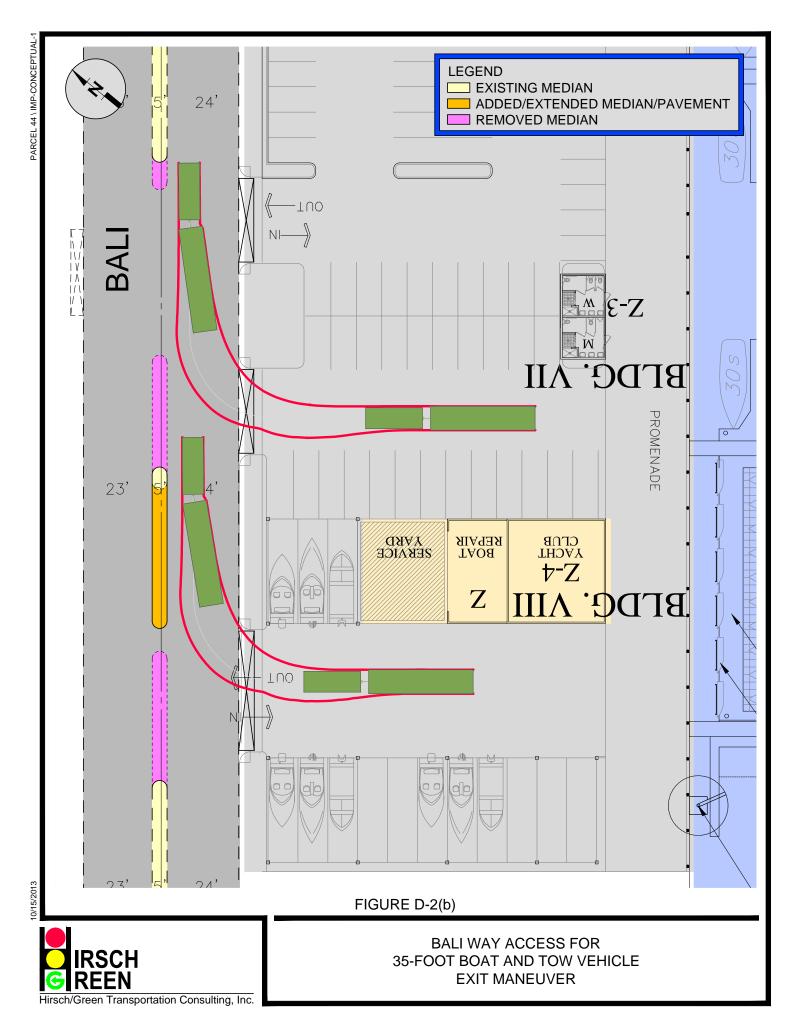
DRIVEWAY COUNT SUMMARY

 ${\tt CLIENT:} \qquad {\tt Hirsch/Green\ Transportation\ Consulting,\ Inc.}$

PROJECT: 4640 Admiralty Way - Marina del Rey


DATE: Thursday, July 14, 2012 PERIOD: 07:00 AM to 10:00 AM 04:00 PM to 07:00 PM


AM and PM Peak Period Traffic Volumes at Existing Driveway on Admiralty Way Opposite Proposed Parcel 44 Driveway


				AM Pea	k Period		
	Inbo	ound	Outb	ound	To	tals	Driveway
Period:	SBLT	NBRT	WBRT	WBLT	Inbound	Outbound	Total
0700-0715	3	16	0	0	19	0	19
0715-0730	3	13	0	0	16	0	16
0730-0745	10	17	0	0	27	0	27
0745-0800	5	30	0	0	35	0	35
0800-0815	12	42	1	0	54	1	55
0815-0830	11	47	0	0	58	0	58 *
0830-0845	9	40	3	0	49	3	52
0845-0900	14	36	2	0	50	2	52
0900-0915	13	31	2	2	44	4	48
0915-0930	3	21	3	0	24	3	27
0930-0945	6	18	5	1	24	6	30
0945-1000	4	14	5	0	18	5	23

				PM Pea	k Period		
	Inbo	und	Outb	ound	To	tals	Driveway
Period:	SBLT	NBRT	WBRT	WBLT	Inbound	Outbound	Total
0400-0415	6	3	7	0	9	7	16
0415-0430	7	2	8	1	9	9	18
0430-0445	7	5	5	0	12	5	17
0445-0500	7	3	15	0	10	15	25
0500-0515	4	6	24	0	10	24	34 *
0515-0530	7	3	17	1	10	18	28
0530-0545	9	6	15	1	15	16	31
0545-0600	3	2	8	0	5	8	13
0600-0615	8	0	13	0	8	13	21
0615-0630	4	0	14	1	4	15	19
0630-0645	6	0	13	0	6	13	19
0645-0700	6	3	7	0	9	7	16

APPENDIX D
SEMI-TRAILER TRUCK AND AUTO/BOAT TRAILER TURNING MOVEMENT ASSESSMENT

APPENDIX E RELATED PROJECTS TRIP GENERATION RATES/EQUATIONS

Table E-1

Related Projects Trip Generation Rates and Equations ITE 8th Edition Data (unless otherwise indicated)

Warehousing - per 1,000 gross square feet of floor area (ITE Land Use 150)

Daily Trips: T = 3.56 (A)

AM Peak Hour: T = 0.30 (A); I/B = 79%, O/B = 21%

PM Peak Hour: T = 0.32 (A); I/B = 25%. O/B = 75% (CTCSP "Storage" use; trip "splits" from ITE)

Apartment - per dwelling unit (ITE Land Use 220)

Daily Trips: T = 6.65 (U)

AM Peak Hour: T = 0.51 (U); I/B = 20%, O/B = 80%

PM Peak Hour: T = 0.70 (U); I/B = 65%. O/B = 35% (CTCSP; trip "splits" from ITE)

Single-Family Detached Housing - per dwelling unit (ITE Land Use 210)

Daily Trips: T = 9.57 (U)

AM Peak Hour: T = 0.75 (U); I/B = 25%, O/B = 75%

PM Peak Hour: T = 0.70 (U); I/B = 63%. O/B = 37% (CTCSP; trip "splits" from ITE)

<u>Condominium/Townhome</u> - per dwelling unit (ITE Land Use 230)

Daily Trips: T = 5.81 (U)

AM Peak Hour: T = 0.44 (U); I/B = 17%, O/B = 83%

PM Peak Hour: T = 0.70 (U); I/B = 67%. O/B = 33% (CTCSP; trip "splits" from ITE)

Hotel - per room (ITE Land Use 310)

Daily Trips: T = 8.17 (R)

AM Peak Hour: T = 0.56 (R); I/B = 61%, O/B = 39%

PM Peak Hour: T = 0.70 (U); I/B = 53%. O/B = 47% (CTCSP; trip "splits" from ITE)

General Office - per 1,000 gross square feet of floor area (ITE Land Use 710)

Daily Trips: T = 11.01 (A)

AM Peak Hour: T = 1.55 (A); I/B = 88%, O/B = 12%

PM Peak Hour: T = 2.80 (A); I/B = 17%. O/B = 83% (CTCSP "Office < 100 KSF"; trip "splits" from ITE)

Specialty Retail Center - per 1,000 gross square feet of floor area (ITE Land Use 814)

Daily Trips: T = 44.32 (A)

AM Peak Hour: T = 1.33 (A); I/B = 60%, O/B = 40% (SanDAG)

PM Peak Hour: T = 5.00 (A); I/B = 44%. O/B = 56% (CTCSP; trip "splits" from ITE)

Shopping Center - per 1,000 gross square feet of floor area (ITE Land Use 820)

Daily Trips: T = 42.94 (A)

AM Peak Hour: T = 1.00 (A); I/B = 61%, O/B = 39%PM Peak Hour: T = 3.73 (A); I/B = 49%. O/B = 51%

<u>Supermarket</u> - per 1,000 gross square feet of floor area (ITE Land Use 850)

Daily Trips: T = 102.24 (A)

AM Peak Hour: T = 3.59 (A); I/B = 61%, O/B = 39%

PM Peak Hour: T = 8.80 (A); I/B = 51%. O/B = 49% (CTCSP; trip "splits" from ITE)

Table E-1 (continued)

Related Projects Trip Generation Rates and Equations ITE 8th Edition Data (unless otherwise indicated)

Pharmacy/Drugstore - per 1,000 gross square feet of floor area (ITE Land Use 880)

Daily Trips: T = 90.06 (A)

AM Peak Hour: T = 3.209 (A); I/B = 59%, O/B = 41%PM Peak Hour: T = 8.42 (A); I/B = 50%. O/B = 50%

High-Turnover (Sit-Down) Restaurant - per 1,000 gross square feet of floor area (ITE Land Use 932)

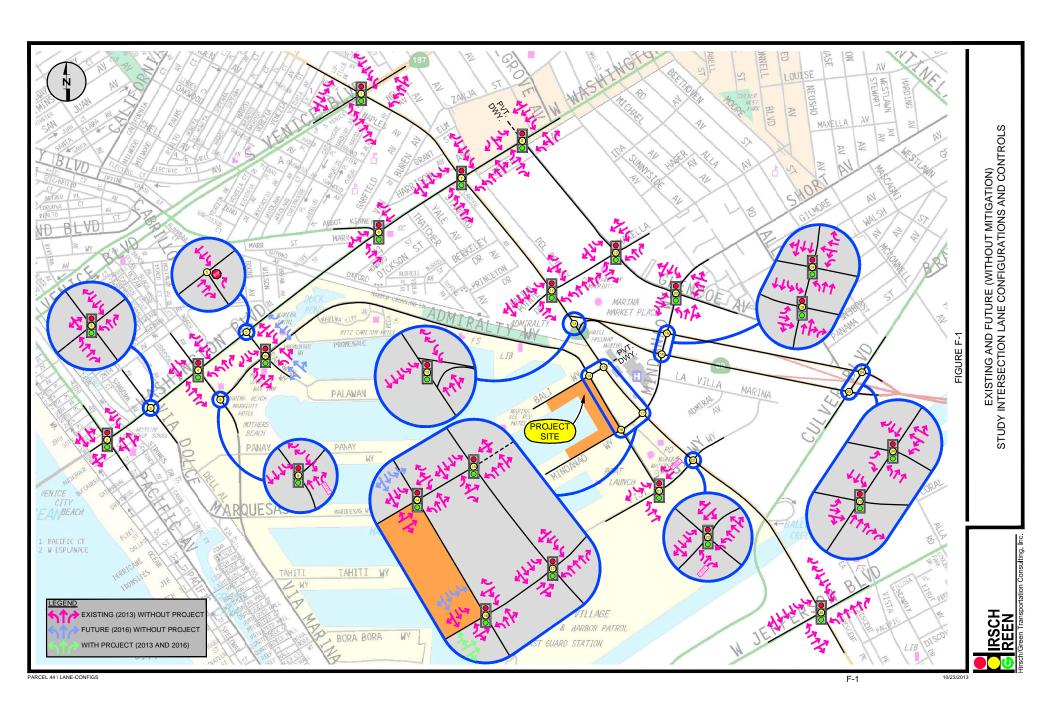
Daily Trips: T = 127.15 (A)

AM Peak Hour: T = 11.52 (A); I/B = 52%, O/B = 48%

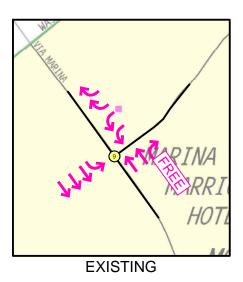
PM Peak Hour: T = 10.50 (A); I/B = 61%. O/B = 39% (CTCSP; trip "splits" from ITE)

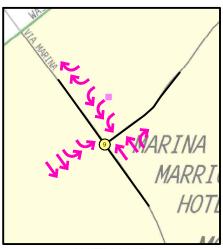
Where: T = Trip Ends

I/B = Inbound Trip Percentage


A = Building Area in 1,000 sq. ft.

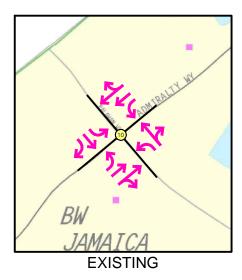
O/B = Outbound Trip Percentage

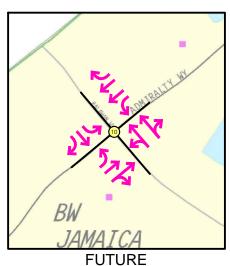

U = Dwelling Units


R = Room

APPENDIX F INTERSECTION GEOMETRICS/CONTROLS AND TRAFFIC COUNT DATA SHEETS

WITH LUP INTERSECTION IMPROVEMENTS ALTERNATIVE "A"


WITH LUP INTERSECTION IMPROVEMENTS ALTERNATIVE "B"


FIGURE F-2(a)

CUMULATIVE MITIGATION
INTERSECTION LANE CONFIGURATIONS
(LOS ANGELES COUNTY ONLY)
ADMIRALTY WAY / VIA MARINA

WITH LUP INTERSECTION IMPROVEMENTS ALTERNATIVE "A"

WITH LUP INTERSECTION IMPROVEMENTS ALTERNATIVE "B"

FIGURE F-2(b)

IRSCH
GREEN

Hirsch/Green Transportation Consulting, Inc.

CUMULATIVE MITIGATION
INTERSECTION LANE CONFIGURATIONS
(LOS ANGELES COUNTY ONLY)
ADMIRALTY WAY / PALAWAN WAY

FUTURE WITH PROJECT (INCLUDES PARTIAL LUP IMPROVEMENTS)

WITH FULL LUP INTERSECTION IMPROVEMENTS

FIGURE F-2(c)

IRSCH
GREEN

Hirsch/Green Transportation Consulting, Inc.

CUMULATIVE MITIGATION
INTERSECTION LANE CONFIGURATIONS
(LOS ANGELES COUNTY ONLY)
ADMIRALTY WAY / MINDANAO WAY

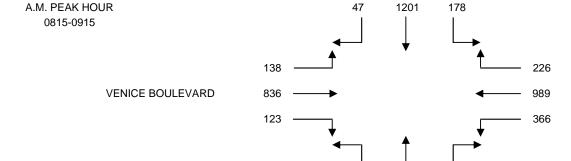
CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: THURSDAY, DECEMBER 15, 2011

PERIOD: 07:00 AM TO 10:00 AM INTERSECTION N/S LINCOLN BOULEVARD E/W VENICE BOULEVARD

FILE NUMBER: 1-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0700-0715	11	130	18	50	102	33	27	324	12	14	95	8
0715-0730	16	156	26	60	125	48	35	370	23	13	100	10
0730-0745	11	177	29	61	155	53	44	403	32	23	133	13
0745-0800	9	208	39	75	223	82	30	458	42	24	154	26
0800-0815	10	237	30	64	217	74	34	423	30	33	205	39
0815-0830	12	284	35	53	206	113	33	442	38	24	216	30
0830-0845	10	311	48	61	262	99	28	408	42	33	224	37
0845-0900	11	299	47	55	261	83	37	377	44	38	201	31
0900-0915	14	307	48	57	260	71	31	386	47	28	195	40
0915-0930	19	303	49	56	205	70	27	393	52	32	152	33
0930-0945	19	285	37	63	222	58	32	342	39	26	175	37
0945-1000	21	257	44	67	202	50	28	302	35	35	158	35


1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0700-0800	47	671	112	246	605	216	136	1555	109	74	482	57	4310
0715-0815	46	778	124	260	720	257	143	1654	127	93	592	88	4882
0730-0830	42	906	133	253	801	322	141	1726	142	104	708	108	5386
0745-0845	41	1040	152	253	908	368	125	1731	152	114	799	132	5815
0800-0900	43	1131	160	233	946	369	132	1650	154	128	846	137	5929
0815-0915	47	1201	178	226	989	366	129	1613	171	123	836	138	6017
0830-0930	54	1220	192	229	988	323	123	1564	185	131	772	141	5922
0845-0945	63	1194	181	231	948	282	127	1498	182	124	723	141	5694
0900-1000	73	1152	178	243	889	249	118	1423	173	121	680	145	5444

171

1613

LINCOLN BOULEVARD

129

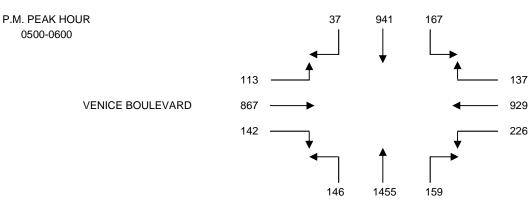
DATA PROVIDED BY:

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: THURSDAY, DECEMBER 15, 2011

PERIOD: 04:00 PM TO 07:00 PM
INTERSECTION N/S LINCOLN BOULEVARD


E/W VENICE BOULEVARD

FILE NUMBER: 1-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0400-0415	10	236	27	26	160	40	20	290	26	35	147	33
0415-0430	10	219	38	44	209	61	34	332	39	39	195	39
0430-0445	11	220	22	48	249	58	35	385	44	49	223	24
0445-0500	7	242	44	46	200	51	35	321	30	38	207	30
0500-0515	12	238	43	36	201	45	49	375	35	41	206	36
0515-0530	10	235	45	37	221	52	33	348	36	32	204	31
0530-0545	7	241	33	30	246	72	39	372	34	31	242	24
0545-0600	8	227	46	34	261	57	38	360	41	38	215	22
0600-0615	11	238	44	31	224	65	30	344	38	42	200	24
0615-0630	10	206	55	39	231	46	37	351	44	47	213	24
0630-0645	9	200	43	33	212	69	44	337	36	36	182	19
0645-0700	8	216	28	30	232	80	34	357	45	23	153	24

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0400-0500	38	917	131	164	818	210	124	1328	139	161	772	126	4928
0415-0515	40	919	147	174	859	215	153	1413	148	167	831	129	5195
0430-0530	40	935	154	167	871	206	152	1429	145	160	840	121	5220
0445-0545	36	956	165	149	868	220	156	1416	135	142	859	121	5223
0500-0600	37	941	167	137	929	226	159	1455	146	142	867	113	5319
0515-0615	36	941	168	132	952	246	140	1424	149	143	861	101	5293
0530-0630	36	912	178	134	962	240	144	1427	157	158	870	94	5312
0545-0645	38	871	188	137	928	237	149	1392	159	163	810	89	5161
0600-0700	38	860	170	133	899	260	145	1389	163	148	748	91	5044

LINCOLN BOULEVARD

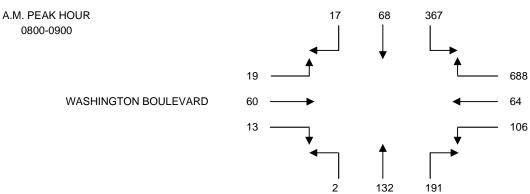
DATA PROVIDED BY:

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: WEDNESDAY, DECEMBER 7, 2011

PERIOD: 07:00 AM TO 10:00 AM INTERSECTION N/S PACIFIC AVENUE


E/W WASHINGTON BOULEVARD

FILE NUMBER: 2-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0700-0715	5	11	42	107	7	13	17	19	1	1	12	5
0715-0730	4	11	59	136	9	15	21	21	1	2	8	2
0730-0745	8	14	51	158	10	19	27	30	3	3	11	6
0745-0800	5	16	81	164	14	29	49	47	0	5	13	3
0800-0815	6	19	83	188	16	26	50	32	0	4	18	5
0815-0830	5	16	83	173	22	28	40	30	0	2	13	4
0830-0845	2	19	99	160	15	20	48	30	1	5	14	3
0845-0900	4	14	102	167	11	32	53	40	1	2	15	7
0900-0915	4	19	92	157	10	29	51	25	0	1	14	5
0915-0930	3	18	81	152	11	33	47	37	2	3	13	2
0930-0945	5	18	64	149	16	24	42	32	1	2	15	5
0945-1000	9	19	74	118	10	35	39	29	1	0	16	3

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0700-0800	22	52	233	565	40	76	114	117	5	11	44	16	1295
0715-0815	23	60	274	646	49	89	147	130	4	14	50	16	1502
0730-0830	24	65	298	683	62	102	166	139	3	14	55	18	1629
0745-0845	18	70	346	685	67	103	187	139	1	16	58	15	1705
0800-0900	17	68	367	688	64	106	191	132	2	13	60	19	1727
0815-0915	15	68	376	657	58	109	192	125	2	10	56	19	1687
0830-0930	13	70	374	636	47	114	199	132	4	11	56	17	1673
0845-0945	16	69	339	625	48	118	193	134	4	8	57	19	1630
0900-1000	21	74	311	576	47	121	179	123	4	6	58	15	1535

PACIFIC AVENUE

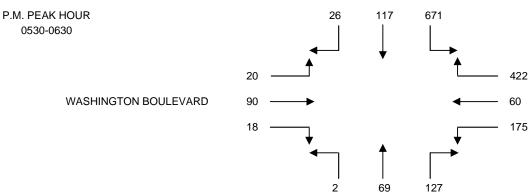
DATA PROVIDED BY:

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: WEDNESDAY, DECEMBER 7, 2011

PERIOD: 04:00 PM TO 07:00 PM INTERSECTION N/S PACIFIC AVENUE


E/W WASHINGTON BOULEVARD

FILE NUMBER: 2-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0400-0415	5	21	132	95	11	28	33	19	1	3	18	3
0415-0430	7	26	144	108	13	41	27	17	1	4	17	5
0430-0445	6	24	139	116	13	44	25	21	1	5	22	9
0445-0500	7	29	161	100	15	46	23	21	3	6	20	10
0500-0515	13	33	145	118	12	40	34	14	1	8	20	5
0515-0530	8	33	143	104	18	32	32	14	3	4	17	5
0530-0545	5	36	185	109	13	51	26	22	0	2	17	7
0545-0600	6	21	181	111	13	48	28	16	1	5	21	3
0600-0615	8	32	145	100	15	32	36	17	1	6	31	3
0615-0630	7	28	160	102	19	44	37	14	0	5	21	7
0630-0645	11	27	153	90	15	41	28	13	1	2	21	4
0645-0700	12	31	151	94	19	49	22	18	1	1	26	8

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0400-0500	25	100	576	419	52	159	108	78	6	18	77	27	1645
0415-0515	33	112	589	442	53	171	109	73	6	23	79	29	1719
0430-0530	34	119	588	438	58	162	114	70	8	23	79	29	1722
0445-0545	33	131	634	431	58	169	115	71	7	20	74	27	1770
0500-0600	32	123	654	442	56	171	120	66	5	19	75	20	1783
0515-0615	27	122	654	424	59	163	122	69	5	17	86	18	1766
0530-0630	26	117	671	422	60	175	127	69	2	18	90	20	1797
0545-0645	32	108	639	403	62	165	129	60	3	18	94	17	1730
0600-0700	38	118	609	386	68	166	123	62	3	14	99	22	1708

PACIFIC AVENUE

DATA PROVIDED BY:

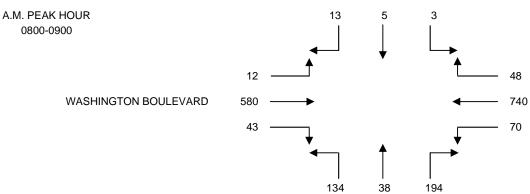
THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: WEDNESDAY, DECEMBER 7, 2011

PERIOD: 07:00 AM TO 10:00 AM

INTERSECTION N/S DELL AVENUE / VIA DOLCE


E/W WASHINGTON BOULEVARD

FILE NUMBER: 3-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0700-0715	1	1	0	7	110	16	20	4	19	9	70	0
0715-0730	0	1	0	5	142	11	27	3	26	7	92	1
0730-0745	0	0	2	5	162	10	43	5	34	11	103	2
0745-0800	3	2	0	9	190	18	49	7	21	11	113	5
0800-0815	2	0	3	13	197	18	53	8	27	10	120	4
0815-0830	4	0	0	14	194	22	37	9	32	6	139	2
0830-0845	5	2	0	12	150	17	55	10	41	15	157	2
0845-0900	2	3	0	9	199	13	49	11	34	12	164	4
0900-0915	3	1	0	6	175	16	31	10	32	13	141	3
0915-0930	1	0	2	11	167	15	39	9	35	10	124	2
0930-0945	2	0	2	10	161	16	25	8	20	12	132	3
0945-1000	2	1	0	8	145	17	22	6	12	9	120	5

1	1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
Т	TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
07	700-0800	4	4	2	26	604	55	139	19	100	38	378	8	1377
07	715-0815	5	3	5	32	691	57	172	23	108	39	428	12	1575
07	730-0830	9	2	5	41	743	68	182	29	114	38	475	13	1719
07	745-0845	14	4	3	48	731	75	194	34	121	42	529	13	1808
30	800-0900	13	5	3	48	740	70	194	38	134	43	580	12	1880
30	815-0915	14	6	0	41	718	68	172	40	139	46	601	11	1856
30	830-0930	11	6	2	38	691	61	174	40	142	50	586	11	1812
30	845-0945	8	4	4	36	702	60	144	38	121	47	561	12	1737
09	900-1000	8	2	4	35	648	64	117	33	99	44	517	13	1584

DELL AVENUE / VIA DOLCE

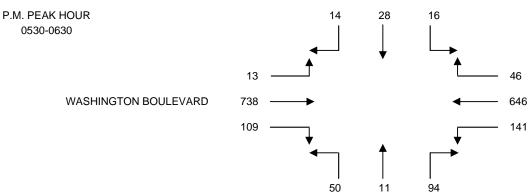
DATA PROVIDED BY:

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: WEDNESDAY, DECEMBER 7, 2011

PERIOD: 04:00 PM TO 07:00 PM
INTERSECTION N/S DELL AVENUE / VIA DOLCE


E/W WASHINGTON BOULEVARD

FILE NUMBER: 3-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0400-0415	3	4	3	7	135	19	15	5	8	22	152	3
0415-0430	5	4	1	10	148	23	17	3	11	19	173	5
0430-0445	2	5	2	8	166	21	19	4	11	21	184	5
0445-0500	2	7	3	9	161	20	25	6	12	29	177	3
0500-0515	5	5	2	12	158	36	28	8	13	20	174	6
0515-0530	6	11	2	10	150	30	22	7	9	20	180	7
0530-0545	3	8	5	14	169	29	15	5	14	23	197	3
0545-0600	2	5	5	10	159	37	22	2	11	36	199	5
0600-0615	2	6	2	9	151	42	34	2	15	26	177	3
0615-0630	7	9	4	13	167	33	23	2	10	24	165	2
0630-0645	4	4	0	10	137	48	25	3	13	28	169	1
0645-0700	4	7	3	15	133	40	15	4	13	24	185	1

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0400-050	0 12	20	9	34	610	83	76	18	42	91	686	16	1697
0415-051	5 14	21	8	39	633	100	89	21	47	89	708	19	1788
0430-053	0 15	28	9	39	635	107	94	25	45	90	715	21	1823
0445-054	5 16	31	12	45	638	115	90	26	48	92	728	19	1860
0500-060	0 16	29	14	46	636	132	87	22	47	99	750	21	1899
0515-061	5 13	30	14	43	629	138	93	16	49	105	753	18	1901
0530-063	0 14	28	16	46	646	141	94	11	50	109	738	13	1906
0545-064	5 15	24	11	42	614	160	104	9	49	114	710	11	1863
0600-070	0 17	26	9	47	588	163	97	11	51	102	696	7	1814

DELL AVENUE / VIA DOLCE

DATA PROVIDED BY:

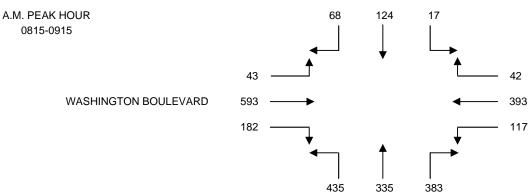
THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: THURSDAY, DECEMBER 8, 2011

PERIOD: 07:00 AM TO 10:00 AM

INTERSECTION N/S OCEAN AVENUE / VIA MARINA


E/W WASHINGTON BOULEVARD

FILE NUMBER: 4-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0700-0715	10	8	4	8	60	23	67	50	59	17	61	7
0715-0730	9	10	3	5	64	22	72	58	74	23	70	8
0730-0745	7	20	3	7	84	30	74	98	100	24	85	9
0745-0800	10	22	2	5	81	27	101	88	97	32	135	15
0800-0815	14	27	4	7	110	25	104	83	106	35	116	12
0815-0830	19	31	5	9	92	39	80	85	119	57	154	11
0830-0845	14	37	3	7	102	21	112	82	105	43	141	11
0845-0900	17	30	6	13	96	29	91	90	111	42	157	11
0900-0915	18	26	3	13	103	28	100	78	100	40	141	10
0915-0930	16	24	5	9	95	27	98	83	79	44	137	10
0930-0945	18	24	7	5	91	23	93	85	83	49	102	9
0945-1000	20	32	7	6	88	23	137	68	65	32	100	7

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0700-0800	36	60	12	25	289	102	314	294	330	96	351	39	1948
0715-0815	40	79	12	24	339	104	351	327	377	114	406	44	2217
0730-0830	50	100	14	28	367	121	359	354	422	148	490	47	2500
0745-0845	57	117	14	28	385	112	397	338	427	167	546	49	2637
0800-0900	64	125	18	36	400	114	387	340	441	177	568	45	2715
0815-0915	68	124	17	42	393	117	383	335	435	182	593	43	2732
0830-0930	65	117	17	42	396	105	401	333	395	169	576	42	2658
0845-0945	69	104	21	40	385	107	382	336	373	175	537	40	2569
0900-1000	72	106	22	33	377	101	428	314	327	165	480	36	2461

OCEAN AVENUE / VIA MARINA

DATA PROVIDED BY:

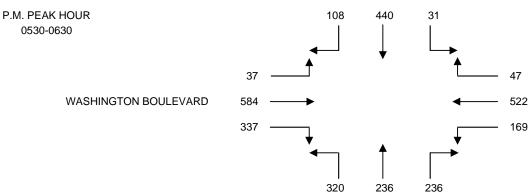
THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: THURSDAY, DECEMBER 8, 2011

PERIOD: 04:00 PM TO 07:00 PM

INTERSECTION N/S OCEAN AVENUE / VIA MARINA


E/W WASHINGTON BOULEVARD

FILE NUMBER: 4-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0400-0415	28	83	5	11	115	33	54	59	49	69	131	9
0415-0430	27	97	9	15	97	39	58	62	74	90	144	6
0430-0445	31	88	12	10	106	37	60	62	79	80	143	12
0445-0500	25	88	8	6	115	27	54	53	63	75	152	5
0500-0515	23	98	12	13	129	30	56	46	61	75	136	4
0515-0530	30	109	7	13	127	43	79	79	74	85	122	7
0530-0545	29	108	5	11	127	45	56	56	88	79	147	9
0545-0600	28	112	11	15	129	43	58	58	72	72	163	11
0600-0615	25	110	5	11	134	37	52	52	69	83	137	7
0615-0630	26	110	10	10	132	44	70	70	91	103	137	10
0630-0645	22	92	8	7	135	46	68	68	83	94	120	6
0645-0700	28	98	9	6	121	45	54	54	70	83	135	6

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0400-050	0 111	356	34	42	433	136	226	236	265	314	570	32	2755
0415-051	5 106	371	41	44	447	133	228	223	277	320	575	27	2792
0430-053	0 109	383	39	42	477	137	249	240	277	315	553	28	2849
0445-054	5 107	403	32	43	498	145	245	234	286	314	557	25	2889
0500-060	0 110	427	35	52	512	161	249	239	295	311	568	31	2990
0515-061	5 112	439	28	50	517	168	245	245	303	319	569	34	3029
0530-063	0 108	440	31	47	522	169	236	236	320	337	584	37	3067
0545-064	5 101	424	34	43	530	170	248	248	315	352	557	34	3056
0600-070	0 101	410	32	34	522	172	244	244	313	363	529	29	2993

OCEAN AVENUE / VIA MARINA

DATA PROVIDED BY:

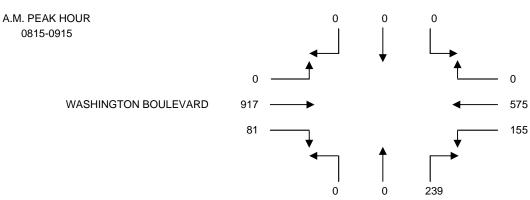
THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: THURSDAY, DECEMBER 8, 2011

PERIOD: 07:00 AM TO 10:00 AM

INTERSECTION N/S PALAWAN WAY


E/W WASHINGTON BOULEVARD

FILE NUMBER: 5-AM

4 - 1	==		_	-		_	-	_	_	_			
15 M	IINUTE	1	2	3	4	5	6	/	8	9	10	11	12
TO	TALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0700	0-0715	0	0	0	0	81	12	20	0	0	5	116	0
071	5-0730	0	0	0	0	98	19	33	0	0	11	150	0
0730	0-0745	0	0	0	0	99	18	31	0	0	9	161	0
074	5-0800	0	0	0	0	121	16	51	0	0	14	185	0
080	0-0815	0	0	0	0	126	22	79	0	0	20	238	0
081	5-0830	0	0	0	0	143	35	77	0	0	20	228	0
0830	0-0845	0	0	0	0	157	40	55	0	0	20	227	0
084	5-0900	0	0	0	0	138	41	50	0	0	20	229	0
0900	0-0915	0	0	0	0	137	39	57	0	0	21	233	0
091	5-0930	0	0	0	0	132	26	52	0	0	24	208	0
0930	0-0945	0	0	0	0	138	37	53	0	0	22	203	0
094	5-1000	0	0	0	0	115	27	42	0	0	20	175	0

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0700-0800	0	0	0	0	399	65	135	0	0	39	612	0	1250
0715-0815	0	0	0	0	444	75	194	0	0	54	734	0	1501
0730-0830	0	0	0	0	489	91	238	0	0	63	812	0	1693
0745-0845	0	0	0	0	547	113	262	0	0	74	878	0	1874
0800-0900	0	0	0	0	564	138	261	0	0	80	922	0	1965
0815-0915	0	0	0	0	575	155	239	0	0	81	917	0	1967
0830-0930	0	0	0	0	564	146	214	0	0	85	897	0	1906
0845-0945	0	0	0	0	545	143	212	0	0	87	873	0	1860
0900-1000	0	0	0	0	522	129	204	0	0	87	819	0	1761

PALAWAN WAY

DATA PROVIDED BY:

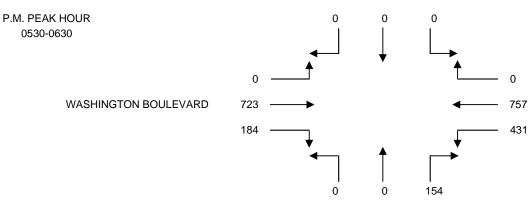
THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: THURSDAY, DECEMBER 8, 2011

PERIOD: 04:00 PM TO 07:00 PM

INTERSECTION N/S PALAWAN WAY


E/W WASHINGTON BOULEVARD

FILE NUMBER: 5-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0400-0415	0	0	0	0	140	57	31	0	0	41	186	0
0415-0430	0	0	0	0	168	63	49	0	0	30	192	0
0430-0445	0	0	0	0	167	70	30	0	0	43	187	0
0445-0500	0	0	0	0	165	81	28	0	0	30	182	0
0500-0515	0	0	0	0	149	60	33	0	0	36	167	0
0515-0530	0	0	0	0	176	74	40	0	0	43	198	0
0530-0545	0	0	0	0	201	118	46	0	0	50	199	0
0545-0600	0	0	0	0	179	109	42	0	0	48	164	0
0600-0615	0	0	0	0	186	103	37	0	0	46	165	0
0615-0630	0	0	0	0	191	101	29	0	0	40	195	0
0630-0645	0	0	0	0	200	105	31	0	0	42	176	0
0645-0700	0	0	0	0	194	98	31	0	0	43	135	0

1 HOL	IR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTA	_S	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0400-0	500	0	0	0	0	640	271	138	0	0	144	747	0	1940
0415-0	515	0	0	0	0	649	274	140	0	0	139	728	0	1930
0430-0	530	0	0	0	0	657	285	131	0	0	152	734	0	1959
0445-0	545	0	0	0	0	691	333	147	0	0	159	746	0	2076
0500-0	600	0	0	0	0	705	361	161	0	0	177	728	0	2132
0515-0	315	0	0	0	0	742	404	165	0	0	187	726	0	2224
0530-0	630	0	0	0	0	757	431	154	0	0	184	723	0	2249
0545-0	645	0	0	0	0	756	418	139	0	0	176	700	0	2189
0600-0	700	0	0	0	0	771	407	128	0	0	171	671	0	2148

PALAWAN WAY

DATA PROVIDED BY:

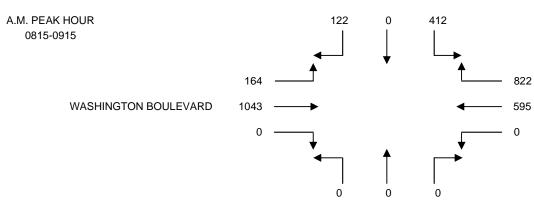
THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: WEDNESDAY, DECEMBER 14, 2011

PERIOD: 07:00 AM TO 10:00 AM

INTERSECTION N/S ABBOT KINNEY BOULEVARD


E/W WASHINGTON BOULEVARD

FILE NUMBER: 6-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0700-0715	14	0	24	82	103	0	0	0	0	0	125	13
0715-0730	11	0	43	90	91	0	0	0	0	0	161	21
0730-0745	10	0	66	117	106	0	0	0	0	0	179	23
0745-0800	15	0	70	148	123	0	0	0	0	0	212	42
0800-0815	20	0	82	181	144	0	0	0	0	0	263	47
0815-0830	34	0	119	232	118	0	0	0	0	0	292	40
0830-0845	35	0	92	200	150	0	0	0	0	0	220	41
0845-0900	31	0	83	202	177	0	0	0	0	0	281	36
0900-0915	22	0	118	188	150	0	0	0	0	0	250	47
0915-0930	25	0	78	176	148	0	0	0	0	0	242	40
0930-0945	21	0	75	174	144	0	0	0	0	0	241	37
0945-1000	22	0	70	122	134	0	0	0	0	0	224	28

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0700-0800	50	0	203	437	423	0	0	0	0	0	677	99	1889
0715-0815	56	0	261	536	464	0	0	0	0	0	815	133	2265
0730-0830	79	0	337	678	491	0	0	0	0	0	946	152	2683
0745-0845	104	0	363	761	535	0	0	0	0	0	987	170	2920
0800-0900	120	0	376	815	589	0	0	0	0	0	1056	164	3120
0815-0915	122	0	412	822	595	0	0	0	0	0	1043	164	3158
0830-0930	113	0	371	766	625	0	0	0	0	0	993	164	3032
0845-0945	99	0	354	740	619	0	0	0	0	0	1014	160	2986
0900-1000	90	0	341	660	576	0	0	0	0	0	957	152	2776

ABBOT KINNEY BOULEVARD

DATA PROVIDED BY:

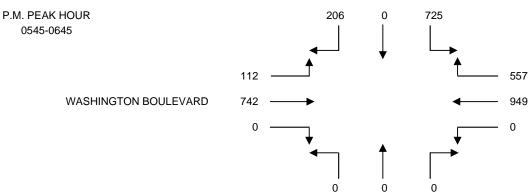
THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: WEDNESDAY, DECEMBER 14, 2011

PERIOD: 04:00 PM TO 07:00 PM

INTERSECTION N/S ABBOT KINNEY BOULEVARD


E/W WASHINGTON BOULEVARD

FILE NUMBER: 6-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0400-0415	49	0	120	83	165	0	0	0	0	0	177	21
0415-0430	35	0	122	96	190	0	0	0	0	0	214	20
0430-0445	52	0	120	104	199	0	0	0	0	0	229	23
0445-0500	62	0	131	94	182	0	0	0	0	0	198	30
0500-0515	52	0	146	123	209	0	0	0	0	0	182	22
0515-0530	58	0	149	129	222	0	0	0	0	0	223	29
0530-0545	48	0	147	115	208	0	0	0	0	0	201	36
0545-0600	59	0	199	140	241	0	0	0	0	0	223	30
0600-0615	54	0	189	157	202	0	0	0	0	0	170	24
0615-0630	40	0	163	129	275	0	0	0	0	0	192	31
0630-0645	53	0	174	131	231	0	0	0	0	0	157	27
0645-0700	46	0	151	131	246	0	0	0	0	0	174	26

١	1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
Į	TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
	0400-0500	198	0	493	377	736	0	0	0	0	0	818	94	2716
	0415-0515	201	0	519	417	780	0	0	0	0	0	823	95	2835
	0430-0530	224	0	546	450	812	0	0	0	0	0	832	104	2968
	0445-0545	220	0	573	461	821	0	0	0	0	0	804	117	2996
	0500-0600	217	0	641	507	880	0	0	0	0	0	829	117	3191
	0515-0615	219	0	684	541	873	0	0	0	0	0	817	119	3253
	0530-0630	201	0	698	541	926	0	0	0	0	0	786	121	3273
	0545-0645	206	0	725	557	949	0	0	0	0	0	742	112	3291
	0600-0700	193	0	677	548	954	0	0	0	0	0	693	108	3173

ABBOT KINNEY BOULEVARD

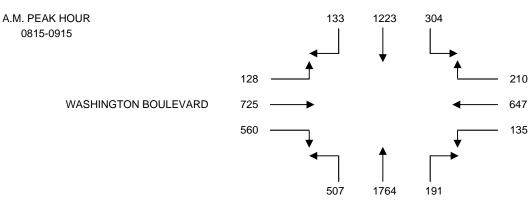
DATA PROVIDED BY:

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: THURSDAY, DECEMBER 15, 2011

PERIOD: 07:00 AM TO 10:00 AM INTERSECTION N/S LINCOLN BOULEVARD


E/W WASHINGTON BOULEVARD

FILE NUMBER: 7-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0700-0715	12	158	24	24	74	14	23	341	82	64	103	26
0715-0730	18	180	24	30	105	21	33	406	109	99	115	20
0730-0745	20	215	28	46	125	21	24	443	85	102	123	18
0745-0800	21	261	31	50	133	23	31	499	130	115	150	23
0800-0815	30	293	53	64	164	31	33	468	131	125	193	24
0815-0830	28	311	62	62	153	32	46	492	139	147	181	24
0830-0845	33	302	80	50	164	32	45	397	120	137	169	24
0845-0900	32	316	72	49	169	35	49	453	121	140	192	34
0900-0915	40	294	90	49	161	36	51	422	127	136	183	46
0915-0930	47	266	82	45	167	33	40	348	123	130	169	45
0930-0945	24	286	77	53	142	40	63	380	117	125	174	30
0945-1000	26	247	72	60	108	41	56	362	120	117	167	25

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0700-0800	71	814	107	150	437	79	111	1689	406	380	491	87	4822
0715-0815	89	949	136	190	527	96	121	1816	455	441	581	85	5486
0730-0830	99	1080	174	222	575	107	134	1902	485	489	647	89	6003
0745-0845	112	1167	226	226	614	118	155	1856	520	524	693	95	6306
 0800-0900	123	1222	267	225	650	130	173	1810	511	549	735	106	6501
0815-0915	133	1223	304	210	647	135	191	1764	507	560	725	128	6527
0830-0930	152	1178	324	193	661	136	185	1620	491	543	713	149	6345
0845-0945	143	1162	321	196	639	144	203	1603	488	531	718	155	6303
0900-1000	137	1093	321	207	578	150	210	1512	487	508	693	146	6042

LINCOLN BOULEVARD

DATA PROVIDED BY:

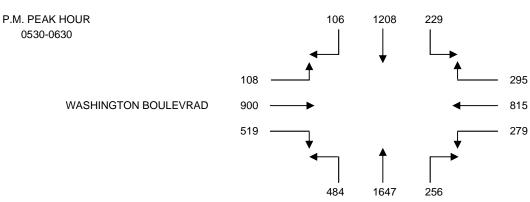
THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978 FAX: 626-446-2877

.

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: THURSDAY, DECEMBER 15, 2011

PERIOD: 04:00 PM TO 07:00 PM INTERSECTION N/S LINCOLN BOULEVARD


E/W WASHINGTON BOULEVRAD

FILE NUMBER: 7-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0400-0415	20	291	73	85	132	62	49	385	104	102	147	35
0415-0430	25	320	72	89	160	63	62	360	109	125	212	40
0430-0445	33	264	57	74	169	75	68	375	124	127	206	33
0445-0500	24	325	56	89	173	68	81	386	122	131	201	34
0500-0515	27	322	65	79	167	71	77	422	117	123	188	30
0515-0530	22	311	60	70	189	75	66	393	129	138	227	35
0530-0545	31	286	48	72	173	66	73	416	120	130	203	24
0545-0600	25	298	64	88	205	59	59	425	131	132	247	35
0600-0615	26	288	57	67	213	69	58	417	118	124	222	29
0615-0630	24	336	60	68	224	85	66	389	115	133	228	20
0630-0645	27	291	49	81	215	82	61	350	122	121	210	28
0645-0700	27	302	57	73	223	70	55	396	121	126	190	24

1 HOUR	9	10	11	12	
TOTALS SBRT SBTH SBLT WBRT WBTH WBLT NBRT NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0400-0500 102 1200 258 337 634 268 260 1506	459	485	766	142	6417
0415-0515 109 1231 250 331 669 277 288 1543	472	506	807	137	6620
0430-0530 106 1222 238 312 698 289 292 1576	492	519	822	132	6698
0445-0545 104 1244 229 310 702 280 297 1617	488	522	819	123	6735
0500-0600 105 1217 237 309 734 271 275 1656	497	523	865	124	6813
<u>0515-0615</u> 104 1183 229 297 780 269 256 1651	498	524	899	123	6813
0530-0630 106 1208 229 295 815 279 256 1647	484	519	900	108	6846
0545-0645 102 1213 230 304 857 295 244 1581	486	510	907	112	6841
0600-0700 104 1217 223 289 875 306 240 1552	476	504	850	101	6737

LINCOLN BOULEVARD

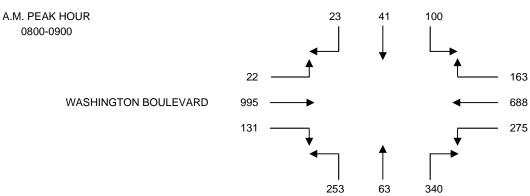
DATA PROVIDED BY:

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: TUESDAY, DECEMBER 13, 2011

PERIOD: 07:00 AM TO 10:00 AM INTERSECTION N/S GLENCOE AVENUE


E/W WASHINGTON BOULEVARD

FILE NUMBER: 8-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0700-0715	1	5	12	18	93	23	43	7	27	13	120	2
0715-0730	2	8	17	24	118	30	79	13	42	18	152	3
0730-0745	3	10	19	31	132	50	83	22	62	20	175	4
0745-0800	5	10	28	30	159	79	97	19	73	26	218	3
0800-0815	8	10	24	35	177	69	86	16	71	30	245	5
0815-0830	6	9	26	30	185	62	88	15	66	30	248	3
0830-0845	3	9	24	47	176	57	94	13	57	35	253	7
0845-0900	6	13	26	51	150	87	72	19	59	36	249	7
0900-0915	7	19	27	44	174	63	65	18	60	41	241	9
0915-0930	11	10	20	58	174	59	64	22	55	49	234	7
0930-0945	13	15	15	66	177	50	66	26	44	53	250	9
0945-1000	15	11	16	71	188	52	60	27	40	46	221	11

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0700-0800	11	33	76	103	502	182	302	61	204	77	665	12	2228
0715-0815	18	38	88	120	586	228	345	70	248	94	790	15	2640
0730-0830	22	39	97	126	653	260	354	72	272	106	886	15	2902
0745-0845	22	38	102	142	697	267	365	63	267	121	964	18	3066
0800-0900	23	41	100	163	688	275	340	63	253	131	995	22	3094
0815-0915	22	50	103	172	685	269	319	65	242	142	991	26	3086
0830-0930	27	51	97	200	674	266	295	72	231	161	977	30	3081
0845-0945	37	57	88	219	675	259	267	85	218	179	974	32	3090
0900-1000	46	55	78	239	713	224	255	93	199	189	946	36	3073

GLENCOE AVENUE

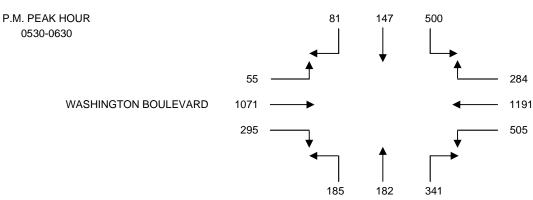
DATA PROVIDED BY:

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: TUESDAY, DECEMBER 13, 2011

PERIOD: 04:00 PM TO 07:00 PM INTERSECTION N/S GLENCOE AVENUE


E/W WASHINGTON BOULEVARD

FILE NUMBER: 8-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0400-0415	15	35	110	88	244	91	68	33	40	61	232	11
0415-0430	21	30	132	77	239	102	57	42	57	71	241	12
0430-0445	20	32	120	68	265	111	82	43	39	68	279	15
0445-0500	16	33	143	86	263	118	74	44	42	72	294	11
0500-0515	13	45	137	88	279	108	69	49	47	72	274	16
0515-0530	20	48	119	80	305	127	80	42	37	63	280	19
0530-0545	25	42	130	74	300	121	86	38	42	64	257	15
0545-0600	16	34	122	62	281	101	79	43	41	70	267	11
0600-0615	19	40	127	74	277	129	88	50	49	81	292	10
0615-0630	21	31	121	74	333	154	88	51	53	80	255	19
0630-0645	19	34	132	63	276	119	83	53	53	80	254	11
0645-0700	13	36	108	55	255	130	91	49	52	71	221	12

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0400-0500	72	130	505	319	1011	422	281	162	178	272	1046	49	4447
0415-0515	70	140	532	319	1046	439	282	178	185	283	1088	54	4616
0430-0530	69	158	519	322	1112	464	305	178	165	275	1127	61	4755
0445-0545	74	168	529	328	1147	474	309	173	168	271	1105	61	4807
0500-0600	74	169	508	304	1165	457	314	172	167	269	1078	61	4738
0515-0615	80	164	498	290	1163	478	333	173	169	278	1096	55	4777
0530-0630	81	147	500	284	1191	505	341	182	185	295	1071	55	4837
0545-0645	75	139	502	273	1167	503	338	197	196	311	1068	51	4820
0600-0700	72	141	488	266	1141	532	350	203	207	312	1022	52	4786

GLENCOE AVENUE

DATA PROVIDED BY:

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

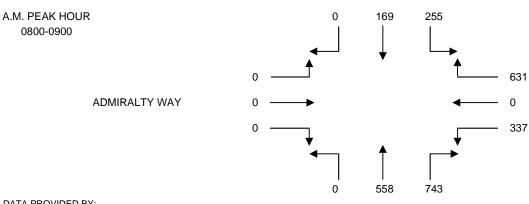
PH: 626-446-7978 FAX: 626-446-2877

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY TUESDAY, DECEMBER 13, 2011 DATE:

PERIOD: 07:00 AM TO 10:00 AM

INTERSECTION N/S VIA MARINA


> E/W ADMIRALTY WAY

FILE NUMBER: 9-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0700-0715	0	28	33	77	0	23	106	82	0	0	0	0
0715-0730	0	30	29	124	0	48	132	100	0	0	0	0
0730-0745	0	40	45	157	0	55	159	132	0	0	0	0
0745-0800	0	31	43	172	0	81	160	115	0	0	0	0
0800-0815	0	42	58	169	0	91	176	137	0	0	0	0
0815-0830	0	47	73	153	0	71	195	139	0	0	0	0
0830-0845	0	43	67	162	0	78	185	139	0	0	0	0
0845-0900	0	37	57	147	0	97	187	143	0	0	0	0
0900-0915	0	42	69	133	0	87	151	119	0	0	0	0
0915-0930	0	46	68	131	0	58	162	132	0	0	0	0
0930-0945	0	33	53	141	0	86	133	123	0	0	0	0
0945-1000	0	35	50	127	0	71	164	120	0	0	0	0

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0700-0800	0	129	150	530	0	207	557	429	0	0	0	0	2002
0715-0815	0	143	175	622	0	275	627	484	0	0	0	0	2326
0730-0830	0	160	219	651	0	298	690	523	0	0	0	0	2541
0745-0845	0	163	241	656	0	321	716	530	0	0	0	0	2627
0800-0900	0	169	255	631	0	337	743	558	0	0	0	0	2693
0815-0915	0	169	266	595	0	333	718	540	0	0	0	0	2621
0830-0930	0	168	261	573	0	320	685	533	0	0	0	0	2540
0845-0945	0	158	247	552	0	328	633	517	0	0	0	0	2435
0900-1000	0	156	240	532	0	302	610	494	0	0	0	0	2334

VIA MARINA

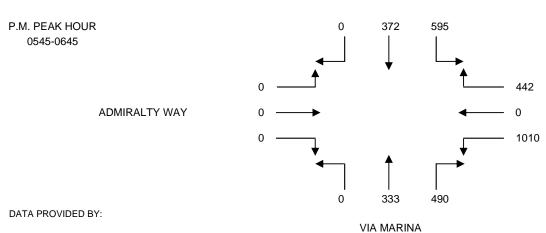
DATA PROVIDED BY:

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: TUESDAY, DECEMBER 13, 2011

PERIOD: 04:00 PM TO 07:00 PM


INTERSECTION N/S VIA MARINA

E/W ADMIRALTY WAY

FILE NUMBER: 9-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0400-0415	0	60	105	90	0	115	108	77	0	0	0	0
0415-0430	0	85	129	119	0	198	119	80	0	0	0	0
0430-0445	0	93	117	106	0	190	114	79	0	0	0	0
0445-0500	0	91	111	84	0	182	132	67	0	0	0	0
0500-0515	0	75	140	105	0	190	131	77	0	0	0	0
0515-0530	0	64	159	121	0	213	132	92	0	0	0	0
0530-0545	0	83	136	105	0	210	118	84	0	0	0	0
0545-0600	0	100	161	123	0	230	121	70	0	0	0	0
0600-0615	0	95	150	103	0	293	150	89	0	0	0	0
0615-0630	0	84	143	116	0	258	119	86	0	0	0	0
0630-0645	0	93	141	100	0	229	100	88	0	0	0	0
0645-0700	0	101	122	117	0	200	99	82	0	0	0	0

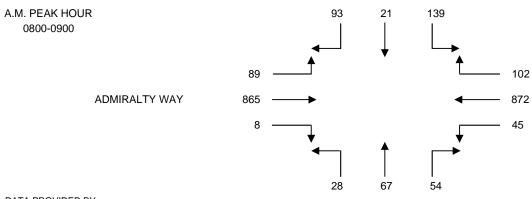
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0400-0500	0	329	462	399	0	685	473	303	0	0	0	0	2651
0415-0515	0	344	497	414	0	760	496	303	0	0	0	0	2814
0430-0530	0	323	527	416	0	775	509	315	0	0	0	0	2865
0445-0545	0	313	546	415	0	795	513	320	0	0	0	0	2902
0500-0600	0	322	596	454	0	843	502	323	0	0	0	0	3040
0515-0615	0	342	606	452	0	946	521	335	0	0	0	0	3202
0530-0630	0	362	590	447	0	991	508	329	0	0	0	0	3227
0545-0645	0	372	595	442	0	1010	490	333	0	0	0	0	3242
0600-0700	0	373	556	436	0	980	468	345	0	0	0	0	3158

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: WEDNESDAY, DECEMBER 14, 2011

PERIOD: 07:00 AM TO 10:00 AM INTERSECTION N/S PALAWAN WAY


E/W ADMIRALTY WAY

FILE NUMBER: 10-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0700-0715	7	1	12	10	122	4	6	4	0	2	146	9
0715-0730	10	2	15	12	153	5	16	9	3	3	153	13
0730-0745	15	2	18	19	195	7	13	12	2	1	176	10
0745-0800	20	3	27	29	238	15	12	11	3	2	177	19
0800-0815	28	3	36	33	249	11	19	16	5	1	220	23
0815-0830	24	6	33	22	200	10	12	19	9	3	212	24
0830-0845	21	5	37	23	215	11	13	14	5	1	204	20
0845-0900	20	7	33	24	208	13	10	18	9	3	229	22
0900-0915	20	8	31	24	197	9	13	15	5	4	223	25
0915-0930	20	9	32	27	181	9	17	16	5	4	213	24
0930-0945	22	8	33	23	167	8	11	13	9	6	173	20
0945-1000	20	10	32	22	158	11	5	13	6	4	162	16

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0700-0800	52	8	72	70	708	31	47	36	8	8	652	51	1743
0715-0815	73	10	96	93	835	38	60	48	13	7	726	65	2064
0730-0830	87	14	114	103	882	43	56	58	19	7	785	76	2244
0745-0845	93	17	133	107	902	47	56	60	22	7	813	86	2343
0800-0900	93	21	139	102	872	45	54	67	28	8	865	89	2383
0815-0915	85	26	134	93	820	43	48	66	28	11	868	91	2313
0830-0930	81	29	133	98	801	42	53	63	24	12	869	91	2296
0845-0945	82	32	129	98	753	39	51	62	28	17	838	91	2220
0900-1000	82	35	128	96	703	37	46	57	25	18	771	85	2083

PALAWAN WAY

DATA PROVIDED BY:

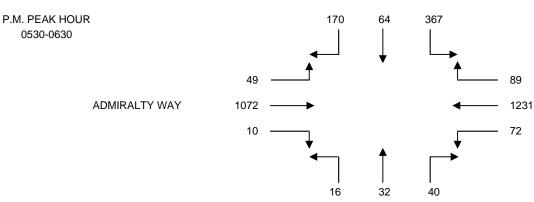
THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

PH: 626-446-7978 FAX: 626-446-2877

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: WEDNESDAY, DECEMBER 14, 2011

PERIOD: 04:00 PM TO 07:00 PM INTERSECTION N/S PALAWAN WAY


E/W ADMIRALTY WAY

FILE NUMBER: 10-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0400-0415	33	13	63	18	171	16	7	4	6	1	174	8
0415-0430	39	12	73	21	203	19	12	7	8	1	213	10
0430-0445	30	7	54	24	229	16	10	8	6	2	233	11
0445-0500	36	11	67	23	256	13	10	5	4	6	227	12
0500-0515	49	10	63	22	252	16	14	9	7	4	211	7
0515-0530	37	15	76	20	264	17	11	9	4	3	249	8
0530-0545	36	17	70	27	307	20	10	5	2	3	273	11
0545-0600	45	13	81	20	314	17	13	10	6	2	322	11
0600-0615	46	15	111	25	303	18	7	6	4	3	245	10
0615-0630	43	19	105	17	307	17	10	11	4	2	232	17
0630-0645	42	16	70	16	295	21	14	5	6	3	216	11
0645-0700	33	18	66	14	288	18	14	3	9	3	242	8

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0400-0500	138	43	257	86	859	64	39	24	24	10	847	41	2432
0415-0515	154	40	257	90	940	64	46	29	25	13	884	40	2582
0430-0530	152	43	260	89	1001	62	45	31	21	15	920	38	2677
0445-0545	158	53	276	92	1079	66	45	28	17	16	960	38	2828
0500-0600	167	55	290	89	1137	70	48	33	19	12	1055	37	3012
0515-0615	164	60	338	92	1188	72	41	30	16	11	1089	40	3141
0530-0630	170	64	367	89	1231	72	40	32	16	10	1072	49	3212
0545-0645	176	63	367	78	1219	73	44	32	20	10	1015	49	3146
0600-0700	164	68	352	72	1193	74	45	25	23	11	935	46	3008

PALAWAN WAY

DATA PROVIDED BY:

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

PH: 626-446-7978 FAX: 626-446-2877

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: WEDNESDAY, DECEMBER 14, 2011


PERIOD: 07:00 AM TO 10:00 AM INTERSECTION N/S LINCOLN BOULEVARD

E/W MARINA POINTE DRIVE / MAXELLA AVENUE

FILE NUMBER: 11-AM

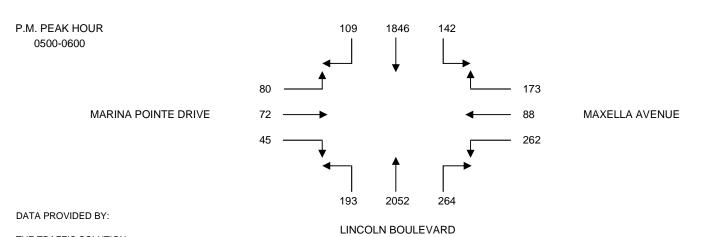
15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0700-0715	3	222	11	19	8	22	25	450	8	23	12	10
0715-0730	6	239	15	23	10	20	45	557	15	29	12	13
0730-0745	10	348	16	33	7	25	53	581	10	33	14	15
0745-0800	9	361	28	30	10	31	47	573	13	38	22	13
0800-0815	9	447	40	25	5	42	48	611	12	37	20	14
0815-0830	19	423	35	29	7	48	52	592	15	30	18	13
0830-0845	14	483	23	32	9	39	58	521	16	31	19	17
0845-0900	14	470	21	24	8	53	56	552	13	30	22	19
0900-0915	17	451	28	26	10	50	68	543	18	28	22	18
0915-0930	19	449	37	36	8	52	55	513	15	24	21	20
0930-0945	22	379	49	33	12	38	52	495	16	24	18	19
0945-1000	16	371	43	25	9	35	51	462	14	25	14	17

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0700-0800	28	1170	70	105	35	98	170	2161	46	123	60	51	4117
0715-0815	34	1395	99	111	32	118	193	2322	50	137	68	55	4614
0730-0830	47	1579	119	117	29	146	200	2357	50	138	74	55	4911
0745-0845	51	1714	126	116	31	160	205	2297	56	136	79	57	5028
0800-0900	56	1823	119	110	29	182	214	2276	56	128	79	63	5135
0815-0915	64	1827	107	111	34	190	234	2208	62	119	81	67	5104
0830-0930	64	1853	109	118	35	194	237	2129	62	113	84	74	5072
0845-0945	72	1749	135	119	38	193	231	2103	62	106	83	76	4967
0900-1000	74	1650	157	120	39	175	226	2013	63	101	75	74	4767

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: WEDNESDAY, DECEMBER 14, 2011


PERIOD: 04:00 PM TO 07:00 PM INTERSECTION N/S LINCOLN BOULEVARD

E/W MARINA POINTE DRIVE / MAXELLA AVENUE

FILE NUMBER: 11-PM

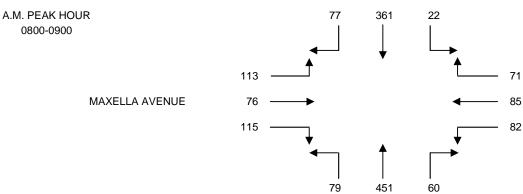
15 MINU	JTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTAL	_S	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0400-04	415	20	448	44	56	12	61	55	437	35	15	12	16
0415-04	430	24	468	53	37	17	64	75	473	37	19	18	18
0430-04	445	29	450	46	48	14	79	55	439	47	18	17	18
0445-0	500	21	487	37	44	16	64	70	464	47	14	12	19
0500-0	515	22	467	40	38	18	79	72	482	51	10	17	17
0515-0	530	27	468	37	43	22	60	72	537	40	14	20	19
0530-0	545	29	467	31	47	21	59	66	533	45	11	22	24
0545-06	600	31	444	34	45	27	64	54	500	57	10	13	20
0600-06	615	35	452	38	48	24	65	62	462	50	7	19	23
0615-06	630	29	464	41	49	22	67	50	482	32	10	15	21
0630-06	645	22	479	33	42	27	59	57	471	46	9	17	22
0645-07	700	25	466	29	44	22	63	46	439	45	8	16	17

1 H	OUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOT	ΓALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0400	-0500	94	1853	180	185	59	268	255	1813	166	66	59	71	5069
0415	5-0515	96	1872	176	167	65	286	272	1858	182	61	64	72	5171
0430	-0530	99	1872	160	173	70	282	269	1922	185	56	66	73	5227
0445	5-0545	99	1889	145	172	77	262	280	2016	183	49	71	79	5322
0500	-0600	109	1846	142	173	88	262	264	2052	193	45	72	80	5326
0515	5-0615	122	1831	140	183	94	248	254	2032	192	42	74	86	5298
0530	-0630	124	1827	144	189	94	255	232	1977	184	38	69	88	5221
0545	5-0645	117	1839	146	184	100	255	223	1915	185	36	64	86	5150
0600	0-0700	111	1861	141	183	95	254	215	1854	173	34	67	83	5071

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978 FAX: 626-446-2877

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: THURSDAY, DECEMBER 15, 2011


PERIOD: 07:00 AM TO 10:00 AM INTERSECTION N/S GLENCOE AVENUE E/W MAXELLA AVENUE

FILE NUMBER: 12-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0700-0715	9	28	0	9	15	3	11	52	11	9	18	13
0715-0730	11	46	2	8	16	9	9	107	17	15	22	24
0730-0745	13	54	3	13	17	12	12	122	14	23	15	26
0745-0800	17	75	6	21	20	20	25	133	14	28	14	30
0800-0815	19	88	4	20	16	29	20	129	19	31	15	24
0815-0830	18	82	7	17	22	20	11	117	16	31	26	32
0830-0845	20	84	4	15	24	20	12	103	19	28	20	24
0845-0900	20	107	7	19	23	13	17	102	25	25	15	33
0900-0915	20	93	3	13	21	14	17	104	29	34	19	28
0915-0930	19	80	4	7	20	15	15	105	22	35	19	23
0930-0945	21	88	6	11	22	15	15	106	24	33	15	22
0945-1000	19	90	3	11	17	11	14	103	19	30	20	24

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0700-0800	50	203	11	51	68	44	57	414	56	75	69	93	1191
0715-0815	60	263	15	62	69	70	66	491	64	97	66	104	1427
0730-0830	67	299	20	71	75	81	68	501	63	113	70	112	1540
0745-0845	74	329	21	73	82	89	68	482	68	118	75	110	1589
0800-0900	77	361	22	71	85	82	60	451	79	115	76	113	1592
0815-0915	78	366	21	64	90	67	57	426	89	118	80	117	1573
0830-0930	79	364	18	54	88	62	61	414	95	122	73	108	1538
0845-0945	80	368	20	50	86	57	64	417	100	127	68	106	1543
0900-1000	79	351	16	42	80	55	61	418	94	132	73	97	1498

GLENCOE AVENUE

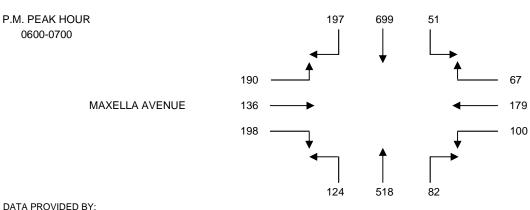
DATA PROVIDED BY:

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

PH: 626-446-7978 FAX: 626-446-2877

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY THURSDAY, DECEMBER 15, 2011 DATE:


PERIOD: 04:00 PM TO 07:00 PM **INTERSECTION** N/S **GLENCOE AVENUE** E/W MAXELLA AVENUE

FILE NUMBER: 12-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0400-0415	30	125	14	22	23	24	17	117	30	63	19	31
0415-0430	30	128	13	20	28	18	24	118	44	56	17	24
0430-0445	38	144	19	21	35	14	20	119	34	50	24	39
0445-0500	44	170	13	19	34	12	20	121	31	51	24	48
0500-0515	40	152	17	15	47	18	16	123	22	60	29	40
0515-0530	33	155	12	17	32	20	21	111	30	47	33	41
0530-0545	34	168	15	19	34	24	24	122	31	62	36	51
0545-0600	40	172	11	16	41	28	21	131	27	52	31	40
0600-0615	50	182	11	19	46	25	20	133	27	47	31	55
0615-0630	57	166	14	15	45	27	21	122	31	49	37	50
0630-0645	43	171	15	17	41	26	22	134	36	45	35	46
0645-0700	47	180	11	16	47	22	19	129	30	57	33	39

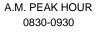
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0400-0500	142	567	59	82	120	68	81	475	139	220	84	142	2179
0415-0515	152	594	62	75	144	62	80	481	131	217	94	151	2243
0430-0530	155	621	61	72	148	64	77	474	117	208	110	168	2275
0445-0545	151	645	57	70	147	74	81	477	114	220	122	180	2338
0500-0600	147	647	55	67	154	90	82	487	110	221	129	172	2361
0515-0615	157	677	49	71	153	97	86	497	115	208	131	187	2428
0530-0630	181	688	51	69	166	104	86	508	116	210	135	196	2510
0545-0645	190	691	51	67	173	106	84	520	121	193	134	191	2521
0600-0700	197	699	51	67	179	100	82	518	124	198	136	190	2541

GLENCOE AVENUE

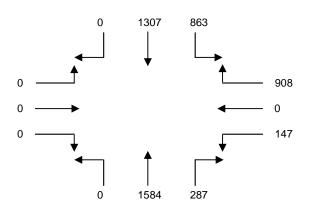
DATA PROVIDED BY:

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.


PROJECT: PARCEL 44 - MARINA DEL REY
DATE: THURSDAY, DECEMBER 15, 2011

PERIOD: 07:00 AM TO 10:00 AM INTERSECTION N/S LINCOLN BOULEVARD E/W MARINA EXPRESSWAY


FILE NUMBER: 13-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0700-0715	0	153	119	176	0	13	35	307	0	0	0	0
0715-0730	0	163	131	220	0	24	30	314	0	0	0	0
0730-0745	0	203	158	208	0	24	47	444	0	0	0	0
0745-0800	0	247	183	256	0	30	55	431	0	0	0	0
0800-0815	0	284	220	232	0	31	64	401	0	0	0	0
0815-0830	0	311	227	216	0	38	61	422	0	0	0	0
0830-0845	0	329	230	208	0	32	71	379	0	0	0	0
0845-0900	0	326	218	248	0	36	89	406	0	0	0	0
0900-0915	0	320	201	233	0	39	61	378	0	0	0	0
0915-0930	0	332	214	219	0	40	66	421	0	0	0	0
0930-0945	0	318	170	208	0	32	76	362	0	0	0	0
0945-1000	0	304	193	197	0	33	65	343	0	0	0	0

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0700-0800	0	766	591	860	0	91	167	1496	0	0	0	0	3971
0715-0815	0	897	692	916	0	109	196	1590	0	0	0	0	4400
0730-0830	0	1045	788	912	0	123	227	1698	0	0	0	0	4793
0745-0845	0	1171	860	912	0	131	251	1633	0	0	0	0	4958
0800-0900	0	1250	895	904	0	137	285	1608	0	0	0	0	5079
0815-0915	0	1286	876	905	0	145	282	1585	0	0	0	0	5079
0830-0930	0	1307	863	908	0	147	287	1584	0	0	0	0	5096
0845-0945	0	1296	803	908	0	147	292	1567	0	0	0	0	5013
0900-1000	0	1274	778	857	0	144	268	1504	0	0	0	0	4825
	TOTALS 0700-0800 0715-0815 0730-0830 0745-0845 0800-0900 0815-0915 0830-0930 0845-0945	TOTALS SBRT 0700-0800 0 0715-0815 0 0730-0830 0 0745-0845 0 0800-0900 0 0815-0915 0 0830-0930 0 0845-0945 0	TOTALS SBRT SBTH 0700-0800 0 766 0715-0815 0 897 0730-0830 0 1045 0745-0845 0 1171 0800-0900 0 1250 0815-0915 0 1286 0830-0930 0 1307 0845-0945 0 1296	TOTALS SBRT SBTH SBLT 0700-0800 0 766 591 0715-0815 0 897 692 0730-0830 0 1045 788 0745-0845 0 1171 860 0800-0900 0 1250 895 0815-0915 0 1286 876 0830-0930 0 1307 863 0845-0945 0 1296 803	TOTALS SBRT SBTH SBLT WBRT 0700-0800 0 766 591 860 0715-0815 0 897 692 916 0730-0830 0 1045 788 912 0745-0845 0 1171 860 912 0800-0900 0 1250 895 904 0815-0915 0 1286 876 905 0830-0930 0 1307 863 908 0845-0945 0 1296 803 908	TOTALS SBRT SBTH SBLT WBRT WBTH 0700-0800 0 766 591 860 0 0715-0815 0 897 692 916 0 0730-0830 0 1045 788 912 0 0745-0845 0 1171 860 912 0 0800-0900 0 1250 895 904 0 0815-0915 0 1286 876 905 0 0830-0930 0 1307 863 908 0 0845-0945 0 1296 803 908 0	TOTALS SBRT SBTH SBLT WBRT WBTH WBLT 0700-0800 0 766 591 860 0 91 0715-0815 0 897 692 916 0 109 0730-0830 0 1045 788 912 0 123 0745-0845 0 1171 860 912 0 131 0800-0900 0 1250 895 904 0 137 0815-0915 0 1286 876 905 0 145 0830-0930 0 1307 863 908 0 147 0845-0945 0 1296 803 908 0 147	TOTALS SBRT SBTH SBLT WBRT WBTH WBLT NBRT 0700-0800 0 766 591 860 0 91 167 0715-0815 0 897 692 916 0 109 196 0730-0830 0 1045 788 912 0 123 227 0745-0845 0 1171 860 912 0 131 251 0800-0900 0 1250 895 904 0 137 285 0815-0915 0 1286 876 905 0 145 282 0830-0930 0 1307 863 908 0 147 287 0845-0945 0 1296 803 908 0 147 292	TOTALS SBRT SBTH SBLT WBRT WBTH WBLT NBRT NBTH 0700-0800 0 766 591 860 0 91 167 1496 0715-0815 0 897 692 916 0 109 196 1590 0730-0830 0 1045 788 912 0 123 227 1698 0745-0845 0 1171 860 912 0 131 251 1633 0800-0900 0 1250 895 904 0 137 285 1608 0815-0915 0 1286 876 905 0 145 282 1585 0830-0930 0 1307 863 908 0 147 287 1584 0845-0945 0 1296 803 908 0 147 292 1567	TOTALS SBRT SBTH SBLT WBRT WBTH WBLT NBRT NBTH NBLT 0700-0800 0 766 591 860 0 91 167 1496 0 0715-0815 0 897 692 916 0 109 196 1590 0 0730-0830 0 1045 788 912 0 123 227 1698 0 0745-0845 0 1171 860 912 0 131 251 1633 0 0800-0900 0 1250 895 904 0 137 285 1608 0 0815-0915 0 1286 876 905 0 145 282 1585 0 0830-0930 0 1307 863 908 0 147 287 1584 0 0845-0945 0 1296 803 908 0 147 292 <	TOTALS SBRT SBTH SBLT WBRT WBTH WBLT NBRT NBTH NBLT EBRT 0700-0800 0 766 591 860 0 91 167 1496 0 0 0715-0815 0 897 692 916 0 109 196 1590 0 0 0730-0830 0 1045 788 912 0 123 227 1698 0 0 0745-0845 0 1171 860 912 0 131 251 1633 0 0 0800-0900 0 1250 895 904 0 137 285 1608 0 0 0815-0915 0 1286 876 905 0 145 282 1585 0 0 0845-0945 0 1296 803 908 0 147 287 1584 0 0	TOTALS SBRT SBTH SBLT WBRT WBTH WBLT NBRT NBTH NBLT EBRT EBTH 0700-0800 0 766 591 860 0 91 167 1496 0 0 0 0715-0815 0 897 692 916 0 109 196 1590 0 0 0 0730-0830 0 1045 788 912 0 123 227 1698 0 0 0 0745-0845 0 1171 860 912 0 131 251 1633 0 0 0 0800-0900 0 1250 895 904 0 137 285 1608 0 0 0 0815-0915 0 1286 876 905 0 145 282 1585 0 0 0 0845-0945 0 1296 803 908 0 <t< th=""><th>TOTALS SBRT SBTH SBLT WBRT WBTH WBLT NBRT NBTH NBLT EBRT EBTH EBLT 0700-0800 0 766 591 860 0 91 167 1496 0 0 0 0 0715-0815 0 897 692 916 0 109 196 1590 0 0 0 0 0730-0830 0 1045 788 912 0 123 227 1698 0 0 0 0 0 0745-0845 0 1171 860 912 0 131 251 1633 0 0 0 0 0 0800-0900 0 1250 895 904 0 137 285 1608 0 0 0 0 0815-0915 0 1286 876 905 0 145 282 1585 0 0 0</th></t<>	TOTALS SBRT SBTH SBLT WBRT WBTH WBLT NBRT NBTH NBLT EBRT EBTH EBLT 0700-0800 0 766 591 860 0 91 167 1496 0 0 0 0 0715-0815 0 897 692 916 0 109 196 1590 0 0 0 0 0730-0830 0 1045 788 912 0 123 227 1698 0 0 0 0 0 0745-0845 0 1171 860 912 0 131 251 1633 0 0 0 0 0 0800-0900 0 1250 895 904 0 137 285 1608 0 0 0 0 0815-0915 0 1286 876 905 0 145 282 1585 0 0 0

MARINA EXPRESSWAY

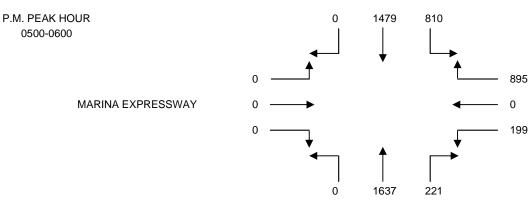
LINCOLN BOULEVARD

DATA PROVIDED BY:

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: THURSDAY, DECEMBER 15, 2011


PERIOD: 04:00 PM TO 07:00 PM
INTERSECTION N/S LINCOLN BOULEVARD
E/W MARINA EXPRESSWAY

FILE NUMBER: 13-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0400-0415	0	347	217	176	0	28	68	360	0	0	0	0
0415-0430	0	352	205	190	0	38	66	382	0	0	0	0
0430-0445	0	382	213	201	0	32	49	356	0	0	0	0
0445-0500	0	343	189	218	0	43	54	407	0	0	0	0
0500-0515	0	397	188	224	0	40	58	416	0	0	0	0
0515-0530	0	398	202	213	0	48	61	417	0	0	0	0
0530-0545	0	355	219	230	0	50	54	404	0	0	0	0
0545-0600	0	329	201	228	0	61	48	400	0	0	0	0
0600-0615	0	350	200	187	0	54	62	425	0	0	0	0
0615-0630	0	346	196	183	0	52	63	392	0	0	0	0
0630-0645	0	372	197	188	0	36	30	367	0	0	0	0
0645-0700	0	360	188	229	0	44	37	356	0	0	0	0

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0400-0500	0	1424	824	785	0	141	237	1505	0	0	0	0	4916
0415-0515	0	1474	795	833	0	153	227	1561	0	0	0	0	5043
0430-0530	0	1520	792	856	0	163	222	1596	0	0	0	0	5149
0445-0545	0	1493	798	885	0	181	227	1644	0	0	0	0	5228
0500-0600	0	1479	810	895	0	199	221	1637	0	0	0	0	5241
0515-0615	0	1432	822	858	0	213	225	1646	0	0	0	0	5196
0530-0630	0	1380	816	828	0	217	227	1621	0	0	0	0	5089
0545-0645	0	1397	794	786	0	203	203	1584	0	0	0	0	4967
0600-0700	0	1428	781	787	0	186	192	1540	0	0	0	0	4914

LINCOLN BOULEVARD

DATA PROVIDED BY:

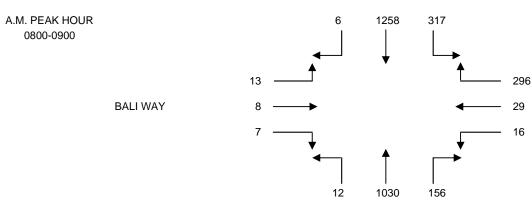
THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978 FAX: 626-446-2877

Ε.

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: THURSDAY, DECEMBER 15, 2011

PERIOD: 07:00 AM TO 10:00 AM INTERSECTION N/S ADMIRALTY WAY


E/W BALI WAY

FILE NUMBER: 14-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0700-0715	0	147	40	32	3	2	5	124	2	0	3	3
0715-0730	0	175	61	49	2	1	14	180	2	3	2	2
0730-0745	0	246	89	47	5	0	29	277	6	4	2	2
0745-0800	3	292	64	64	5	2	37	273	4	0	3	2
0800-0815	2	340	81	82	12	2	41	250	3	1	1	2
0815-0830	1	291	78	63	7	6	30	233	2	2	4	4
0830-0845	2	301	83	68	4	4	42	268	2	1	0	3
0845-0900	1	326	75	83	6	4	43	279	5	3	3	4
0900-0915	0	209	68	67	4	6	33	255	4	3	5	5
0915-0930	0	250	50	42	2	4	31	239	3	1	2	8
0930-0945	1	234	54	45	2	4	34	201	4	2	5	10
0945-1000	1	223	58	36	1	2	24	199	4	1	3	7

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0700-0800	3	860	254	192	15	5	85	854	14	7	10	9	2308
0715-0815	5	1053	295	242	24	5	121	980	15	8	8	8	2764
0730-0830	6	1169	312	256	29	10	137	1033	15	7	10	10	2994
0745-0845	8	1224	306	277	28	14	150	1024	11	4	8	11	3065
0800-0900	6	1258	317	296	29	16	156	1030	12	7	8	13	3148
0815-0915	4	1127	304	281	21	20	148	1035	13	9	12	16	2990
0830-0930	3	1086	276	260	16	18	149	1041	14	8	10	20	2901
0845-0945	2	1019	247	237	14	18	141	974	16	9	15	27	2719
0900-1000	2	916	230	190	9	16	122	894	15	7	15	30	2446

ADMIRALTY WAY

DATA PROVIDED BY:

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: THURSDAY, DECEMBER 15, 2011

PERIOD: 04:00 PM TO 07:00 PM INTERSECTION N/S ADMIRALTY WAY

E/W BALI WAY

FILE NUMBER: 14-PM

Ī	15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
l	TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
	0400-0415	0	277	62	88	1	5	27	269	5	3	3	5
	0415-0430	0	304	70	91	2	5	30	285	3	3	5	6
	0430-0445	3	282	68	114	2	7	31	310	5	3	4	10
	0445-0500	2	326	70	86	3	5	31	291	3	4	7	6
	0500-0515	4	317	67	88	4	6	28	299	6	5	5	7
	0515-0530	5	315	65	102	2	7	27	311	3	3	4	4
	0530-0545	1	347	64	98	3	8	35	273	4	4	5	6
	0545-0600	2	328	69	96	3	4	22	300	2	2	5	3
	0600-0615	0	345	62	108	3	3	25	355	2	3	7	3
	0615-0630	1	285	56	84	2	4	23	245	3	3	5	4
	0630-0645	1	290	50	95	3	4	20	204	2	1	6	4
	0645-0700	1	275	53	85	2	3	18	182	2	2	4	3

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0400-0500	5	1189	270	379	8	22	119	1155	16	13	19	27	3222
0415-0515	9	1229	275	379	11	23	120	1185	17	15	21	29	3313
0430-0530	14	1240	270	390	11	25	117	1211	17	15	20	27	3357
0445-0545	12	1305	266	374	12	26	121	1174	16	16	21	23	3366
0500-0600	12	1307	265	384	12	25	112	1183	15	14	19	20	3368
0515-0615	8	1335	260	404	11	22	109	1239	11	12	21	16	3448
0530-0630	4	1305	251	386	11	19	105	1173	11	12	22	16	3315
0545-0645	4	1248	237	383	11	15	90	1104	9	9	23	14	3147
0600-0700	3	1195	221	372	10	14	86	986	9	9	22	14	2941

BALI WAY

8 1335 260 16 404 21 11 12 22

ADMIRALTY WAY

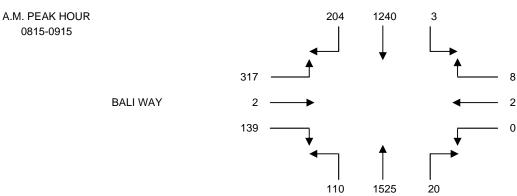
DATA PROVIDED BY:

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: THURSDAY, DECEMBER 15, 2011

PERIOD: 07:00 AM TO 10:00 AM INTERSECTION N/S LINCOLN BOULEVARD


E/W BALI WAY

FILE NUMBER: 15-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0700-0715	18	112	0	0	0	0	7	283	18	22	0	38
0715-0730	27	179	2	1	0	1	11	326	24	26	1	58
0730-0745	39	217	0	1	0	0	6	351	27	27	0	72
0745-0800	48	230	1	0	1	0	6	407	23	30	0	83
0800-0815	57	246	1	1	0	1	6	372	33	32	0	80
0815-0830	53	291	1	2	0	0	5	433	35	35	1	89
0830-0845	48	347	0	2	1	0	4	360	26	37	0	83
0845-0900	55	303	1	2	0	0	6	359	29	33	0	77
0900-0915	48	299	1	2	1	0	5	373	20	34	1	68
0915-0930	47	327	1	6	2	0	3	442	17	29	2	57
0930-0945	35	301	1	5	0	0	6	361	15	27	0	62
0945-1000	33	311	2	4	0	1	2	304	12	24	2	53

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0700-0800	132	738	3	2	1	1	30	1367	92	105	1	251	2723
0715-0815	171	872	4	3	1	2	29	1456	107	115	1	293	3054
0730-0830	197	984	3	4	1	1	23	1563	118	124	1	324	3343
0745-0845	206	1114	3	5	2	1	21	1572	117	134	1	335	3511
0800-0900	213	1187	3	7	1	1	21	1524	123	137	1	329	3547
0815-0915	204	1240	3	8	2	0	20	1525	110	139	2	317	3570
0830-0930	198	1276	3	12	4	0	18	1534	92	133	3	285	3558
0845-0945	185	1230	4	15	3	0	20	1535	81	123	3	264	3463
0900-1000	163	1238	5	17	3	1	16	1480	64	114	5	240	3346

LINCOLN BOULEVARD

DATA PROVIDED BY:

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

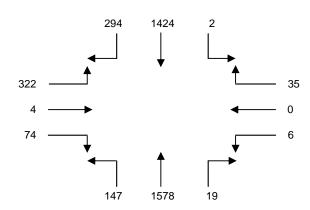
PH: 626-446-7978 FAX: 626-446-2877

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: THURSDAY, DECEMBER 15, 2011

PERIOD: 04:00 PM TO 07:00 PM INTERSECTION N/S LINCOLN BOULEVARD

E/W BALI WAY


FILE NUMBER: 15-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0400-0415	35	265	3	2	0	1	2	342	23	11	0	71
0415-0430	57	341	2	3	0	0	5	381	30	21	1	80
0430-0445	63	343	2	3	0	2	2	366	40	20	0	73
0445-0500	84	413	1	7	0	2	6	415	42	21	1	83
0500-0515	60	338	1	11	0	3	3	364	31	19	0	71
0515-0530	83	349	0	10	0	1	4	386	37	15	1	80
0530-0545	67	324	0	7	0	0	6	413	37	19	2	88
0545-0600	64	424	2	8	2	0	2	392	39	18	1	76
0600-0615	54	355	2	4	0	0	2	399	44	11	0	68
0615-0630	57	320	0	3	0	0	3	357	37	14	0	68
0630-0645	68	333	1	6	0	0	1	405	41	18	0	51
0645-0700	53	346	0	7	0	0	3	356	37	13	0	60

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0400-0500	239	1362	8	15	0	5	15	1504	135	73	2	307	3665
0415-0515	264	1435	6	24	0	7	16	1526	143	81	2	307	3811
0430-0530	290	1443	4	31	0	8	15	1531	150	75	2	307	3856
0445-0545	294	1424	2	35	0	6	19	1578	147	74	4	322	3905
0500-0600	274	1435	3	36	2	4	15	1555	144	71	4	315	3858
0515-0615	268	1452	4	29	2	1	14	1590	157	63	4	312	3896
0530-0630	242	1423	4	22	2	0	13	1561	157	62	3	300	3789
0545-0645	243	1432	5	21	2	0	8	1553	161	61	1	263	3750
0600-0700	232	1354	3	20	0	0	9	1517	159	56	0	247	3597

BALI WAY

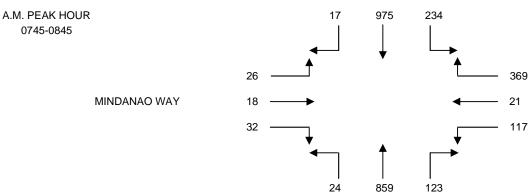
LINCOLN BOULEVARD

DATA PROVIDED BY:

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: THURSDAY, DECEMBER 15, 2011


PERIOD: 07:00 AM TO 10:00 AM INTERSECTION N/S ADMIRALTY WAY E/W MINDANAO WAY

FILE NUMBER: 16-AM

ſ	15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
l	TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
	0700-0715	4	110	35	64	5	21	10	120	2	2	4	1
	0715-0730	5	169	43	75	2	40	18	164	2	5	3	3
	0730-0745	3	191	50	88	3	32	23	207	7	7	5	6
	0745-0800	5	223	57	91	5	28	34	220	6	10	7	12
	0800-0815	4	243	55	94	3	22	30	219	5	8	5	6
	0815-0830	3	251	65	96	5	37	29	207	4	7	3	4
	0830-0845	5	258	57	88	8	30	30	213	9	7	3	4
	0845-0900	3	240	43	96	6	33	24	216	5	8	4	7
	0900-0915	5	224	40	80	10	51	27	214	2	4	2	4
	0915-0930	3	217	30	66	8	58	18	213	3	6	3	4
	0930-0945	2	207	27	73	9	45	20	198	7	9	3	3
	0945-1000	1	169	23	67	8	47	17	177	7	7	1	3

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0700-0800	17	693	185	318	15	121	85	711	17	24	19	22	2227
0715-0815	17	826	205	348	13	122	105	810	20	30	20	27	2543
0730-0830	15	908	227	369	16	119	116	853	22	32	20	28	2725
0745-0845	17	975	234	369	21	117	123	859	24	32	18	26	2815
0800-0900	15	992	220	374	22	122	113	855	23	30	15	21	2802
0815-0915	16	973	205	360	29	151	110	850	20	26	12	19	2771
0830-0930	16	939	170	330	32	172	99	856	19	25	12	19	2689
0845-0945	13	888	140	315	33	187	89	841	17	27	12	18	2580
0900-1000	11	817	120	286	35	201	82	802	19	26	9	14	2422

ADMIRALTY WAY

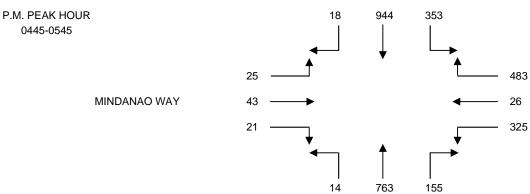
DATA PROVIDED BY:

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

PH: 626-446-7978 FAX: 626-446-2877

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: THURSDAY, DECEMBER 15, 2011


PERIOD: 04:00 PM TO 07:00 PM INTERSECTION N/S ADMIRALTY WAY E/W MINDANAO WAY

FILE NUMBER: 16-PM

15 MINUTE	1	2	2	4	5	6	7	8	9	10	11	10
15 MIINUTE	- 1		3	4	ວ	0	- /	0	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0400-0415	3	233	57	90	12	95	30	179	9	3	9	5
0415-0430	4	207	78	90	10	76	40	183	8	8	6	5
0430-0445	4	211	70	107	7	81	50	197	6	7	8	4
0445-0500	5	229	81	108	5	64	48	185	3	7	8	3
0500-0515	3	240	95	112	11	87	39	195	3	4	13	5
0515-0530	7	253	104	125	6	98	34	207	5	5	10	10
0530-0545	3	222	73	138	4	76	34	176	3	5	12	7
0545-0600	3	213	79	111	4	88	33	164	4	3	5	3
0600-0615	8	257	84	100	8	97	37	226	2	2	6	7
0615-0630	7	249	64	119	13	104	40	178	1	3	13	3
0630-0645	7	211	53	110	13	88	40	140	2	2	11	4
0645-0700	5	177	41	92	17	84	36	136	2	3	11	3

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0400-0500	16	880	286	395	34	316	168	744	26	25	31	17	2938
0415-0515	16	887	324	417	33	308	177	760	20	26	35	17	3020
0430-0530	19	933	350	452	29	330	171	784	17	23	39	22	3169
0445-0545	18	944	353	483	26	325	155	763	14	21	43	25	3170
0500-0600	16	928	351	486	25	349	140	742	15	17	40	25	3134
0515-0615	21	945	340	474	22	359	138	773	14	15	33	27	3161
0530-0630	21	941	300	468	29	365	144	744	10	13	36	20	3091
0545-0645	25	930	280	440	38	377	150	708	9	10	35	17	3019
0600-0700	27	894	242	421	51	373	153	680	7	10	41	17	2916

ADMIRALTY WAY

DATA PROVIDED BY:

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

PH: 626-446-7978 FAX: 626-446-2877

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

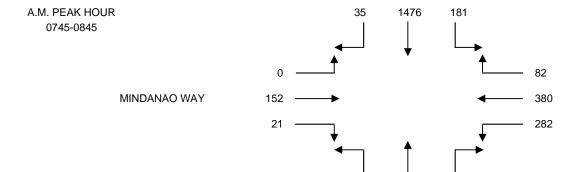
PROJECT: PARCEL 44 - MARINA DEL REY
DATE: THURSDAY DECEMBER 8, 2011

PERIOD: 07:00 AM TO 10:00 AM INTERSECTION N/S LINCOLN BOULEVARD

E/W MINDANAO WAY

FILE NUMBER: 17-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0700-0715	6	139	12	6	54	33	76	396	23	7	52	0
0715-0730	4	176	18	8	66	46	82	462	25	3	45	0
0730-0745	2	187	46	9	81	63	112	576	39	5	53	0
0745-0800	5	358	41	17	89	70	121	643	53	6	37	0
0800-0815	6	409	47	19	85	76	109	662	51	2	34	0
0815-0830	9	318	45	20	92	71	118	678	42	6	38	0
0830-0845	15	391	48	26	114	65	127	631	50	7	43	0
0845-0900	3	374	56	21	110	76	98	550	42	9	37	0
0900-0915	9	299	49	25	103	72	128	503	42	10	38	0
0915-0930	18	310	52	20	87	55	107	444	34	12	39	0
0930-0945	13	339	47	17	94	63	121	391	40	14	30	0
0945-1000	18	332	49	15	98	69	103	415	36	9	35	0


1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0700-0800	17	860	117	40	290	212	391	2077	140	21	187	0	4352
0715-0815	17	1130	152	53	321	255	424	2343	168	16	169	0	5048
0730-0830	22	1272	179	65	347	280	460	2559	185	19	162	0	5550
0745-0845	35	1476	181	82	380	282	475	2614	196	21	152	0	5894
0800-0900	33	1492	196	86	401	288	452	2521	185	24	152	0	5830
0815-0915	36	1382	198	92	419	284	471	2362	176	32	156	0	5608
0830-0930	45	1374	205	92	414	268	460	2128	168	38	157	0	5349
0845-0945	43	1322	204	83	394	266	454	1888	158	45	144	0	5001
0900-1000	58	1280	197	77	382	259	459	1753	152	45	142	0	4804

196

2614

LINCOLN BOULEVARD

475

DATA PROVIDED BY:

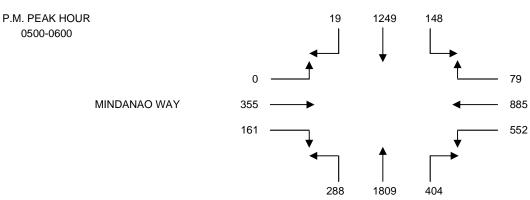
QUALITY TRAFFIC DATA, LLC 9701 W. PICO BOULEVARD, SUITE 205 LOS ANGELES, CALIFORNIA 90035 PH: 310-341-0019

FAX: 310-807-9247

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: THURSDAY DECEMBER 8, 2011

PERIOD: 04:00 PM TO 07:00 PM INTERSECTION N/S LINCOLN BOULEVARD


E/W MINDANAO WAY

FILE NUMBER: 17-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0400-0415	8	258	30	15	104	104	101	327	15	24	111	0
0415-0430	10	352	31	17	117	112	110	393	36	42	112	0
0430-0445	18	335	33	18	143	99	120	430	30	22	96	0
0445-0500	6	283	40	17	156	116	77	408	44	46	123	0
0500-0515	8	309	41	13	182	134	108	427	71	30	102	0
0515-0530	7	274	36	20	214	145	106	449	39	34	92	0
0530-0545	4	304	39	25	235	152	96	493	97	53	86	0
0545-0600	0	362	32	21	254	121	94	440	81	44	75	0
0600-0615	1	294	25	12	239	139	79	451	42	47	89	0
0615-0630	3	267	22	5	215	154	86	413	29	28	91	0
0630-0645	9	295	29	7	188	119	71	365	26	47	82	0
0645-0700	5	319	13	6	174	102	79	341	47	41	76	0

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0400-0500	42	1228	134	67	520	431	408	1558	125	134	442	0	5089
0415-0515	42	1279	145	65	598	461	415	1658	181	140	433	0	5417
0430-0530	39	1201	150	68	695	494	411	1714	184	132	413	0	5501
0445-0545	25	1170	156	75	787	547	387	1777	251	163	403	0	5741
0500-0600	19	1249	148	79	885	552	404	1809	288	161	355	0	5949
0515-0615	12	1234	132	78	942	557	375	1833	259	178	342	0	5942
0530-0630	8	1227	118	63	943	566	355	1797	249	172	341	0	5839
0545-0645	13	1218	108	45	896	533	330	1669	178	166	337	0	5493
0600-0700	18	1175	89	30	816	514	315	1570	144	163	338	0	5172

LINCOLN BOULEVARD

DATA PROVIDED BY:

QUALITY TRAFFIC DATA, LLC 9701 W. PICO BOULEVARD, SUITE 205 LOS ANGELES, CALIFORNIA 90035 PH: 310-341-0019

FAX: 310-807-9247

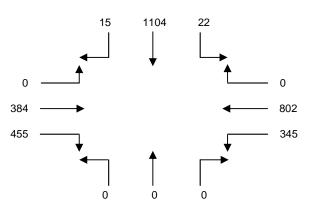
CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY DATE: TUESDAY DECEMBER 13, 2011

PERIOD: 07:00 AM TO 10:00 AM

INTERSECTION N/S MARINA EXPRESSWAY (EASTBOUND)

E/W MINDANAO WAY


FILE NUMBER: 18-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0700-0715	2	207	1	0	93	34	0	0	0	111	37	0
0715-0730	1	223	1	0	126	50	0	0	0	95	54	0
0730-0745	1	255	2	0	157	77	0	0	0	129	90	0
0745-0800	0	270	4	0	172	90	0	0	0	124	81	0
0800-0815	2	286	6	0	185	81	0	0	0	110	76	0
0815-0830	3	306	7	0	182	88	0	0	0	116	92	0
0830-0845	2	269	6	0	209	90	0	0	0	124	100	0
0845-0900	5	274	3	0	210	95	0	0	0	100	89	0
0900-0915	5	255	6	0	201	72	0	0	0	115	103	0
0915-0930	3	284	5	0	165	79	0	0	0	103	88	0
0930-0945	3	242	4	0	176	63	0	0	0	104	102	0
0945-1000	3	211	7	0	173	66	0	0	0	94	96	0

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0700-0800	4	955	8	0	548	251	0	0	0	459	262	0	2487
0715-0815	4	1034	13	0	640	298	0	0	0	458	301	0	2748
0730-0830	6	1117	19	0	696	336	0	0	0	479	339	0	2992
0745-0845	7	1131	23	0	748	349	0	0	0	474	349	0	3081
0800-0900	12	1135	22	0	786	354	0	0	0	450	357	0	3116
0815-0915	15	1104	22	0	802	345	0	0	0	455	384	0	3127
0830-0930	15	1082	20	0	785	336	0	0	0	442	380	0	3060
0845-0945	16	1055	18	0	752	309	0	0	0	422	382	0	2954
0900-1000	14	992	22	0	715	280	0	0	0	416	389	0	2828

MINDANAO WAY

DATA PROVIDED BY:

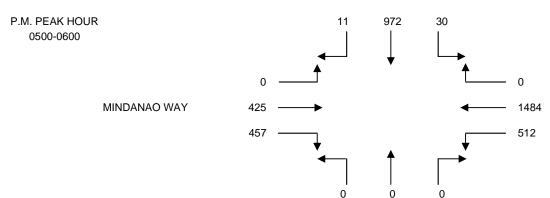
QUALITY TRAFFIC DATA, LLC MARINA EXPRESSWAY (EASTBOUND)

9701 W. PICO BOULEVARD, SUITE 205 LOS ANGELES, CALIFORNIA 90035 PH: 310-341-0019 FAX: 310-807-9247

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: TUESDAY DECEMBER 13, 2011

PERIOD: 04:00 PM TO 07:00 PM


INTERSECTION N/S MARINA EXPRESSWAY (EASTBOUND)

E/W MINDANAO WAY

FILE NUMBER: 18-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0400-0415	3	231	3	0	228	105	0	0	0	140	108	0
0415-0430	3	241	5	0	237	118	0	0	0	124	127	0
0430-0445	1	228	4	0	254	127	0	0	0	146	104	0
0445-0500	6	248	3	0	274	123	0	0	0	131	103	0
0500-0515	4	249	7	0	318	134	0	0	0	126	117	0
0515-0530	3	247	5	0	371	130	0	0	0	122	106	0
0530-0545	1	244	10	0	406	134	0	0	0	113	103	0
0545-0600	3	232	8	0	389	114	0	0	0	96	99	0
0600-0615	1	220	4	0	386	128	0	0	0	109	87	0
0615-0630	4	227	5	0	362	112	0	0	0	108	83	0
0630-0645	0	219	5	0	308	117	0	0	0	95	90	0
0645-0700	3	172	2	0	287	126	0	0	0	92	78	0

	1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
	TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
	0400-0500	13	948	15	0	993	473	0	0	0	541	442	0	3425
	0415-0515	14	966	19	0	1083	502	0	0	0	527	451	0	3562
	0430-0530	14	972	19	0	1217	514	0	0	0	525	430	0	3691
_	0445-0545	14	988	25	0	1369	521	0	0	0	492	429	0	3838
	0500-0600	11	972	30	0	1484	512	0	0	0	457	425	0	3891
	0515-0615	8	943	27	0	1552	506	0	0	0	440	395	0	3871
	0530-0630	9	923	27	0	1543	488	0	0	0	426	372	0	3788
	0545-0645	8	898	22	0	1445	471	0	0	0	408	359	0	3611
	0600-0700	8	838	16	0	1343	483	0	0	0	404	338	0	3430

DATA PROVIDED BY:

QUALITY TRAFFIC DATA, LLC 9701 W. PICO BOULEVARD, SUITE 205 LOS ANGELES, CALIFORNIA 90035 PH: 310-341-0019

FAX: 310-807-9247

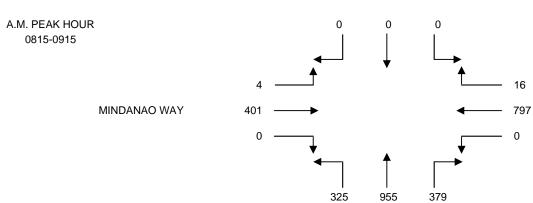
INFO@QUALITYTRAFFICDATA.COM

MARINA EXPRESSWAY (EASTBOUND)

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: THURSDAY DECEMBER 8, 2011

PERIOD: 07:00 AM TO 10:00 AM


INTERSECTION N/S MARINA EXPRESSWAY (WESTBOUND)

E/W MINDANAO WAY

FILE NUMBER: 19-AM

45 1411 1175	4		_		_	_	_		•	40	4.4	40
15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0700-0715	0	0	0	4	67	0	45	179	52	0	35	0
0715-0730	0	0	0	3	106	0	90	211	65	0	47	0
0730-0745	0	0	0	2	152	0	109	223	74	0	85	3
0745-0800	0	0	0	3	191	0	119	221	66	0	86	1
0800-0815	0	0	0	4	166	0	96	195	94	0	84	1
0815-0830	0	0	0	5	187	0	89	220	77	0	105	0
0830-0845	0	0	0	1	219	0	85	252	73	0	104	1
0845-0900	0	0	0	7	207	0	96	229	92	0	94	1
0900-0915	0	0	0	3	184	0	109	254	83	0	98	2
0915-0930	0	0	0	4	169	0	112	217	69	0	96	2
0930-0945	0	0	0	5	157	0	102	228	76	0	96	5
0945-1000	0	0	0	7	153	0	91	244	78	0	100	2

	1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
	TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
	0700-0800	0	0	0	12	516	0	363	834	257	0	253	4	2239
	0715-0815	0	0	0	12	615	0	414	850	299	0	302	5	2497
	0730-0830	0	0	0	14	696	0	413	859	311	0	360	5	2658
	0745-0845	0	0	0	13	763	0	389	888	310	0	379	3	2745
_	0800-0900	0	0	0	17	779	0	366	896	336	0	387	3	2784
	0815-0915	0	0	0	16	797	0	379	955	325	0	401	4	2877
	0830-0930	0	0	0	15	779	0	402	952	317	0	392	6	2863
	0845-0945	0	0	0	19	717	0	419	928	320	0	384	10	2797
	0900-1000	0	0	0	19	663	0	414	943	306	0	390	11	2746

DATA PROVIDED BY:

QUALITY TRAFFIC DATA, LLC 9701 W. PICO BOULEVARD, SUITE 205 LOS ANGELES, CALIFORNIA 90035

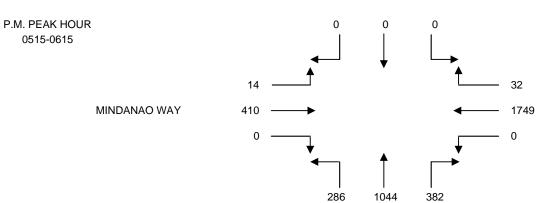
PH: 310-341-0019 FAX: 310-807-9247

MARINA EXPRESSWAY (WESTBOUND)

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: THURSDAY DECEMBER 8, 2011

PERIOD: 04:00 PM TO 07:00 PM


INTERSECTION N/S MARINA EXPRESSWAY (WESTBOUND)

E/W MINDANAO WAY

FILE NUMBER: 19-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0400-0415	0	0	0	5	245	0	76	189	83	0	99	5
0415-0430	0	0	0	14	251	0	66	204	99	0	127	1
0430-0445	0	0	0	14	259	0	87	234	113	0	113	3
0445-0500	0	0	0	17	284	0	116	263	107	0	98	2
0500-0515	0	0	0	5	358	0	101	239	89	0	119	9
0515-0530	0	0	0	9	434	0	118	268	62	0	100	8
0530-0545	0	0	0	6	458	0	93	254	74	0	105	1
0545-0600	0	0	0	12	429	0	96	251	69	0	111	4
0600-0615	0	0	0	5	428	0	75	271	81	0	94	1
0615-0630	0	0	0	4	397	0	80	276	73	0	79	1
0630-0645	0	0	0	9	349	0	78	309	68	0	90	2
0645-0700	0	0	0	5	328	0	84	305	78	0	84	2

TOTALS
3174
3392
3629
3797
3882
3917
3828
3742
3656

DATA PROVIDED BY:

QUALITY TRAFFIC DATA, LLC 9701 W. PICO BOULEVARD, SUITE 205 LOS ANGELES, CALIFORNIA 90035

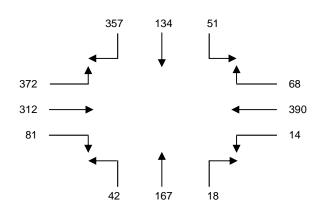
PH: 310-341-0019 FAX: 310-807-9247

MARINA EXPRESSWAY (WESTBOUND)

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY DATE: TUESDAY DECEMBER 13, 2011

PERIOD: 07:00 AM TO 10:00 AM INTERSECTION N/S GLENCOE AVENUE E/W MINDANAO WAY


FILE NUMBER: 20-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0700-0715	40	12	7	8	25	1	0	19	5	6	24	52
0715-0730	47	17	9	18	59	2	1	30	4	9	56	65
0730-0745	68	22	17	13	74	0	4	38	6	18	68	103
0745-0800	89	28	13	19	95	2	2	44	5	24	86	88
0800-0815	77	30	12	26	76	4	1	42	9	16	75	83
0815-0830	90	26	21	13	84	5	4	46	10	21	82	89
0830-0845	98	45	11	20	103	2	6	48	14	17	67	101
0845-0900	89	38	8	18	109	5	2	40	11	23	78	85
0900-0915	80	25	11	17	94	2	6	33	7	20	85	97
0915-0930	72	33	13	22	88	3	3	37	9	24	91	90
0930-0945	83	39	13	21	59	6	3	46	16	22	86	84
0945-1000	71	25	12	21	68	2	2	30	13	25	81	79

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0700-0800	244	79	46	58	253	5	7	131	20	57	234	308	1442
0715-0815	281	97	51	76	304	8	8	154	24	67	285	339	1694
0730-0830	324	106	63	71	329	11	11	170	30	79	311	363	1868
0745-0845	354	129	57	78	358	13	13	180	38	78	310	361	1969
0800-0900	354	139	52	77	372	16	13	176	44	77	302	358	1980
0815-0915	357	134	51	68	390	14	18	167	42	81	312	372	2006
0830-0930	339	141	43	77	394	12	17	158	41	84	321	373	2000
0845-0945	324	135	45	78	350	16	14	156	43	89	340	356	1946
0900-1000	306	122	49	81	309	13	14	146	45	91	343	350	1869

A.M. PEAK HOUR 0815-0915

MINDANAO WAY

DATA PROVIDED BY:

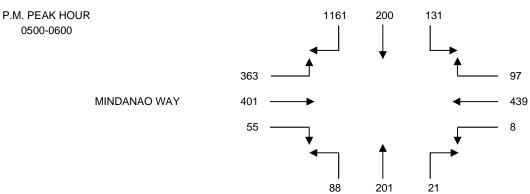
QUALITY TRAFFIC DATA, LLC 9701 W. PICO BOULEVARD, SUITE 205 LOS ANGELES, CALIFORNIA 90035

PH: 310-341-0019 FAX: 310-807-9247

GLENCOE AVENUE

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: TUESDAY DECEMBER 13, 2011


PERIOD: 04:00 PM TO 07:00 PM INTERSECTION N/S GLENCOE AVENUE E/W MINDANAO WAY

FILE NUMBER: 20-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0400-0415	151	37	32	16	66	2	6	41	27	11	65	91
0415-0430	156	51	26	22	88	2	5	37	13	9	78	99
0430-0445	173	51	25	14	83	1	4	38	12	13	93	90
0445-0500	185	47	36	21	90	4	2	49	21	10	105	101
0500-0515	221	52	41	20	103	4	8	51	33	14	94	105
0515-0530	278	44	29	26	129	1	4	40	28	13	106	91
0530-0545	329	47	29	27	115	2	6	57	13	16	98	82
0545-0600	333	57	32	24	92	1	3	53	14	12	103	85
0600-0615	314	43	25	18	88	2	5	46	26	11	75	81
0615-0630	288	44	31	31	84	4	2	46	22	8	70	74
0630-0645	264	54	33	20	68	1	2	38	19	7	76	78
0645-0700	243	34	33	14	72	2	3	25	15	6	73	81

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0400-0500	665	186	119	73	327	9	17	165	73	43	341	381	2399
0415-0515	735	201	128	77	364	11	19	175	79	46	370	395	2600
0430-0530	857	194	131	81	405	10	18	178	94	50	398	387	2803
0445-0545	1013	190	135	94	437	11	20	197	95	53	403	379	3027
0500-0600	1161	200	131	97	439	8	21	201	88	55	401	363	3165
0515-0615	1254	191	115	95	424	6	18	196	81	52	382	339	3153
0530-0630	1264	191	117	100	379	9	16	202	75	47	346	322	3068
0545-0645	1199	198	121	93	332	8	12	183	81	38	324	318	2907
0600-0700	1109	175	122	83	312	9	12	155	82	32	294	314	2699

GLENCOE AVENUE

DATA PROVIDED BY:

QUALITY TRAFFIC DATA, LLC 9701 W. PICO BOULEVARD, SUITE 205 LOS ANGELES, CALIFORNIA 90035 PH: 310-341-0019

FAX: 310-807-9247

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: THURSDAY DECEMBER 8, 2011

PERIOD: 07:00 AM TO 10:00 AM INTERSECTION N/S ADMIRALTY WAY

E/W FIJI WAY

FILE NUMBER: 21-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0700-0715	14	0	50	111	25	0	0	0	0	0	12	9
0715-0730	9	0	98	116	29	0	0	0	0	0	9	6
0730-0745	14	0	130	168	27	0	0	0	0	0	26	13
0745-0800	9	0	168	180	24	0	0	0	0	0	21	14
0800-0815	13	0	156	129	38	0	0	0	0	0	25	6
0815-0830	11	0	160	172	23	0	0	0	0	0	18	10
0830-0845	9	0	191	104	31	0	0	0	0	0	25	11
0845-0900	15	0	155	145	24	0	0	0	0	0	23	17
0900-0915	14	0	146	123	23	0	0	0	0	0	16	21
0915-0930	12	0	153	108	18	0	0	0	0	0	18	8
0930-0945	16	0	128	97	30	0	0	0	0	0	23	10
0945-1000	21	0	119	86	29	0	0	0	0	0	14	18

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0700-0800	46	0	446	575	105	0	0	0	0	0	68	42	1282
0715-0815	45	0	552	593	118	0	0	0	0	0	81	39	1428
0730-0830	47	0	614	649	112	0	0	0	0	0	90	43	1555
0745-0845	42	0	675	585	116	0	0	0	0	0	89	41	1548
0800-0900	48	0	662	550	116	0	0	0	0	0	91	44	1511
0815-0915	49	0	652	544	101	0	0	0	0	0	82	59	1487
0830-0930	50	0	645	480	96	0	0	0	0	0	82	57	1410
0845-0945	57	0	582	473	95	0	0	0	0	0	80	56	1343
0900-1000	63	0	546	414	100	0	0	0	0	0	71	57	1251

A.M. PEAK HOUR 0730-0830

FIJI WAY

47 0 614 43 — 649 90 — 112 0 0 0 0

DATA PROVIDED BY:

QUALITY TRAFFIC DATA, LLC 9701 W. PICO BOULEVARD, SUITE 205 LOS ANGELES, CALIFORNIA 90035

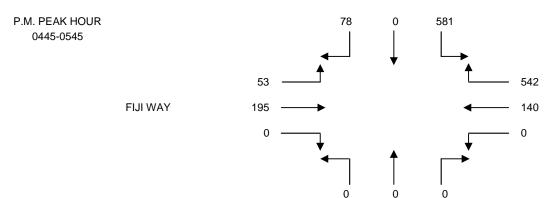
PH: 310-341-0019 FAX: 310-807-9247

ADMIRALTY WAY

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: THURSDAY DECEMBER 8, 2011

PERIOD: 04:00 PM TO 07:00 PM INTERSECTION N/S ADMIRALTY WAY


E/W FIJI WAY

FILE NUMBER: 21-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0400-0415	30	0	115	109	22	0	0	0	0	0	56	15
0415-0430	20	0	108	102	30	0	0	0	0	0	50	15
0430-0445	19	0	129	111	31	0	0	0	0	0	68	26
0445-0500	22	0	131	151	31	0	0	0	0	0	54	16
0500-0515	17	0	172	102	34	0	0	0	0	0	46	8
0515-0530	21	0	135	133	35	0	0	0	0	0	51	20
0530-0545	18	0	143	156	40	0	0	0	0	0	44	9
0545-0600	22	0	145	121	44	0	0	0	0	0	36	12
0600-0615	18	0	132	156	33	0	0	0	0	0	49	13
0615-0630	19	0	139	141	30	0	0	0	0	0	31	7
0630-0645	14	0	151	123	37	0	0	0	0	0	41	9
0645-0700	17	0	142	127	26	0	0	0	0	0	38	15

ſ	1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
	TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
	0400-0500	91	0	483	473	114	0	0	0	0	0	228	72	1461
	0415-0515	78	0	540	466	126	0	0	0	0	0	218	65	1493
_	0430-0530	79	0	567	497	131	0	0	0	0	0	219	70	1563
	0445-0545	78	0	581	542	140	0	0	0	0	0	195	53	1589
	0500-0600	78	0	595	512	153	0	0	0	0	0	177	49	1564
	0515-0615	79	0	555	566	152	0	0	0	0	0	180	54	1586
	0530-0630	77	0	559	574	147	0	0	0	0	0	160	41	1558
	0545-0645	73	0	567	541	144	0	0	0	0	0	157	41	1523
	0600-0700	68	0	564	547	126	0	0	0	0	0	159	44	1508

ADMIRALTY WAY

DATA PROVIDED BY:

QUALITY TRAFFIC DATA, LLC 9701 W. PICO BOULEVARD, SUITE 205 LOS ANGELES, CALIFORNIA 90035 PH: 310-341-0019

FAX: 310-807-9247

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY DATE: TUESDAY DECEMBER 13, 2011

PERIOD: 07:00 AM TO 10:00 AM INTERSECTION N/S LINCOLN BOULEVARD

E/W FIJI WAY

FILE NUMBER: 22-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0700-0715	17	166	3	2	2	1	9	493	110	55	2	8
0715-0730	11	215	6	5	3	2	4	548	126	84	3	23
0730-0745	7	248	5	9	4	4	6	691	177	117	5	33
0745-0800	13	418	8	8	5	2	8	776	181	144	5	37
0800-0815	10	480	5	10	4	4	11	784	147	132	7	35
0815-0830	11	385	6	12	2	3	10	772	178	119	5	46
0830-0845	16	435	19	7	3	2	9	749	113	152	4	57
0845-0900	8	445	13	5	10	4	8	656	146	133	6	35
0900-0915	10	368	9	9	5	10	16	628	123	108	8	43
0915-0930	18	349	16	10	2	1	3	541	102	122	5	38
0930-0945	17	386	17	6	7	9	9	516	95	105	3	36
0945-1000	17	389	11	5	4	8	10	522	91	94	5	31

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0700-0800	48	1047	22	24	14	9	27	2508	594	400	15	101	4809
0715-0815	41	1361	24	32	16	12	29	2799	631	477	20	128	5570
0730-0830	41	1531	24	39	15	13	35	3023	683	512	22	151	6089
0745-0845	50	1718	38	37	14	11	38	3081	619	547	21	175	6349
0800-0900	45	1745	43	34	19	13	38	2961	584	536	22	173	6213
0815-0915	45	1633	47	33	20	19	43	2805	560	512	23	181	5921
0830-0930	52	1597	57	31	20	17	36	2574	484	515	23	173	5579
0845-0945	53	1548	55	30	24	24	36	2341	466	468	22	152	5219
0900-1000	62	1492	53	30	18	28	38	2207	411	429	21	148	4937

FIJI WAY

50 1718 38 175 37 21 14 547 11

DATA PROVIDED BY:

QUALITY TRAFFIC DATA, LLC 9701 W. PICO BOULEVARD, SUITE 205 LOS ANGELES, CALIFORNIA 90035 PH: 310-341-0019

FAX: 310-807-9247

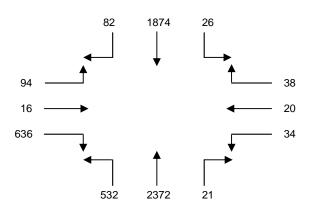
LINCOLN BOULEVARD

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: TUESDAY DECEMBER 13, 2011

PERIOD: 04:00 PM TO 07:00 PM INTERSECTION N/S LINCOLN BOULEVARD

E/W FIJI WAY


FILE NUMBER: 22-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0400-0415	17	361	2	7	7	6	4	419	102	144	1	23
0415-0430	25	481	8	10	3	3	6	512	99	123	6	24
0430-0445	10	447	5	7	4	16	5	531	126	137	9	45
0445-0500	30	421	2	8	3	12	6	507	142	155	4	19
0500-0515	24	445	8	11	5	13	7	565	99	184	5	23
0515-0530	19	429	8	13	6	10	4	558	135	148	4	26
0530-0545	20	491	5	5	7	8	4	657	162	149	1	29
0545-0600	19	509	5	9	2	3	6	592	136	155	6	16
0600-0615	28	448	9	5	6	7	4	548	150	152	4	21
0615-0630	23	426	5	8	2	5	5	499	140	138	1	26
0630-0645	19	433	4	8	6	7	7	437	130	156	5	25
0645-0700	24	438	6	6	5	9	8	431	121	136	3	33

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0400-0500	82	1710	17	32	17	37	21	1969	469	559	20	111	5044
0415-0515	89	1794	23	36	15	44	24	2115	466	599	24	111	5340
0430-0530	83	1742	23	39	18	51	22	2161	502	624	22	113	5400
0445-0545	93	1786	23	37	21	43	21	2287	538	636	14	97	5596
0500-0600	82	1874	26	38	20	34	21	2372	532	636	16	94	5745
0515-0615	86	1877	27	32	21	28	18	2355	583	604	15	92	5738
0530-0630	90	1874	24	27	17	23	19	2296	588	594	12	92	5656
0545-0645	89	1816	23	30	16	22	22	2076	556	601	16	88	5355
0600-0700	94	1745	24	27	19	28	24	1915	541	582	13	105	5117

FIJI WAY

DATA PROVIDED BY:

QUALITY TRAFFIC DATA, LLC 9701 W. PICO BOULEVARD, SUITE 205 LOS ANGELES, CALIFORNIA 90035 PH: 310-341-0019

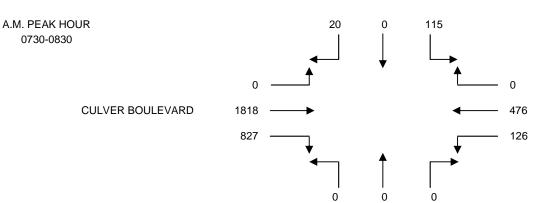
FAX: 310-807-9247

LINCOLN BOULEVARD

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: THURSDAY DECEMBER 8, 2011

PERIOD: 07:00 AM TO 10:00 AM


INTERSECTION N/S MARINA FREEWAY (EASTBOUND) ON/OFF-RAMPS

E/W CULVER BOULEVARD

FILE NUMBER: 23-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0700-0715	1	0	4	0	62	17	0	0	0	182	227	0
0715-0730	4	0	16	0	66	23	0	0	0	218	319	0
0730-0745	2	0	24	0	94	19	0	0	0	212	466	0
0745-0800	5	0	35	0	135	29	0	0	0	200	424	0
0800-0815	6	0	30	0	126	33	0	0	0	218	475	0
0815-0830	7	0	26	0	121	45	0	0	0	197	453	0
0830-0845	9	0	22	0	95	41	0	0	0	166	441	0
0845-0900	7	0	17	0	98	32	0	0	0	183	368	0
0900-0915	4	0	21	0	86	38	0	0	0	203	409	0
0915-0930	6	0	26	0	92	42	0	0	0	198	394	0
0930-0945	4	0	17	0	102	46	0	0	0	175	372	0
0945-1000	2	0	12	0	78	35	0	0	0	158	334	0

1	2	3	4	5	6	7	8	9	10	11	12	
SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
12	0	79	0	357	88	0	0	0	812	1436	0	2784
17	0	105	0	421	104	0	0	0	848	1684	0	3179
20	0	115	0	476	126	0	0	0	827	1818	0	3382
27	0	113	0	477	148	0	0	0	781	1793	0	3339
29	0	95	0	440	151	0	0	0	764	1737	0	3216
27	0	86	0	400	156	0	0	0	749	1671	0	3089
26	0	86	0	371	153	0	0	0	750	1612	0	2998
21	0	81	0	378	158	0	0	0	759	1543	0	2940
16	0	76	0	358	161	0	0	0	734	1509	0	2854
)	12 17 20 20 3 27 29 3 27 26 21	SBRT SBTH 12 0 17 0 20 0 20 0 27 0 29 0 27 0 27 0 29 0 27 0 28 27 0 29 27 0 26 27 0 26 27 0	SBRT SBTH SBLT 12 0 79 17 0 105 20 0 115 27 0 113 29 0 95 27 0 86 26 0 86 21 0 81	SBRT SBTH SBLT WBRT 12 0 79 0 17 0 105 0 20 0 115 0 27 0 113 0 29 0 95 0 27 0 86 0 26 0 86 0 21 0 81 0	SBRT SBTH SBLT WBRT WBTH 12 0 79 0 357 17 0 105 0 421 20 0 115 0 476 27 0 113 0 477 29 0 95 0 440 27 0 86 0 400 26 0 86 0 371 21 0 81 0 378	SBRT SBTH SBLT WBRT WBTH WBLT 12 0 79 0 357 88 17 0 105 0 421 104 20 0 115 0 476 126 27 0 113 0 477 148 29 0 95 0 440 151 27 0 86 0 400 156 26 0 86 0 371 153 21 0 81 0 378 158	SBRT SBTH SBLT WBRT WBTH WBLT NBRT 12 0 79 0 357 88 0 17 0 105 0 421 104 0 20 0 115 0 476 126 0 27 0 113 0 477 148 0 29 0 95 0 440 151 0 27 0 86 0 400 156 0 26 0 86 0 371 153 0 21 0 81 0 378 158 0	SBRT SBTH SBLT WBRT WBTH WBLT NBRT NBTH 12 0 79 0 357 88 0 0 17 0 105 0 421 104 0 0 20 0 115 0 476 126 0 0 27 0 113 0 477 148 0 0 29 0 95 0 440 151 0 0 27 0 86 0 400 156 0 0 26 0 86 0 371 153 0 0 21 0 81 0 378 158 0 0	SBRT SBTH SBLT WBRT WBTH WBLT NBRT NBTH NBLT 12 0 79 0 357 88 0 0 0 17 0 105 0 421 104 0 0 0 20 0 115 0 476 126 0 0 0 27 0 113 0 477 148 0 0 0 29 0 95 0 440 151 0 0 0 27 0 86 0 400 156 0 0 0 227 0 86 0 371 153 0 0 0 226 0 86 0 371 153 0 0 0 21 0 81 0 378 158 0 0 0	SBRT SBTH SBLT WBRT WBTH WBLT NBRT NBTH NBLT EBRT 12 0 79 0 357 88 0 0 0 812 17 0 105 0 421 104 0 0 0 848 20 0 115 0 476 126 0 0 0 827 27 0 113 0 477 148 0 0 0 764 29 0 95 0 440 151 0 0 0 764 27 0 86 0 400 156 0 0 0 749 26 0 86 0 371 153 0 0 0 750 21 0 81 0 378 158 0 0 0 759	SBRT SBTH SBLT WBRT WBTH WBLT NBRT NBTH NBLT EBRT EBTH 12 0 79 0 357 88 0 0 0 812 1436 17 0 105 0 421 104 0 0 0 848 1684 20 0 115 0 476 126 0 0 0 827 1818 27 0 113 0 477 148 0 0 0 781 1793 29 0 95 0 440 151 0 0 0 764 1737 27 0 86 0 400 156 0 0 0 749 1671 26 0 86 0 371 153 0 0 0 750 1612 21 0 81 0 378	SBRT SBTH SBLT WBRT WBTH WBLT NBRT NBTH NBLT EBRT EBTH EBLT 12 0 79 0 357 88 0 0 0 812 1436 0 17 0 105 0 421 104 0 0 0 848 1684 0 20 0 115 0 476 126 0 0 0 827 1818 0 27 0 113 0 477 148 0 0 0 781 1793 0 29 0 95 0 440 151 0 0 0 764 1737 0 27 0 86 0 400 156 0 0 0 749 1671 0 26 0 86 0 371 153 0 0 0 750

DATA PROVIDED BY:

QUALITY TRAFFIC DATA, LLC MARINA FREEWAY (EASTBOUND) ON/OFF-RAMPS

9701 W. PICO BOULEVARD, SUITE 205 LOS ANGELES, CALIFORNIA 90035 PH: 310-341-0019

FAX: 310-807-9247

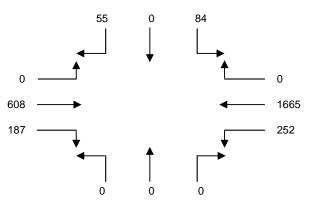
CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: THURSDAY DECEMBER 8, 2011

PERIOD: 04:00 PM TO 07:00 PM

INTERSECTION N/S MARINA FREEWAY (EASTBOUND) ON/OFF-RAMPS

E/W CULVER BOULEVARD


FILE NUMBER: 23-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0400-0415	8	0	14	0	204	70	0	0	0	52	129	0
0415-0430	18	0	19	0	246	43	0	0	0	54	134	0
0430-0445	12	0	21	0	308	60	0	0	0	49	141	0
0445-0500	20	0	17	0	267	67	0	0	0	39	170	0
0500-0515	18	0	18	0	370	69	0	0	0	43	177	0
0515-0530	14	0	22	0	359	74	0	0	0	50	165	0
0530-0545	8	0	21	0	404	54	0	0	0	46	158	0
0545-0600	19	0	20	0	381	49	0	0	0	50	149	0
0600-0615	14	0	19	0	462	86	0	0	0	43	147	0
0615-0630	14	0	24	0	418	63	0	0	0	48	154	0
0630-0645	18	0	19	0	392	60	0	0	0	44	148	0
0645-0700	15	0	10	0	364	39	0	0	0	45	156	0

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0400-0500	58	0	71	0	1025	240	0	0	0	194	574	0	2162
0415-0515	68	0	75	0	1191	239	0	0	0	185	622	0	2380
0430-0530	64	0	78	0	1304	270	0	0	0	181	653	0	2550
0445-0545	60	0	78	0	1400	264	0	0	0	178	670	0	2650
0500-0600	59	0	81	0	1514	246	0	0	0	189	649	0	2738
0515-0615	55	0	82	0	1606	263	0	0	0	189	619	0	2814
0530-0630	55	0	84	0	1665	252	0	0	0	187	608	0	2851
0545-0645	65	0	82	0	1653	258	0	0	0	185	598	0	2841
0600-0700	61	0	72	0	1636	248	0	0	0	180	605	0	2802

CULVER BOULEVARD

DATA PROVIDED BY:

MARINA FREEWAY (EASTBOUND) ON/OFF-RAMPS

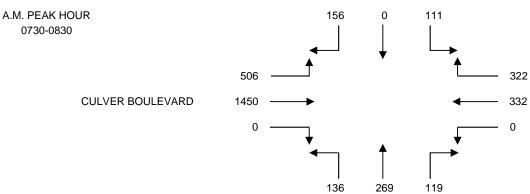
QUALITY TRAFFIC DATA, LLC 9701 W. PICO BOULEVARD, SUITE 205 LOS ANGELES, CALIFORNIA 90035 PH: 310-341-0019

FAX: 310-807-9247

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: TUESDAY DECEMBER 13, 2011

PERIOD: 07:00 AM TO 10:00 AM


INTERSECTION N/S MARINA FREEWAY (WESTBOUND) OFF-RAMP

E/W CULVER BOULEVARD

FILE NUMBER: 24-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0700-0715	22	0	9	19	36	0	8	31	25	0	181	48
0715-0730	25	0	5	30	44	0	15	45	28	0	277	57
0730-0745	30	0	20	68	51	0	24	71	35	0	369	127
0745-0800	54	0	38	79	76	0	36	72	39	0	323	141
0800-0815	40	0	38	92	97	0	36	70	29	0	393	117
0815-0830	32	0	15	83	108	0	23	56	33	0	365	121
0830-0845	40	0	18	76	59	0	19	52	32	0	338	133
0845-0900	32	0	16	65	61	0	17	43	40	0	294	95
0900-0915	29	0	12	51	74	0	28	53	25	0	309	128
0915-0930	21	0	18	55	71	0	20	37	35	0	318	95
0930-0945	28	0	15	35	80	0	31	35	34	0	296	86
0945-1000	24	0	16	46	63	0	22	37	23	0	283	57

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0700-0800	131	0	72	196	207	0	83	219	127	0	1150	373	2558
0715-0815	149	0	101	269	268	0	111	258	131	0	1362	442	3091
0730-0830	156	0	111	322	332	0	119	269	136	0	1450	506	3401
0745-0845	166	0	109	330	340	0	114	250	133	0	1419	512	3373
0800-0900	144	0	87	316	325	0	95	221	134	0	1390	466	3178
0815-0915	133	0	61	275	302	0	87	204	130	0	1306	477	2975
0830-0930	122	0	64	247	265	0	84	185	132	0	1259	451	2809
0845-0945	110	0	61	206	286	0	96	168	134	0	1217	404	2682
0900-1000	102	0	61	187	288	0	101	162	117	0	1206	366	2590

DATA PROVIDED BY:

QUALITY TRAFFIC DATA, LLC 9701 W. PICO BOULEVARD, SUITE 205 LOS ANGELES, CALIFORNIA 90035 PH: 310 341 0010

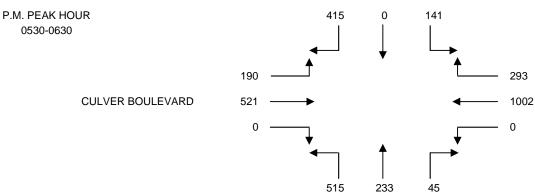
PH: 310-341-0019 FAX: 310-807-9247

MARINA FREEWAY (WESTBOUND) OFF-RAMP

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY DATE: TUESDAY DECEMBER 13, 2011

PERIOD: 04:00 PM TO 07:00 PM


INTERSECTION N/S MARINA FREEWAY (WESTBOUND) OFF-RAMP

E/W CULVER BOULEVARD

FILE NUMBER: 24-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0400-0415	87	0	30	44	127	0	12	39	62	0	102	44
0415-0430	68	0	28	36	155	0	16	44	74	0	107	38
0430-0445	89	0	26	57	199	0	11	56	85	0	119	48
0445-0500	95	0	31	54	174	0	12	43	70	0	130	63
0500-0515	104	0	35	49	206	0	10	71	134	0	151	49
0515-0530	128	0	28	58	213	0	15	47	100	0	142	51
0530-0545	107	0	32	91	247	0	11	52	111	0	129	56
0545-0600	91	0	30	61	238	0	12	41	110	0	134	40
0600-0615	105	0	40	86	271	0	13	79	168	0	120	48
0615-0630	112	0	39	55	246	0	9	61	126	0	138	46
0630-0645	77	0	38	49	276	0	11	55	107	0	121	50
0645-0700	69	0	16	47	219	0	8	43	120	0	124	48

	1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
l	TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
	0400-0500	339	0	115	191	655	0	51	182	291	0	458	193	2475
	0415-0515	356	0	120	196	734	0	49	214	363	0	507	198	2737
	0430-0530	416	0	120	218	792	0	48	217	389	0	542	211	2953
	0445-0545	434	0	126	252	840	0	48	213	415	0	552	219	3099
	0500-0600	430	0	125	259	904	0	48	211	455	0	556	196	3184
	0515-0615	431	0	130	296	969	0	51	219	489	0	525	195	3305
	0530-0630	415	0	141	293	1002	0	45	233	515	0	521	190	3355
	0545-0645	385	0	147	251	1031	0	45	236	511	0	513	184	3303
	0600-0700	363	0	133	237	1012	0	41	238	521	0	503	192	3240

DATA PROVIDED BY:

QUALITY TRAFFIC DATA, LLC 9701 W. PICO BOULEVARD, SUITE 205 LOS ANGELES, CALIFORNIA 90035 PH: 310-341-0019

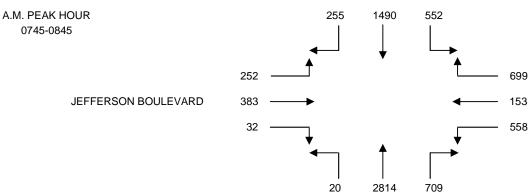
FAX: 310-807-9247

MARINA FREEWAY (WESTBOUND) OFF-RAMP

INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: THURSDAY DECEMBER 8, 2011


PERIOD: 07:00 AM TO 10:00 AM
INTERSECTION N/S LINCOLN BOULEVARD
E/W JEFFERSON BOULEVARD

FILE NUMBER: 25-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0700-0715	26	151	53	96	10	56	101	506	0	3	31	18
0715-0730	44	215	48	118	19	61	116	527	1	3	44	39
0730-0745	52	257	67	120	19	83	121	704	2	11	56	56
0745-0800	71	395	105	150	36	150	159	755	4	6	112	68
0800-0815	70	395	156	234	43	166	172	642	7	11	96	73
0815-0830	51	339	120	160	28	108	202	750	3	5	74	58
0830-0845	63	361	171	155	46	134	176	667	6	10	101	53
0845-0900	62	376	152	171	29	97	136	598	2	21	102	46
0900-0915	41	309	143	156	27	90	151	574	5	6	84	40
0915-0930	50	267	161	171	35	78	120	459	6	7	94	18
0930-0945	40	299	165	123	34	91	94	463	2	20	79	43
0945-1000	52	296	148	121	17	95	67	486	4	17	50	22

11	HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TC	OTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
070	0080-0	193	1018	273	484	84	350	497	2492	7	23	243	181	5845
071	5-0815	237	1262	376	622	117	460	568	2628	14	31	308	236	6859
073	30-0830	244	1386	448	664	126	507	654	2851	16	33	338	255	7522
074	5-0845	255	1490	552	699	153	558	709	2814	20	32	383	252	7917
080	00-0900	246	1471	599	720	146	505	686	2657	18	47	373	230	7698
081	5-0915	217	1385	586	642	130	429	665	2589	16	42	361	197	7259
083	80-0930	216	1313	627	653	137	399	583	2298	19	44	381	157	6827
084	5-0945	193	1251	621	621	125	356	501	2094	15	54	359	147	6337
090	00-1000	183	1171	617	571	113	354	432	1982	17	50	307	123	5920

LINCOLN BOULEVARD

DATA PROVIDED BY:

QUALITY TRAFFIC DATA, LLC 9701 W. PICO BOULEVARD, SUITE 205 LOS ANGELES, CALIFORNIA 90035 PH: 310-341-0019

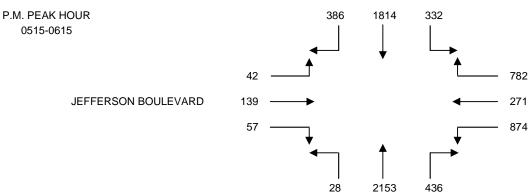
FAX: 310-807-9247

INFO@QUALITYTRAFFICDATA.COM

INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT: HIRSCH/GREEN TRANSPORTATION CONSULTING, INC.

PROJECT: PARCEL 44 - MARINA DEL REY
DATE: THURSDAY DECEMBER 8, 2011


PERIOD: 04:00 PM TO 07:00 PM
INTERSECTION N/S LINCOLN BOULEVARD
E/W JEFFERSON BOULEVARD

FILE NUMBER: 25-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0400-0415	65	364	76	122	45	156	70	404	2	14	36	5
0415-0430	95	423	96	99	56	131	80	517	8	17	31	9
0430-0445	103	401	99	153	59	180	85	501	6	19	24	14
0445-0500	101	402	91	162	53	119	92	482	5	14	37	13
0500-0515	110	447	93	129	67	217	77	539	6	16	43	8
0515-0530	74	434	85	192	46	191	114	507	9	16	36	4
0530-0545	88	486	82	230	66	239	135	582	8	14	37	16
0545-0600	123	452	97	173	74	213	104	553	4	14	33	15
0600-0615	101	442	68	187	85	231	83	511	7	13	33	7
0615-0630	85	399	93	205	54	190	73	435	8	10	28	7
0630-0645	90	418	84	133	79	196	98	443	4	18	29	6
0645-0700	98	403	85	146	66	215	61	408	5	17	32	14

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0400-0500	364	1590	362	536	213	586	327	1904	21	64	128	41	6136
0415-0515	409	1673	379	543	235	647	334	2039	25	66	135	44	6529
0430-0530	388	1684	368	636	225	707	368	2029	26	65	140	39	6675
0445-0545	373	1769	351	713	232	766	418	2110	28	60	153	41	7014
0500-0600	395	1819	357	724	253	860	430	2181	27	60	149	43	7298
0515-0615	386	1814	332	782	271	874	436	2153	28	57	139	42	7314
0530-0630	397	1779	340	795	279	873	395	2081	27	51	131	45	7193
0545-0645	399	1711	342	698	292	830	358	1942	23	55	123	35	6808
0600-0700	374	1662	330	671	284	832	315	1797	24	58	122	34	6503

LINCOLN BOULEVARD

DATA PROVIDED BY:

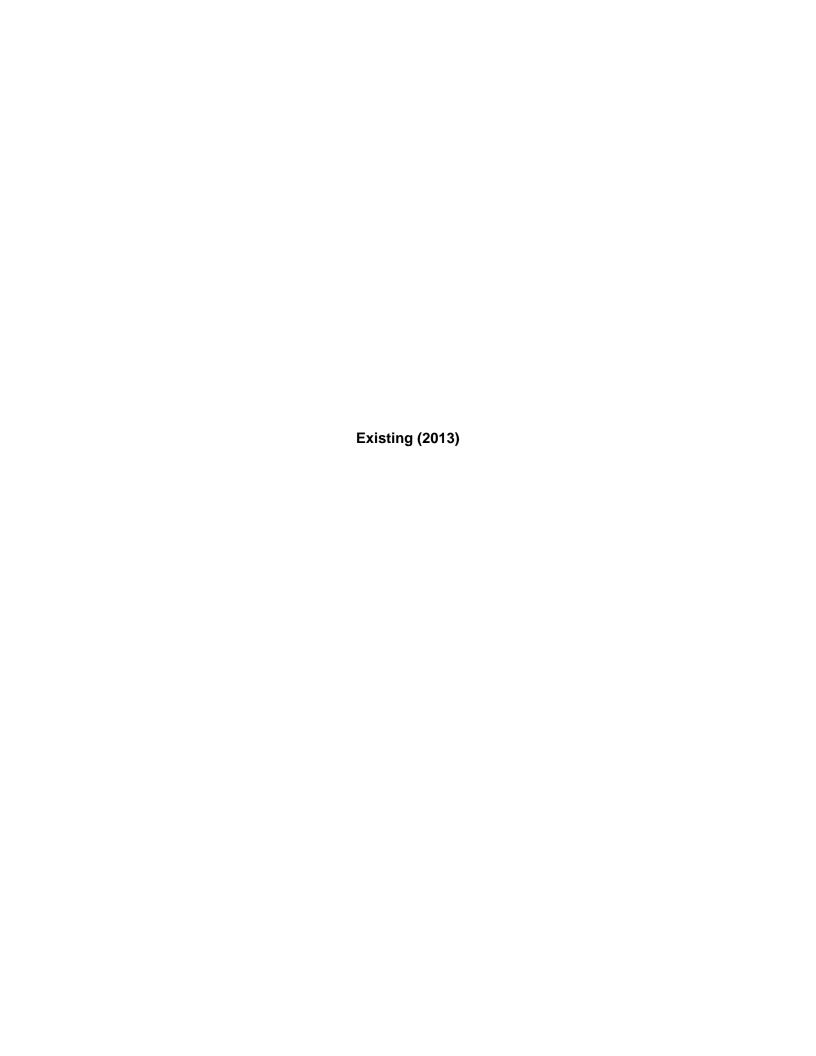
QUALITY TRAFFIC DATA, LLC 9701 W. PICO BOULEVARD, SUITE 205 LOS ANGELES, CALIFORNIA 90035 PH: 310-341-0019

FAX: 310-807-9247

INFO@QUALITYTRAFFICDATA.COM

TRAFFIC IMPACT ANALYSIS REPORT - APPENDIX VOLUME II (G)

Proposed Commercial Redevelopment of Parcel 44 on Admiralty Way between Bali Way and Mindanao Way in Marina del Rey, California


Prepared for:

Pacific Ocean Management, LLC 13575 Mindanao Way Marina del Rey, California 90292

Prepared by:

APPENDIX G
CRITICAL MOVEMENT ANALYSIS ("CMA") CALCULATION WORKSHEETS

Project Name	Marina del Rey	- Parcel 44 Project		
Intersection Number	1		Date	October 7, 2013
Intersection Name	North/South: East/West:	Lincoln Boulevard Venice Boulevard		
Intersection Control	Signalized			
Analysis Period	AM Peak Hour			
Analysis Scenario	Existing (2013)			

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	172		95	
	Left/Through	0				
Northbound	Through	1	1,623		876	876
	Through/Right	1			876	
	Right	0	130	0		
	Total Lanes	4				
	Left	2	179		98	98
	Left/Through	0				
Southbound	Through	1	1,208		628	
	Through/Right	1			628	
	Right	0	47	0		
	Total Lanes	4				
		;	Sum of North	n/South Critica	al Volumes	974
	Left	2	139		76	76
	Left/Through	0				
Eastbound	Through	3	841		280	
	Through/Right	0				
	Right	1	124	95	29	
	Total Lanes	6				
	Left	2	368		202	
	Left/Through	0				
Westbound	Through	2	995		498	498
	Through/Right	0				
	Right	1	227	98	129	
	Total Lanes	5				
			Sum of Eas	st/West Critica	al Volumes	574
			Total Inter	section Critica	al Volumes	1,548
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	1.126

Signal Coordination Adjustment

Level of Service (LOS)

Final CMA

Signal Coordination

ATSAC + ATCS

-0.100

1.026

F

Project Name	Marina del Rey -	Parcel 44 Project		
Intersection Number	2		Date	October 7, 2013
Intersection Name	North/South: East/West:	Pacific Avenue Washington Boulevard		
Intersection Control	Signalized			
Analysis Period	AM Peak Hour			
Analysis Scenario	Existing (2013)			

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Lane Volumes	Critical Moves
	Left	0	2			
	Left/Through	1			135	
Northbound	Through	0	133			
	Through/Right	1			192	192
	Right	0	192	0		
	Total Lanes	2				
	Left	0	369			
	Left/Through	1			369	369
Southbound	Through	0	68			
	Through/Right	1			85	
	Right	0	17	0		
	Total Lanes	2				
		;	Sum of North	n/South Critica	al Volumes	561
	Left	0	19			19
	Left/Through	0				
Eastbound	Left/Through/Right	1	60		92	
	Through/Right	0				
	Right	0	13	0		
	Total Lanes	1				
	Left	1	107		107	
	Left/Through	0				
Westbound	Through	1	64		64	
	Through/Right	0				
	Right	1	692	369	323	323
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	342
			Total Inter	section Critica	al Volumes	903
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.634
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.534
				Level of Ser	rvice (LOS)	Α

North/South Opposed Phasing

Assigned

Project NameMarina del Rey - Parcel 44 ProjectIntersection Number3DateOctober 7, 2013Intersection NameNorth/South: Via Dolce/Dell Avenue East/West: Washington BoulevardIntersection ControlSignalizedAnalysis PeriodAM Peak HourAnalysis ScenarioExisting (2013)

sis Scenario	Existing (2013)					
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	135		135	135
	Left/Through	0				
Northbound	Through	1	38		38	
	Through/Right	0				
	Right	1	195	46	149	
	Total Lanes	3				
	Left	0	3			
	Left/Through	0				
Southbound	Left/Through/Right	1	5		21	21
	Through/Right	0				
	Right	0	13	0		
	Total Lanes	1				
		;	Sum of North	/South Critica	al Volumes	156
	Left	1	12		12	12
	Left/Through	0				
Eastbound	Through	2	583		292	
	Through/Right	0				
	Right	1	43	43	0	
	Total Lanes	4				
	Left	1	70		70	
	Left/Through	0				
Westbound	Through	2	744		372	372
	Through/Right	0				
	Right	1	48	4	44	
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	384
			Total Inters	section Critica	al Volumes	540
Number of Cle	earance Intervals	2		Intersectio	n Capacity	1,500
					Base CMA	0.360
Signal Coordi	nation ATSAC + A	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.260
				Level of Ser	rvice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 4 Date October 7, 2013

Intersection Name North/South: Via Marina/Ocean Avenue East/West: Washington Boulevard

Intersection Control Signalized

Analysis Period AM Peak Hour

Analysis Scenario Existing (2013)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	438		241	
	Left/Through	0				
Northbound	Through	1	337		337	337
	Through/Right	0				
	Right	1	385	59	326	
	Total Lanes	4				
	Left	1	 17		 17	
	Left/Through	0				
Southbound	Through	0	125			
	Through/Right	1			193	193
	Right	0	68	0		
	Total Lanes	2				
		;	Sum of North	/South Critica	al Volumes	530
	Left	1	43		43	
	Left/Through	0				
Eastbound	Through	2	597		298	298
	Through/Right	0				
	Right	1	183	168	15	
	Total Lanes	4				
	Left	1	118		 118	118
	Left/Through	0				
Westbound	Through	2	395		198	
	Through/Right	0				
	Right	1	42	42	0	
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	416
			Total Inters	section Critica	al Volumes	946
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.664
Signal Coordi	nation ATSAC +	- ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.564
				Level of Ser	rvice (LOS)	Α

North/South Opposed Phasing

Intersed Intersed Analysi	Name ction Number ction Name ction Control is Period is Scenario	Marina del Rey - 5 North/South: East/West: Two-Way STOP AM Peak Hour Existing (2013)	Palawan Wa Washington	ay	Date	October 7, 2	2013
·	Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Northbound	Left Left/Through Through Through/Right Right Total Lanes	0 0 0 0 1	0 0 240	0	240	240
	Southbound	Left Left/Through Through Through/Right Right Total Lanes	0 0 0 0 0	0 0	0		
			:	Sum of North	/South Critica	al Volumes	240
	Eastbound	Left Left/Through Through Through/Right Right Total Lanes	0 0 2 0 1 3	923 81	n/South Critica 81	462	240 462
	Eastbound	Left/Through Through Through/Right Right	0 0 2 0 1	923		462	
	Westbound	Left/Through Through/Right Right Total Lanes Left Left/Through Through Through/Right Right	0 0 2 0 1 3 1 0 2 0	0 923 81 156 578 0	81 0 st/West Criticasection Critica	462 0 156 289 al Volumes	462

Project Name	Marina del Rey -	Parcel 44 Project		
Intersection Number	6		Date	October 7, 2013
Intersection Name	North/South: East/West:	Abbot Kinney Boulevard Washington Boulevard		
Intersection Control	Signalized			
Analysis Period	AM Peak Hour			
Analysis Scenario	Existing (2013)			
				Assigned

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	1	414		268	268
	Left/Through	0				
Southbound	Left/Through/Right	1	0		268	
	Through/Right	0				
	Right	0	123	0		
	Total Lanes	2				
		;	Sum of North	n/South Critica	al Volumes	268
	Left	1	165		165	165
	Left/Through	0				
Eastbound	Through	2	1,049		524	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	2	599		300	
	Through/Right	0				
	Right	1	827	268	559	559
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	724
			Total Inter	section Critica	al Volumes	992
Number of Cle	earance Intervals	2		Intersectio	n Capacity	1,500
					Base CMA	0.661
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.561
				Level of Ser	vice (LOS)	Α
					•	

Assigned

Level of Service (LOS)

D

Project Name	Marina del Rey	- Parcel 44 Project		
Intersection Number	7		Date	October 7, 2013
Intersection Name	North/South: East/West:	Lincoln Boulevard Washington Boulevard		
Intersection Control	Signalized			
Analysis Period	AM Peak Hour			
Analysis Scenario	Existing (2013)			

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Lane Volumes	Critical Moves
	Left	2	510		280	
	Left/Through	0				
Northbound	Through	2	1,775		656	656
	Through/Right	1			656	
	Right	0	192	0		
	Total Lanes	5				
	Left	2	306		168	168
	Left/Through	0				
Southbound	Through	2	1,230		455	
	Through/Right	1			455	
	Right	0	134	0		
	Total Lanes	5				
			Sum of North	n/South Critica	al Volumes	824
	Left	2	129		71	
	Left/Through	0				
Eastbound	Through	2	729		364	364
	Through/Right	0				
	Right	1	563	280	283	
	Total Lanes	5				
	Left	2	136		75	75
	Left/Through	0				
Westbound	Through	2	651		326	
	Through/Right	0				
	Right	1	211	168	43	
	Total Lanes	5				
			Sum of Eas	st/West Critica	al Volumes	439
			Total Inter	section Critica	al Volumes	1,263
Number of Cl	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	0.919
Signal Coordi	nation ATSAC	+ ATCS	Signal C	Coordination A	•	-0.100
					Final CMA	0.819

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 8 Date October 7, 2013

Intersection Name North/South: Glencoe Avenue/Costco Plaza Driveway

East/West: Washington Boulevard

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	255		159	159
	Left/Through	1			159	
Northbound	Through	0	63			
	Through/Right	0				
	Right	1	342	277	65	
	Total Lanes	3				
	Left	1	101		71	71
	Left/Through	1			71	
Southbound	Through	0	41			
	Through/Right	0				
	Right	1	23	22	1	
	Total Lanes	3				

			Sum of North/South Critical Volumes				
	Left	1	22		22		
	Left/Through	0					
Eastbound	Through	2	1,001		500	500	
	Through/Right	0					
	Right	1	132	132	0		
	Total Lanes	4					
	Left	1	 277		277	277	
	Left/Through	0					
Westbound	Through	2	692		285		
	Through/Right	1			285		
	Right	0	164	0			
	Total Lanes	4			<u>-</u>		

		Sum of East/West Critical Volumes	777
		Total Intersection Critical Volumes	1,007
Number of Clearance Intervals 4		Intersection Capacity	1,375
		Base CMA	0.732
Signal Coordination	ATSAC + ATCS	Signal Coordination Adjustment	-0.100
		Final CMA	0.632
		Level of Service (LOS)	В

Project Name	Marina del Rey -	Parcel 44 Project		
Intersection Number	9		Date	October 7, 2013
Intersection Name	North/South: East/West:	Via Marina Admiralty Way		
Intersection Control	Signalized			
Analysis Period	AM Peak Hour			
Analysis Scenario	Existing (2013)			

Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
Left	0	0			
Left/Through	0				
Through	2	561		280	280
Through/Right	0				
Right	1	747	747	0	
Total Lanes	3				
Left	1	 257		257	257
Left/Through	0				
Through	3	170		57	
Through/Right	0				
Right	0	0	0		
Total Lanes	4				
Sum of North/South Critical Volumes					
Left	0	0			
Left/Through	0				
Through	0	0			
Through/Right	0				
Right	0	0	0		
Total Lanes	0				
Left	2	339		186	186
Left/Through	0				
Through	0	0			
Through/Right	0				
Right	2	635	514	60	
Total Lanes	4				
		Sum of Eas	st/West Critica	al Volumes	186
		Total Inters	section Critica	al Volumes	723
earance Intervals	3		Intersectio	n Capacity	1,425
				Base CMA	0.507
nation ATSAC +	- ATCS	Signal C	Coordination A	Adjustment	-0.100
				Final CMA	0.407
	Left Left/Through Through/Right Right Total Lanes Left Left/Through Through Throu	Lane TypeLanesLeft0Left/Through0Through/Right0Right1Total Lanes3Left1Left/Through0Through/Right0Right0Total Lanes4Left0Left/Through0Through/Right0Through/Right0Right0Total Lanes0Left2Left/Through0Through/Right0Through/Right0Through/Right0Through/Right0Right2Total Lanes4	Lane Type Lanes Volumes Left 0 0 Left/Through 0 0 Through 2 561 Through/Right 0 0 Right 1 747 Total Lanes 3 170 Through 3 170 Through/Right 0 0 Right 0 0 Through/Right 0 0 Total Lanes 4 Sum of East Parameter Intervals 3 Sum of East	Lane Type Lanes Volumes on Red Left 0 0 0 Left/Through 0 0 0 Through Right 0 0 0 Right 1 747 747 Total Lanes 3 170 0 Through Right 0 0 0 Through/Right 0 0 0 Right 0 0 0 Through O 0 0 0 Through/Right 0 0 0 Through/Right 0 0 0 Through O 0 0 0 Through/Right 0 0 0 Through/Right 0 0 0 Through/Right 0 0 0 Total Lanes 4 Sum of East/West Critical Intersection Critical Intersection Critical Intersection Critical Intersection Critical Intersection Critical Intersection Critical Critica	Lane Type No. of Lanes Approach Volumes Right-Turn on Red Lane Volumes Left 0

Level of Service (LOS)

Α

Project Name Marina del Rey - Parcel 44 Project **Intersection Number** 10 Date October 7, 2013 **Intersection Name** North/South: Palawan Way East/West: Admiralty Way **Intersection Control** Signalized **Analysis Period** AM Peak Hour **Analysis Scenario** Existing (2013)

3 Ocemano	Existing (2013)					
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	28		28	
	Left/Through	0				
Northbound	Through	0	67			
	Through/Right	1			121	121
	Right	0	54	0		
	Total Lanes	2				
	Left	1	140		140	140
	Left/Through	0				
Southbound	Through	1	21		21	
	Through/Right	0				
	Right	1	94	45	49	
	Total Lanes	3				
			Sum of North	n/South Critic	al Volumes	261
	Left	1	90		90	90
	Left/Through	0				
Eastbound	Through	1	870		439	
	Through/Right	1			439	
	Right	0	8	0		
	Total Lanes	3				
	Left	1	45		45	
	Left/Through	0				
Westbound	Through	1	877		490	490
	Through/Right	1			490	
	Right	0	103	0		
	Total Lanes	3				
			Sum of Eas	st/West Critic	al Volumes	580
			Total Inter	section Critic	al Volumes	841
Number of Cl	earance Intervals	2		Intersection	n Capacity	1,500
					Base CMA	0.561
Signal Coordi	nation ATSAC -	+ ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.461
				Level of Se	rvice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 11 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Maxella Avenue/Marina Pointe Drive

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	56		31	
	Left/Through	0				
Northbound	Through	3	2,290		763	763
	Through/Right	0				
	Right	1	215	106	109	
	Total Lanes	6				
	Left	2	120		66	66
	Left/Through	0				
Southbound	Through	3	1,834		472	
	Through/Right	1			472	
	Right	0	56	0		
	Total Lanes	6				
			Sum of North	/South Critica	al Volumes	829

			Sum of North	Sum of North/South Critical Volumes				
	Left	1	63		63			
	Left/Through	0						
Eastbound	Through	1	79		79			
	Through/Right	0						
	Right	1	129	31	98	98		
	Total Lanes	3						
	Left	1	183		106	106		
	Left/Through	1			106			
Westbound	Through	0	29					
	Through/Right	0						
	Right	1	111	66	45			
	Total Lanes	3	_					

Tot	al Lanes	3	
		Sum of East/West Critical Volumes	204
		Total Intersection Critical Volumes	1,033
Number of Clearance Intervals 4		Intersection Capacity	1,375
		Base CMA	0.751
Signal Coordination	ATSAC + ATCS	S Signal Coordination Adjustment	-0.100
		Final CMA	0.651
		Level of Service (LOS)	В

Project Name Marina del Rey - Parcel 44 Project Date October 7, 2013 **Intersection Number** 12 **Intersection Name** North/South: Glencoe Avenue East/West: Maxella Avenue **Intersection Control** Signalized **Analysis Period** AM Peak Hour **Analysis Scenario** Existing (2013)

is Scenario	Existing (2013)					
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	79		79	
	Left/Through	0				
Northbound	Through	1	454		454	454
	Through/Right	0				
	Right	1	60	58	2	
	Total Lanes	3				
	Left	1	22		22	22
	Left/Through	0				
Southbound	Through	1	363		220	
	Through/Right	1			220	
	Right	0	77	0		
	Total Lanes	3				
		;	Sum of North	n/South Critic	al Volumes	476
	Left	1	114		114	114
	Left/Through	0				
Eastbound	Through	1	76		76	
	Through/Right	0				
	Right	1	116	116	0	
	Total Lanes	3				
	Left	1	82		82	
	Left/Through	0				
Westbound	Through	1	86		78	78
	Through/Right	1			78	
	Right	0	71	0		
	Total Lanes	3				
			Sum of Eas	st/West Critic	al Volumes	192
			Total Inter	section Critic	al Volumes	668
Number of Cle	earance Intervals	2		Intersection	n Capacity	1,500
					Base CMA	0.445
Signal Coordi	nation ATSAC	+ ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.345
				Level of Se	rvice (LOS)	Α

Project Name
Intersection Number
Intersection Name
North/South: Lincoln Boulevard
East/West: Marina Expressway (SR-90)
Intersection Control
Analysis Period

Marina del Rey - Parcel 44 Project

Date October 7, 2013

Marina Expressway (SR-90)

Signalized

AM Peak Hour

Intersection ControlSignalizedAnalysis PeriodAM Peak HourAnalysis ScenarioExisting (2013)

ois occitatio	Laisting (2013)					
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	2	1,594		628	628
	Through/Right	1			628	
	Right	0	289	0		
	Total Lanes	3				
	Left	2	868		477	477
	Left/Through	0				
Southbound	Through	3	1,315		438	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	5				
			Sum of North	n/South Critica	al Volumes	1,105
	Left	0	0			
	Left/Through	0				
Eastbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	2	148		81	81
	Left/Through	0				
Westbound	Through	0	0			
	Through/Right	0				
	Right	2	913	913	0	
	Total Lanes	4				
			Sum of Eas	st/West Critic	al Volumes	81
			Total Inter	section Critica	al Volumes	1,186
Number of Cle	earance Intervals	3		Intersection	n Capacity	1,425
					Base CMA	0.832
Signal Coordi	nation ATSAC	+ ATCS	Signal C	Coordination A	Adjustment	-0.100
	Final CMA					0.732

Level of Service (LOS)

C

Project Name	Marina del Rey - Parcel 44 Project
--------------	------------------------------------

Intersection Number 14 Date October 7, 2013

Intersection Name

North/South: Admiralty Way

East/West: Bali Way

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	12		12	
	Left/Through	0				
Northbound	Through	1	1,036		596	596
	Through/Right	1			596	
	Right	0	157	0		
	Total Lanes	3				
	Left	1	319		319	319
	Left/Through	0				
Southbound	Through	1	1,266		636	
	Through/Right	1			636	
	Right	0	6	0		
	Total Lanes	3				
		:	Sum of North	n/South Critica	al Volumes	915
	Left	0	13			13
	Left/Through	1			14	
Eastbound	Through	0	8			
	Through/Right	1			14	
	Right	0	7	0		
	Total Lanes	2				
	Left	1	16		16	
	Left/Through	0				
Westbound	Through	0	29			
	Through/Right	1			29	29
	Right	1	298	298	0	
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	42
			Total Inter	section Critica	al Volumes	957
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	0.696
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	-	-0.100
					Final CMA	0.596
				Level of Ser	vice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 15 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Bali Way/Auto Dealership Driveway

Intersection ControlSignalizedAnalysis PeriodAM Peak HourAnalysis ScenarioExisting (2013)

Signal Coordination

ATSAC + ATCS

is Scenario	Existing (2013)					
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	111		111	111
	Left/Through	0				
Northbound	Through	2	1,534		518	
	Through/Right	1			518	
	Right	0	20	0		
	Total Lanes	4				
	Left	1	3		3	
	Left/Through	0				
Southbound	Through	2	1,247		484	484
	Through/Right	1			484	
	Right	0	205	0		
	Total Lanes	4				
		:	Sum of North	n/South Critica	al Volumes	595
	Left	1	319		160	160
	Left/Through	1			160	
Eastbound	Through	0	2			
	Through/Right	0				
	Right	1	140	56	84	
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Left/Through/Right	1	2		10	10
	Through/Right	0				
	Right	0	8	0		
	Total Lanes	1				
			Sum of Eas	st/West Critica	al Volumes	170
			Total Inters	section Critica	al Volumes	765
Number of Clearance Intervals 4				Interceptio	n Capacity	1,375

East/West Opposed Phasing

Base CMA

Final CMA

Signal Coordination Adjustment

Level of Service (LOS)

0.556

-0.100

0.456

Α

Project Name Marina del Rey - Parcel 44 Project **Intersection Number** 16 Date October 7, 2013 **Intersection Name** North/South: Admiralty Way East/West: Mindanao Way **Intersection Control** Signalized **Analysis Period** AM Peak Hour **Analysis Scenario** Existing (2013)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	24		24	
	Left/Through	0				
Northbound	Through	1	864		494	494
	Through/Right	1			494	
	Right	0	124	0		
	Total Lanes	3				
	Left	1	235		235	235
	Left/Through	0				
Southbound	Through	1	981		499	
	Through/Right	1			499	
	Right	0	17	0		
	Total Lanes	3				
		;	Sum of North	/South Critica	al Volumes	729
	Left	1	26		26	_
	Left/Through	0				
Eastbound	Through	0	18			
	Through/Right	1			50	50
	Right	0	32	0		
	Total Lanes	2				
	Left	1	118		70	
	Left/Through	1			70	
Westbound	Through	0	21			
	Through/Right	0				
	Right	1	371	235	136	136
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	186
			Total Inters	section Critica	al Volumes	915
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	0.665
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.565
				Level of Ser	rvice (LOS)	Α

East/West Opposed Phasing WB Rt. Turn Overlap with SB Left

NB Rt. Turn Overlap with WB Left

Hirsch/Green Transportation Consulting, Inc. Critical Movement Analysis (CMA) Worksheet

Project Name	Marina del Rey	- Parcel 44 Project		
Intersection Number	17		Date	October 7, 2013
Intersection Name	North/South: East/West:	Lincoln Boulevard Mindanao Way		
Intersection Control	Signalized			
Analysis Period	AM Peak Hour			
Analysis Scenario	Existing (2013)			

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	197		197	
	Left/Through	0				
Northbound	Through	3	2,630		877	877
	Through/Right	0				
	Right	1	478	156	322	
	Total Lanes	5				
	Left	1	182		182	182
	Left/Through	0				
Southbound	Through	2	1,485		507	
	Through/Right	1			507	
	Right	0	35	0		
	Total Lanes	4				
		;	Sum of North	n/South Critica	al Volumes	1,059
	Left	0	0			_
	Left/Through	0				
Eastbound	Through	1	153		87	87
	Through/Right	1			87	
	Right	0	21	0		
	Total Lanes	2				
	Left	2	284		156	156
	Left/Through	0				
Westbound	Through	1	382		232	
	Through/Right	1			232	
	Right	0	82	0		
	Total Lanes	4				
			Sum of Eas	st/West Critic	al Volumes	243
			Total Inters	section Critica	al Volumes	1,302
Number of Cle	earance Intervals	4		Intersection	n Capacity	1,375
					Base CMA	0.947
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.847
				Level of Se	rvice (LOS)	D

Project Name	Marina del Rey -	Parcel 44 Project		
Intersection Number	18		Date	October 7, 2013
Intersection Name	North/South: East/West:	EB Marina Expressway (SR-90) Mindanao Way		
Intersection Control	Signalized			
Analysis Period	AM Peak Hour			
Analysis Scenario	Existing (2013)			

	•					
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	1	22		22	
	Left/Through	0				
Southbound	Through	1	1,111		563	563
	Through/Right	1			563	
	Right	0	15	0		
	Total Lanes	3				
			Sum of North	n/South Critica	al Volumes	563
	Left	0	0			
	Left/Through	0				
Eastbound	Through	1	386		281	281
	Through/Right	1			281	
	Right	1	458	0	281	
	Total Lanes	3				
	Left	2	347		 191	191
	Left/Through	0				
Westbound	Through	2	807		404	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	4				
			Sum of Eas	st/West Critic	al Volumes	472
			Total Inter	section Critica	al Volumes	1,035
Number of Cle	earance Intervals	3		Intersection	n Capacity	1,425
					Base CMA	0.726
Signal Coordination ATSAC + ATCS Signal C				Coordination A	Adjustment	-0.100
					Final CMA	0.626
				Level of Se	rvice (LOS)	В

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 19 Date October 7, 2013

Intersection Name North/South: WB Marina Expressway (SR-90)

East/West: Mindanao Way

s Scenario	Existing (2013)					
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	327		327	
	Left/Through	1			480	
Northbound	Through	1	961		480	480
	Through/Right	0				
	Right	1	381	38	343	
	Total Lanes	4				
	Left	0	0			
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
		:	Sum of North	n/South Critica	al Volumes	480
	Left	1	4		4	4
	Left/Through	0				
Eastbound	Through	2	403		202	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	2	802		273	273
	Through/Right	1			273	
	Right	0	16	0		
	Total Lanes	3				
			Sum of Eas	st/West Critic	al Volumes	277
			Total Inter	section Critica	al Volumes	757
Number of Clo	earance Intervals	3		Intersection	n Capacity	1,425
					Base CMA	0.531
Signal Coordi	nation ATSAC -	+ ATCS	Signal C	Coordination A	-	-0.100
					Final CMA	0.431
				Level of Ser	rvice (LOS)	Α

Date October 7, 2013

Project Name Marina del Rey - Parcel 44 Project
Intersection Number 20

Intersection NameNorth/South:Glencoe AvenueEast/West:Mindanao Way

is Scenario	Existing (2013)					
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	42		42	42
	Left/Through	0				
Northbound	Through	1	168		93	
	Through/Right	1			93	
	Right	0	18	0		
	Total Lanes	3				
	Left	1	51		51	
	Left/Through	0				
Southbound	Through	1	135		135	
	Through/Right	0				
	Right	1	359	187	172	172
	Total Lanes	3				
		;	Sum of North	/South Critica	al Volumes	214
	Left	1	374		374	374
	Left/Through	0				
Eastbound	Through	1	314		198	
	Through/Right	1			198	
	Right	0	81	0		
	Total Lanes	3				
	Left	1	14		14	
	Left/Through	0				
Westbound	Through	1	392		230	230
	Through/Right	1			230	
	Right	0	68	0		
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	604
			Total Inters	section Critica	al Volumes	818
Number of Cle	earance Intervals	2		Intersectio	n Capacity	1,500
					Base CMA	0.545
Signal Coordi	nation ATSAC +	- ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.445
				Level of Ser	vice (LOS)	Α

SB Rt. Turn Overlap with EB Left

Hirsch/Green Transportation Consulting, Inc. Critical Movement Analysis (CMA) Worksheet

Project Name	Marina del Rey	- Parcel 44 Project		
Intersection Number	21		Date	October 7, 2013
Intersection Name	North/South: East/West:	Admiralty Way Fiji Way		
Intersection Control	Signalized			
Analysis Period	AM Peak Hour			
Analysis Scenario	Existing (2013)			

sis Scenario	Existing (2013)					
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	2	618		340	340
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	1	47	43	4	
	Total Lanes	3				
		;	Sum of North	/South Critica	al Volumes	340
	Left	1	43		43	43
	Left/Through	0				
Eastbound	Through	2	91		46	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3 				
	Left	0	0			
	Left/Through	0				
Westbound	Through	1	113		113	113
	Through/Right	0				
	Right	1	653	653	0	
	Total Lanes	2				
			Sum of Eas	st/West Critica	al Volumes	156
			Total Inters	section Critica	al Volumes	496
Number of Cle	earance Intervals	2		Intersectio	n Capacity	1,500
					Base CMA	0.331
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.231
				Level of Ser	vice (LOS)	Α

	tion Number	Marina del Rey - 22		•	Date	October 7, 2	October 7, 2013	
Intersec	tion Name	North/South: East/West:	Lincoln Bou Fiji Way	levard				
Intersec	ction Control	Signalized	ı iji vvay					
	s Period	AM Peak Hour						
-	s Scenario	Existing (2013)						
, ,		_/g (_0 . 0)				A :		
	Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves	
:		Left	2	623		343		
		Left/Through	0					
	Northbound	Through	2	3,099		1,046	1,046	
		Through/Right	1			1,046		
		Right	0	38	0			
		Total Lanes	5					
		Left	1	38		38	38	
		Left/Through	0					
	Southbound	Through	2	1,728		593		
		Through/Right	1			593		
		Right	0	50	0			
		Total Lanes	4					
			:	Sum of North	/South Critica	al Volumes	1,084	
•		Left	1	176		176	176	
		Left/Through	0					
	Eastbound	Through	1	21		21		
		Through/Right	0					
		Right	1	550	550	0		
		Total Lanes	3					
		Left	0	11				
		Left/Through	1			11	11	
	Westbound	Through	0	2				
		Through/Right	1			2		
		Right	0	0	0			
		Total Lanes	2					
				Sum of Eas	st/West Critic	al Volumes	187	
				Total Inters	section Critica	al Volumes	1,271	
	Number of Cle	earance Intervals	4		Intersection	n Capacity	1,375	
						Base CMA	0.924	
	Signal Coordi	nation ATSAC	+ ATCS	Signal C	Coordination A	Adjustment	-0.100	

Final CMA

Level of Service (LOS)

0.824

D

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 23 Date October 7, 2013

Intersection Name North/South: Marina Freeway (SR-90) EB On/Off-Ramps

East/West: Culver Boulevard

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	1	20		20	
	Left/Through	0				
Southbound	Through	1	0		0	
	Through/Right	1			116	116
	Right	0	116	0		
	Total Lanes	3				
		;	Sum of North	n/South Critica	al Volumes	116
	Left	0	0			
	Left/Through	0				
Eastbound	Through	3	1,829		610	610
	Through/Right	0				
	Right	2	832	0	416	
	Total Lanes	5				
	Left	1	127		127	127
	Left/Through	0				
Westbound	Through	2	479		240	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	737
			Total Inter	section Critica	al Volumes	853
Number of Cle	earance Intervals	2		Intersectio	n Capacity	1,500
					Base CMA	0.569
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.469
				Level of Ser	vice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 24 Date October 7, 2013

Intersection Name North/South: Marina Freeway (SR-90) WB Off-Ramp

East/West: Culver Boulevard


Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	137		137	
	Left/Through	1			196	
Northbound	Through	0	271			
	Through/Right	1			196	196
	Right	0	120	0		
	Total Lanes	3				
	Left	1	112		112	112
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	1	157	157	0	
	Total Lanes	2				
			Sum of North	n/South Critica	al Volumes	308
	Left	1	509		509	509
	Left/Through	0				
Eastbound	Through	2	1,459		730	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	2	334		167	
	Through/Right	0				
	Right	1	324	56	268	268
	Total Lanes	3				
			Sum of Eas	st/West Critic	al Volumes	777
			Total Inter	section Critica	al Volumes	1,085
Number of Cle	earance Intervals	3		Intersection	n Capacity	1,425
					Base CMA	0.761
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.661
				Level of Se	rvice (LOS)	В

Project Name Marina del Rey - Parcel 44 Project
Intersection Number 25 Date October 7, 2013
Intersection Name North/South: Lincoln Boulevard
East/West: Jefferson Boulevard
Intersection Control Signalized

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	20		20	
	Left/Through	0				
Northbound	Through	4	2,831		708	708
	Through/Right	0				
	Right	1	713	77	636	
	Total Lanes	6				
	Left	2	 555		305	305
	Left/Through	0				
Southbound	Through	3	1,499		439	
	Through/Right	1			439	
	Right	0	257	0		
	Total Lanes	6				

			Sum of North/South Critical Volumes				
	Left	1	254		254	254	
	Left/Through	0					
Eastbound	Through	2	385		139		
	Through/Right	1			139		
	Right	0	32	0			
	Total Lanes	4					
	Left	2	561		309	309	
	Left/Through	0					
Westbound	Through	2	154		77		
	Through/Right	0					
	Right	2	703	610	46		
	Total Lanes	6	_				

100	ai Lailes	U		
			Sum of East/West Critical Volumes	563
			Total Intersection Critical Volumes	1,576
Number of Clearance Intervals 4		4	Intersection Capacity	1,375
			Base CMA	1.146
Signal Coordination	ATSAC +	ATCS	Signal Coordination Adjustment	-0.100
			Final CMA	1.046
			Level of Service (LOS)	F

Project Name Marina del Rey - Parcel 44 Project **Intersection Number** 1 Date October 7, 2013 **Intersection Name** North/South: Lincoln Boulevard East/West: Venice Boulevard **Intersection Control** Signalized **Analysis Period** PM Peak Hour Existing (2013) **Analysis Scenario**

is Scenario	Existing (2013)					
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	147		81	
	Left/Through	0				
Northbound	Through	1	1,464		812	812
	Through/Right	1			812	
	Right	0	160	0		
	Total Lanes	4				
	Left	2	168		92	92
	Left/Through	0				
Southbound	Through	1	947		492	
	Through/Right	1			492	
	Right	0	37	0		
	Total Lanes	4				
		;	Sum of North	/South Critica	al Volumes	904
	Left	2	114		63	63
	Left/Through	0				
Eastbound	Through	3	872		291	
	Through/Right	0				
	Right	1	143	81	62	
	Total Lanes	6				
	Left	2	227		125	
	Left/Through	0				
Westbound	Through	2	935		468	468
	Through/Right	0				
	Right	1	138	92	46	
	Total Lanes	5				
			Sum of Eas	st/West Critic	al Volumes	531
			Total Inter	section Critica	al Volumes	1,435
Number of Cl	earance Intervals	4		Intersection	n Capacity	1,375
					Base CMA	1.044
Signal Coordi	nation ATSAC	+ ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.944
					' (1.00)	_

Level of Service (LOS)

Ε

Project NameMarina del Rey - Parcel 44 ProjectIntersection Number2DateOctober 7, 2013Intersection NameNorth/South: East/West: Washington BoulevardIntersection ControlSignalizedAnalysis PeriodPM Peak HourAnalysis ScenarioExisting (2013)

3 i enou	i wii cak i loui					
s Scenario	Existing (2013)					
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	2			
	Left/Through	1			71	
Northbound	Through	0	69			
	Through/Right	1			128	128
	Right	0	128	0		
	Total Lanes	2				
	Left	0	675			
	Left/Through	1			675	675
Southbound	Through	0	118			
	Through/Right	1			144	
	Right	0	26	0		
	Total Lanes	2				
		;	Sum of North	n/South Critica	al Volumes	803
	Left	0	20			
	Left/Through	0				
Eastbound	Left/Through/Right	1	91		129	129
	Through/Right	0				
	Right	0	18	0		
	Total Lanes	1				
	Left	1	 176		176	176
	Left/Through	0				
Westbound	Through	1	60		60	
	Through/Right	0				
	Right	1	425	425	0	
	Total Lanes	3				
			Sum of Eas	st/West Critic	al Volumes	305
			Total Inter	section Critica	al Volumes	1,108
Number of Cle	earance Intervals	3		Intersection	n Capacity	1,425
					Base CMA	0.778
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.678
				Level of Se	rvice (LOS)	В

Project NameMarina del Rey - Parcel 44 ProjectIntersection Number3DateOctober 7, 2013Intersection NameNorth/South: East/West: Washington BoulevardIntersection ControlSignalizedAnalysis PeriodPM Peak HourAnalysis ScenarioExisting (2013)

sis Scenario	Existing (2013)					
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	50		50	50
	Left/Through	0				
Northbound	Through	1	11		11	
	Through/Right	0				
	Right	1	95	71	24	
	Total Lanes	3				
	Left	0	16			
	Left/Through	0				
Southbound	Left/Through/Right	1	28		58	58
	Through/Right	0				
	Right	0	14	0		
	Total Lanes	1				
		;	Sum of North	/South Critica	al Volumes	108
	Left	1	13		13	
	Left/Through	0				
Eastbound	Through	2	742		371	371
	Through/Right	0				
	Right	1	110	25	85	
	Total Lanes	4				
	Left	1	142		142	142
	Left/Through	0				
Westbound	Through	2	650		325	
	Through/Right	0				
	Right	1	46	42	4	
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	513
			Total Inters	section Critica	al Volumes	621
Number of Cle	earance Intervals	2		Intersectio	n Capacity	1,500
					Base CMA	0.414
Signal Coordi	nation ATSAC + A	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.314
				Level of Ser	rvice (LOS)	Α

Project NameMarina del Rey - Parcel 44 ProjectIntersection Number4DateOctober 7, 2013Intersection NameNorth/South:
East/West:Via Marina/Ocean Avenue
Washington BoulevardIntersection ControlSignalized

Analysis Period PM Peak Hour
Analysis Scenario Existing (2013)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Lane Volumes	Critical Moves
	Left	2	322		177	
	Left/Through	0				
Northbound	Through	1	237		237	237
	Through/Right	0				
	Right	1	237	85	152	
	Total Lanes	4				
	Left	1	31		31	
Southbound	Left/Through	0				
	Through	0	443			
	Through/Right	1			552	552
	Right	0	109	0		
	Total Lanes	2				
Sum of North/South Critical Volumes					789	
	Left	1	37		37	
Eastbound	Left/Through	0				
	Through	2	588		294	294
	Through/Right	0				
	Right	1	339	118	221	
	Total Lanes	4				
	Left	1	170		170	170
Westbound	Left/Through	0				
	Through	2	525		262	
	Through/Right	0				
	Right	1	47	47	0	
	Total Lanes	4				
Sum of Eas				st/West Critical Volumes		464
		Total Inters	Total Intersection Critical Volumes			
Number of Clearance Intervals 3				Intersection Capacity		
Base CMA					0.879	
Signal Coordination ATSAC + ATCS			Signal Coordination Adjustment			-0.100
Final CMA					0.779	
Level of Service (LOS)						С

North/South Opposed Phasing

Assigned

Intersed Intersed Analysi	Name ction Number ction Name ction Control is Period is Scenario	Marina del Rey - 5 North/South: East/West: Two-Way STOP PM Peak Hour Existing (2013)	Palawan Wa	ау	Date	October 7, 2	2013
	Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
		Left	0	0			
		Left/Through	0				
	Northbound	Through	0	0			
		Through/Right	0				
		Right	1	155	0	155	155
		Total Lanes	1				
		Left	0	0			
		Left/Through	0	J			
	Southbound	Through	0	0			
		Through/Right	0	J			
		Right	0	0	0		
		Total Lanes	0	·			
			_	Sum of North	/South Critica	al Volumes	155
		Left	0	0			
		Left/Through	0	0			
	Eastbound	Through	2	727		364	364
	Lasibouria	Through/Right	0	121		304	304
		Right	1	185	78	107	
		Total Lanes	3	100	70	107	
		1 6	-				
		Left	1	434		434	434
	Manth const	Left/Through	0				434
	Westbound	Left/Through Through	0	434 762		434 381	434
	Westbound	Left/Through Through Through/Right	0 2 0	762			434
	Westbound	Left/Through Through Through/Right Right	0 2 0 0		0		434
	Westbound	Left/Through Through Through/Right	0 2 0	762		381	
	Westbound	Left/Through Through Through/Right Right	0 2 0 0	762 0 Sum of Eas	st/West Critic	381 al Volumes	798
		Left/Through Through Through/Right Right Total Lanes	0 2 0 0	762 0 Sum of Eas		381 al Volumes	
		Left/Through Through Through/Right Right	0 2 0 0	762 0 Sum of Eas	st/West Critica section Critica	381 al Volumes al Volumes on Capacity	798
	Number of Cle	Left/Through Through/Right Right Total Lanes	0 2 0 0 3	762 0 Sum of Eas Total Inters	st/West Critic section Critica Intersectio	381 al Volumes al Volumes on Capacity Base CMA	798 953 1,200 0.794
		Left/Through Through/Right Right Total Lanes	0 2 0 0 3	762 0 Sum of Eas Total Inters	st/West Critica section Critica	381 al Volumes al Volumes on Capacity Base CMA	798 953 1,200
	Number of Cle	Left/Through Through/Right Right Total Lanes	0 2 0 0 3	762 0 Sum of Eas Total Inters	st/West Critic section Critica Intersectio	381 al Volumes al Volumes on Capacity Base CMA	798 953 1,200 0.794

Project	Name ction Number	Marina del Rey - 6	Parcel 44 Pr	oject	Date	October 7, 2013	
	ction Name	North/South: East/West:	Abbot Kinne Washington	Date	October 7, 2	2013	
Intersec	ction Control	Signalized					
	s Period	PM Peak Hour					
_	s Scenario	Existing (2013)					
		_/g (_0 : 0)				A!	
	Approach		No. of	Approach	Right-Turn	Assigned Lane	Critical
	Direction	Lane Type	Lanes	Volumes	on Red	Volumes	Moves
		Left Left/Through	0	0			
	Northbound	Through	0 0	0			
	Northboaria	Through/Right	0	0			
		Right	0	0	0		
		Total Lanes	0	O	Ü		
		Left	 1	 729		468	468
		Left/Through	0				
	Southbound	Left/Through/Right	t 1	0		468	
		Through/Right	0				
		Right	0	207	0		
		Total Lanes	2				
			;	Sum of North	n/South Critica	al Volumes	468
		Left	1	113		113	113
		Left/Through	0				
	Eastbound	Through	2	746		373	
		Through/Right	0				
		Right	0	0	0		
		Total Lanes	3				
		Left	0	0			
		Left/Through	0				
	Westbound	Through	2	955		478	478
		Through/Right	0				
		Right	1	560	468	92	
		Total Lanes	3				
				Sum of Eas	st/West Critic	al Volumes	591

Number of Clearance Intervals

Signal Coordination

2

ATSAC + ATCS

Total Intersection Critical Volumes

Signal Coordination Adjustment

Intersection Capacity

Level of Service (LOS)

Base CMA

Final CMA

1,059

1,500

0.706

-0.100

0.606 B

Project Name Marina del Rey - Parcel 44 Project **Intersection Number** 7 Date October 7, 2013 **Intersection Name** North/South: Lincoln Boulevard

East/West: Washington Boulevard

Intersection Control Signalized **Analysis Period** PM Peak Hour **Analysis Scenario** Existing (2013)

Signal Coordination

ATSAC + ATCS

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	487		268	
	Left/Through	0				
Northbound	Through	2	1,657		638	638
	Through/Right	1			638	
	Right	0	258	0		
	Total Lanes	5				
	Left	2	230		126	126
	Left/Through	0				
Southbound	Through	2	1,215		441	
	Through/Right	1			441	
	Right	0	107	0		
	Total Lanes	5				
		•	Sum of North	n/South Critica	al Volumes	764
	Left	2	109		60	
	Left/Through	0				
Eastbound	Through	2	905		452	452
	Through/Right	0				
	Right	1	522	268	254	
	Total Lanes	5				
	Left	2	281		155	155
	Left/Through	0				
Westbound	Through	2	820		410	
	Through/Right	0				
	Right	1	297	126	171	
	Total Lanes	5				
			Sum of Eas	st/West Critica	al Volumes	607
			Total Inters	section Critica	al Volumes	1,371
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375

0.997

-0.100

0.897

D

Base CMA

Final CMA

Signal Coordination Adjustment

Level of Service (LOS)

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 8 Date October 7, 2013

Intersection Name North/South: Glencoe Avenue/Costco Plaza Driveway

East/West: Washington Boulevard

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	186		184	184
	Left/Through	1			184	
Northbound	Through	0	183			
	Through/Right	0				
	Right	1	343	343	0	
	Total Lanes	3				
	Left	 1	503		326	326
	Left/Through	1			326	
Southbound	Through	0	148			
	Through/Right	0				
	Right	1	81	55	26	
	Total Lanes	3				
			Compact Nameth	Cauth Cuitia	al Malumaa	E40

			Sum of Nort	h/South Critica	al Volumes	510
	Left	1	55		55	
	Left/Through	0				
Eastbound	Through	2	1,077		538	538
	Through/Right	0				
	Right	1	297	184	113	
	Total Lanes	4				
	Left	 1	508		508	508
	Left/Through	0				
Westbound	Through	2	1,198		495	
	Through/Right	1			495	
	Right	0	286	0		
	Total Lanes	4			<u>-</u>	

10.	ai Lairee		
		Sum of East/West Critical Volumes	1,046
		Total Intersection Critical Volumes	1,556
Number of Clearance Intervals 4		Intersection Capacity	1,375
		Base CMA	1.132
Signal Coordination	ATSAC + ATCS	Signal Coordination Adjustment	-0.100
		Final CMA	1.032
		Level of Service (LOS)	F

Project Name	Marina del Rey	- Parcel 44 Project		
Intersection Number	9		Date	October 7, 2013
Intersection Name	North/South: East/West:	Via Marina Admiralty Way		
Intersection Control	Signalized			
Analysis Period	PM Peak Hour			
Analysis Scenario	Existing (2013)			
				Accianad

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	2	335		168	168
	Through/Right	0				
	Right	1	493	493	0	
	Total Lanes	3				
	Left	1	 599		599	599
	Left/Through	0				
Southbound	Through	3	374		125	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	4				
		;	Sum of North	n/South Critica	al Volumes	767
	Left	0	0			
	Left/Through	0				
Eastbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	2	1,016		559	559
	Left/Through	0				
Westbound	Through	0	0			
	Through/Right	0				
	Right	2	445	445	0	
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	559
			Total Inters	section Critica	al Volumes	1,326
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.931
Signal Coordi	nation ATSAC	+ ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.831
				Level of Ser	vice (LOS)	D

Project Name Marina del Rey - Parcel 44 Project **Intersection Number** 10 Date October 7, 2013 **Intersection Name** North/South: Palawan Way East/West: Admiralty Way **Intersection Control** Signalized **Analysis Period** PM Peak Hour **Analysis Scenario** Existing (2013)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	16		16	
	Left/Through	0				
Northbound	Through	0	32			
	Through/Right	1			72	72
	Right	0	40	0		
	Total Lanes	2				
	Left	1	369		369	369
	Left/Through	0				
Southbound	Through	1	64		64	
	Through/Right	0				
	Right	1	171	24	147	
	Total Lanes	3				
		;	Sum of North	n/South Critica	al Volumes	441
	Left	1	49		49	49
	Left/Through	0				
Eastbound	Through	1	1,078		544	
	Through/Right	1			544	
	Right	0	10	0		
	Total Lanes	3				
	Left	1	72		72	
	Left/Through	0				
Westbound	Through	1	1,238		664	664
	Through/Right	1			664	
	Right	0	90	0		
	Total Lanes	3				
			Sum of Eas	st/West Critic	al Volumes	713
			Total Inter	section Critica	al Volumes	1,154
Number of Cle	earance Intervals	2		Intersection	n Capacity	1,500
					Base CMA	0.769
Signal Coordi	nation ATSAC + A	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.669
				Level of Se	rvice (LOS)	В

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 11 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Maxella Avenue/Marina Pointe Drive

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	194		107	
	Left/Through	0				
Northbound	Through	3	2,064		688	688
	Through/Right	0				
	Right	1	266	176	90	
	Total Lanes	6				
	Left	2	143		79	79
	Left/Through	0				
Southbound	Through	3	1,857		492	
	Through/Right	1			492	
	Right	0	110	0		
	Total Lanes	6				
			Compact Nameth	Courth Cuition	al Valumaa	767

			Sum of Nortl	h/South Critica	al Volumes	767
	Left	1	80		80	80
	Left/Through	0				
Eastbound	Through	1	72		72	
	Through/Right	0				
	Right	1	45	45	0	
	Total Lanes	3	•			
	Left	1	264		176	176
	Left/Through	1			176	
Westbound	Through	0	89			
	Through/Right	0				
	Right	1	174	79	95	
	Total Lanes	3	-		_	

100	ai Lailes	3		
			Sum of East/West Critical Volumes	256
			Total Intersection Critical Volumes	1,023
Number of Clearance Intervals 4		4	Intersection Capacity	1,375
			Base CMA	0.744
Signal Coordination	ATSAC +	ATCS	Signal Coordination Adjustment	-0.100
			Final CMA	0.644
			Level of Service (LOS)	В

Project NameMarina del Rey - Parcel 44 ProjectIntersection Number12DateOctober 7, 2013Intersection NameNorth/South:
East/West:Glencoe Avenue
Maxella AvenueIntersection ControlSignalizedAnalysis PeriodPM Peak Hour

Existing (2013)

Analysis Scenario

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	125		125	125
	Left/Through	0				
Northbound	Through	1	521		521	
	Through/Right	0				
	Right	1	82	82	0	
	Total Lanes	3				
	Left	1	51		51	
	Left/Through	0				
Southbound	Through	1	703		450	450
	Through/Right	1			450	
	Right	0	198	0		
	Total Lanes	3				
		;	Sum of North	n/South Critica	al Volumes	575
	Left	1	191		191	191
	Left/Through	0				
Eastbound	Through	1	137		137	
	Through/Right	0				
	Right	1	199	62	137	
	Total Lanes	3				
	Left	1	101		101	
	Left/Through	0				
Westbound	Through	1	180		124	124
	Through/Right	1			124	
	Right	0	67	0		
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	315
			Total Inter	section Critica	al Volumes	890
Number of Cle	earance Intervals	2		Intersectio	n Capacity	1,500
					Base CMA	0.593
Signal Coordi	nation ATSAC + A	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.493
				Level of Ser	rvice (LOS)	Α

Project Name	Marina del Rey -	Parcel 44 Project		
Intersection Number	13		Date	October 7, 2013
Intersection Name	North/South: East/West:	Lincoln Boulevard Marina Expressway (SR-90)		
Intersection Control	Signalized			
Analysis Period	PM Peak Hour			

Existing (2013)

Analysis Scenario

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	2	1,647		623	623
	Through/Right	1			623	
	Right	0	222	0		
	Total Lanes	3				
	Left	2	815		448	448
	Left/Through	0				
Southbound	Through	3	1,488		496	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	5				
		:	Sum of North	n/South Critica	al Volumes	1,071
	l oft	0	0			·

			ouni oi morti	ii, oodaan onaa	ai voiainoo	1,071
	Left	0	0			
	Left/Through	0				
Eastbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	2	200		110	110
	Left/Through	0				
Westbound	Through	0	0			
	Through/Right	0				
	Right	2	900	896	2	
	Total Lanes	4				

100	ai Lailes	4		
			Sum of East/West Critical Volumes	110
			Total Intersection Critical Volumes	1,181
Number of Clearance Intervals 3		3	Intersection Capacity	1,425
			Base CMA	0.829
Signal Coordination	ATSAC	+ ATCS	Signal Coordination Adjustment	-0.100
			Final CMA	0.729
			Level of Service (LOS)	С

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 14 Date October 7, 2013

Intersection Name
North/South: Admiralty Way
East/West: Bali Way

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	11		11	
	Left/Through	0				
Northbound	Through	1	1,246		678	678
	Through/Right	1			678	
	Right	0	110	0		
	Total Lanes	3				
	Left	1	 262		262	262
	Left/Through	0				
Southbound	Through	1	1,343		676	
	Through/Right	1			676	
	Right	0	8	0		
	Total Lanes	3				
		;	Sum of North	n/South Critica	al Volumes	940
	Left	0	16			16
	Left/Through	1			24	
Eastbound	Through	0	21			
	Through/Right	1			24	
	Right	0	12	0		
	Total Lanes	2				
	Left	1	22		22	
	Left/Through	0				
Westbound	Through	0	11			
	Through/Right	1			78	
	Right	1	406	262	78	78
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	94
			Total Inters	section Critica	al Volumes	1,034
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	0.752
Signal Coordi	nation ATSAC -	+ ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.652
				Level of Ser	vice (LOS)	В

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 15 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Bali Way/Auto Dealership Driveway

Intersection ControlSignalizedAnalysis PeriodPM Peak HourAnalysis ScenarioExisting (2013)

is cocitatio	Existing (2013)					
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	148		148	148
	Left/Through	0				
Northbound	Through	2	1,587		535	
	Through/Right	1			535	
	Right	0	19	0		
	Total Lanes	4				
	Left	1	2		2	
	Left/Through	0				
Southbound	Through	2	1,433		576	576
	Through/Right	1			576	
	Right	0	296	0		
	Total Lanes	4				
		;	Sum of North	n/South Critica	al Volumes	724
	Left	1	324		164	164
	Left/Through	1			164	
Eastbound	Through	0	4			
	Through/Right	0				
	Right	1	74	74	0	
	Total Lanes	3				
	Left	0	6			
	Left/Through	0				
Westbound	Left/Through/Right	1	0		41	41
	Through/Right	0				
	Right	0	35	0		
	Total Lanes	1				
			Sum of Eas	st/West Critic	al Volumes	205
			Total Inter	section Critica	al Volumes	929
Number of Cle	earance Intervals	4		Intersection	n Capacity	1,375

East/West Opposed Phasing

Number of Clearance Intervals 4 Intersection Critical Volumes 929

Signal Coordination ATSAC + ATCS Signal Coordination Adjustment -0.100

Final CMA 0.576

Level of Service (LOS) A

Project Name Marina del Rey - Parcel 44 Project **Intersection Number** 16 Date October 7, 2013 North/South: **Intersection Name** Admiralty Way Mindanao Way East/West: **Intersection Control** Signalized **Analysis Period** PM Peak Hour **Analysis Scenario** Existing (2013)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	14		14	
	Left/Through	0				
Northbound	Through	1	768		462	462
	Through/Right	1			462	
	Right	0	156	0		
	Total Lanes	3				
	Left	1	355		355	355
	Left/Through	0				
Southbound	Through	1	950		484	
	Through/Right	1			484	
	Right	0	18	0		
	Total Lanes	3				
		;	Sum of North	n/South Critica	al Volumes	817
	Left	1	Sum of North 25	n/South Critica	25	817
	Left Left/Through			n/South Critica		817
Eastbound		1		n/South Critica		817
Eastbound	Left/Through	1 0	25	n/South Critica		817 64
Eastbound	Left/Through Through	1 0 0	25	n/South Critica	25	
Eastbound	Left/Through Through Through/Right	1 0 0 1	25 43		25	
Eastbound	Left/Through Through Through/Right Right	1 0 0 1	25 43		25	
Eastbound	Left/Through Through Through/Right Right Total Lanes	1 0 0 1 0 2	25 43 21		25 64	64
Eastbound	Left/Through Through Through/Right Right Total Lanes Left	1 0 0 1 0 2	25 43 21		25 64 176	64
	Left/Through Through/Right Right Total Lanes Left Left/Through	1 0 0 1 0 2	25 43 21 327		25 64 176	64
	Left/Through Through/Right Right Total Lanes Left Left/Through Through	1 0 0 1 0 2	25 43 21 327		25 64 176	64
	Left/Through Through/Right Right Total Lanes Left Left/Through Through Through/Right	1 0 0 1 0 2 1 1 0 0	25 43 21 327 26	0	25 64 176 176	64

East/West Opposed Phasing WB Rt. Turn Overlap with SB Left

Number of Clearance Intervals 4 Intersection Critical Volumes 1,057

Base CMA 0.769

Signal Coordination ATSAC + ATCS Signal Coordination Adjustment -0.100

Final CMA 0.669

Level of Service (LOS) B

NB Rt. Turn Overlap with WB Left

Hirsch/Green Transportation Consulting, Inc. Critical Movement Analysis (CMA) Worksheet

Project Name	Marina del Rey	- Parcel 44 Project		
Intersection Number	17		Date	October 7, 2013
Intersection Name	North/South: East/West:	Lincoln Boulevard Mindanao Way		
Intersection Control	Signalized			
Analysis Period	PM Peak Hour			
Analysis Scenario	Existing (2013)			

sis Scenario	Existing (2013)					
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	290		290	
	Left/Through	0				
Northbound	Through	3	1,820		607	607
	Through/Right	0				
	Right	1	406	305	101	
	Total Lanes	5				
	Left	1	149		149	149
	Left/Through	0				
Southbound	Through	2	1,256		425	
	Through/Right	1			425	
	Right	0	19	0		
	Total Lanes	4				
		;	Sum of North	/South Critica	al Volumes	756
	Left	0	0			
	Left/Through	0				
Eastbound	Through	1	357		260	260
	Through/Right	1			260	
	Right	0	162	0		
	Total Lanes	2				
	Left	2	555		305	305
	Left/Through	0				
Westbound	Through	1	890		484	
	Through/Right	1			484	
	Right	0	79	0		
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	565
			Total Inters	section Critica	al Volumes	1,321
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	0.961
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.861
				Level of Ser	vice (LOS)	D

Intersection Analysis	Name etion Number etion Name etion Control s Period s Scenario	Marina del Rey - 18 North/South: East/West: Signalized PM Peak Hour Existing (2013)	Parcel 44 Project Date October 7, 201 EB Marina Expressway (SR-90) Mindanao Way				
:	Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Northbound	Left Left/Through Through Through/Right	0 0 0	0	0		
		Right Total Lanes	0	0	0		
	Southbound	Left Left/Through Through	1 0 1	30 978		30 494	494
		Through/Right Right Total Lanes	1 0 3	11	0	494	434
		rotal Lailes	3	Sum of North	/South Critica	al Volumes	494
	Eastbound	Left Left/Through Through Through/Right Right Total Lanes	0 0 1 1 1 	428 460	0	296 296 296	
	Westbound	Left Left/Through Through/Right Right	2 0 2 0 0	515 1,493	0	283 746	746
		Total Lanes	4	Sum of Eas	st/West Critica		746 1,240
	Number of Cle	earance Intervals nation ATSAC	3 + ATCS	Signal C	Intersectio	n Capacity Base CMA Adjustment Final CMA	1,425 0.870 -0.100 0.770

Level of Service (LOS)

С

Project NameMarina del Rey - Parcel 44 ProjectIntersection Number19DateOctober 7, 2013Intersection NameNorth/South:
East/West:WB Marina Expressway (SR-90)
Mindanao Way

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	288		288	
	Left/Through	1			525	
Northbound	Through	1	1,050		525	525
	Through/Right	0				
	Right	1	384	202	182	
	Total Lanes	4				
	Left	0	0			
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
			Sum of North	n/South Critica	al Volumes	525
	Left	1	14		14	14
	Left/Through	0				
Eastbound	Through	2	412		206	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	2	1,759		597	597
	Through/Right	1			597	
	Right	0	32	0		
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	611
			Total Inters	section Critica	al Volumes	1,136
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.797
Signal Coordi	nation ATSAC -	+ ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.697
				Level of Ser	vice (LOS)	В

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 20 Date October 7, 2013

Intersection Name

North/South: Glencoe Avenue

East/West: Mindanao Way

s Scenario	Existing (2013)					
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	89		89	89
	Left/Through	0				
Northbound	Through	1	202		112	
	Through/Right	1			112	
	Right	0	21	0		
	Total Lanes	3				
	Left	1	132		132	
	Left/Through	0				
Southbound	Through	1	201		201	
	Through/Right	0				
	Right	1	1,168	182	986	986
	Total Lanes	3				
		;	Sum of North	n/South Critic	al Volumes	1,075
	Left	1	365		365	365
	Left/Through	0				
Eastbound	Through	1	403		229	
	Through/Right	1			229	
	Right	0	55	0		
	Total Lanes	3				
	Left	1	8		8	
	Left/Through	0				
Westbound	Through	1	442		270	270
	Through/Right	1			270	
	Right	0	98	0		
	Total Lanes	3				
			Sum of Eas	st/West Critic	al Volumes	635
			Total Inter	section Critic	al Volumes	1,710
Number of Cl	earance Intervals	2		Intersection	n Capacity	1,500
					Base CMA	1.140
Signal Coordi	nation ATSAC -	+ ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	1.040
				Level of Se	rvice (LOS)	F

SB Rt. Turn Overlap with EB Left

Hirsch/Green Transportation Consulting, Inc. Critical Movement Analysis (CMA) Worksheet

Project Name	Marina del Rey	- Parcel 44 Project		
Intersection Number	21		Date	October 7, 2013
Intersection Name	North/South: East/West:	Admiralty Way Fiji Way		
Intersection Control	Signalized			
Analysis Period	PM Peak Hour			
Analysis Scenario	Existing (2013)			

sis Scenario	Existing (2013)					
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	2	584		321	321
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	1	78	53	25	
	Total Lanes	3				
		;	Sum of North	n/South Critica	al Volumes	321
	Left	1	53		53	53
	Left/Through	0				
Eastbound	Through	2	196		98	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	1	141		141	141
	Through/Right	0				
	Right	1	545	545	0	
	Total Lanes	2				
			Sum of Eas	st/West Critica	al Volumes	194
			Total Inters	section Critica	al Volumes	515
Number of Cle	earance Intervals	2		Intersectio	n Capacity	1,500
					Base CMA	0.343
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.243
				Level of Ser	vice (LOS)	Α
					,	

Project Name Marina del Rey - Parcel 44 Project Date October 7, 2013 **Intersection Number** 22 **Intersection Name** North/South: Lincoln Boulevard East/West: Fiji Way **Intersection Control** Signalized **Analysis Period** PM Peak Hour **Analysis Scenario** Existing (2013)

	· , ,					
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	535		294	294
	Left/Through	0				
Northbound	Through	2	2,386		802	
	Through/Right	1			802	
	Right	0	21	0		
	Total Lanes	5				
	Left	 1	26		26	
	Left/Through	0				
Southbound	Through	2	1,885		656	656
	Through/Right	1			656	
	Right	0	82	0		
	Total Lanes	4				
			Sum of North	n/South Critic	al Volumes	950
	Left	1	95		95	95
	Left/Through	0				
Eastbound	Through	1	16		16	
	Through/Right	0				
	Right	1	640	640	0	
	Total Lanes	3				
	Left	0	34			
	Left/Through	1			46	
Westbound	Through	0	20			
	Through/Right	1			46	46
	Right	0	38	0		
	Total Lanes	2				
			Sum of Eas	st/West Critic	al Volumes	141
			Total Inter	section Critic	al Volumes	1,091
Number of Cle	earance Intervals	4		Intersection	n Capacity	1,375
					Base CMA	0.793
Signal Coordi	nation ATSAC +	- ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.693
				Level of Se	rvice (LOS)	В

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 23 Date October 7, 2013

Intersection Name North/South: Marina Freeway (SR-90) EB On/Off-Ramps

East/West: Culver Boulevard

	Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
Northbound		Left	0	0			
Through/Right 0 0 0 0 0		Left/Through	0				
Right	Northbound	Through	0	0			
Total Lanes 0		Through/Right	0				
Left		Right	0	0	0		
Southbound Center Center		Total Lanes	0				
Southbound		Left	1	85		85	85
Through/Right Right 1		Left/Through	0				
Right	Southbound	Through	1	0		0	
Total Lanes 3 Sum of North/South Critical Volumes 85		Through/Right	1			55	
Left		Right	0	55	0		
Left		Total Lanes	3				
Left/Through				Sum of North	n/South Critica	al Volumes	85
Eastbound Through / Right		Left	0	0			
Through/Right 0		Left/Through	0				
Right	Eastbound	Through	3	612		204	
Total Lanes 5		Through/Right	0				
Left		Right	2	188	15	86	
Westbound Through 2 1,675 838 838 Through/Right 0 0 0 Total Lanes 3 Sum of East/West Critical Volumes 838 Total Intersection Critical Volumes 923 Number of Clearance Intervals 2 Intersection Capacity 1,500		Total Lanes	5				
Westbound Through 2 1,675 838 838 Through/Right 0 Right 0 0 0 Total Lanes 3 Sum of East/West Critical Volumes 838 Total Intersection Critical Volumes 923 Number of Clearance Intervals 2 Intersection Capacity 1,500		Left	1	254		254	
Through/Right 0 0 0 0 Total Lanes 3 Sum of East/West Critical Volumes 838 Total Intersection Critical Volumes 923 Number of Clearance Intervals 2 Intersection Capacity 1,500		Left/Through	0				
Right 0 0 0 0 Total Lanes 3 Sum of East/West Critical Volumes 838 Total Intersection Critical Volumes 923 Number of Clearance Intervals 2 Intersection Capacity 1,500	Westbound	Through	2	1,675		838	838
Total Lanes 3 Sum of East/West Critical Volumes 838 Total Intersection Critical Volumes 923 Number of Clearance Intervals 2 Intersection Capacity 1,500		Through/Right	0				
Sum of East/West Critical Volumes Total Intersection Critical Volumes 923 Number of Clearance Intervals 2 Intersection Capacity 1,500		Right	0	0	0		
Number of Clearance Intervals 2 Intersection Critical Volumes 923 1,500		Total Lanes	3				
Number of Clearance Intervals 2 Intersection Capacity 1,500				Sum of Eas	st/West Critic	al Volumes	838
				Total Inter	section Critic	al Volumes	923
Base CMA 0.615	Number of Cle	earance Intervals	2		Intersection	n Capacity	1,500
						Base CMA	0.615
Signal Coordination ATSAC + ATCS Signal Coordination Adjustment -0.10	Signal Coordi	nation ATSAC	+ ATCS	Signal C	Coordination A	Adjustment	-0.100
Final CMA 0.515						Final CMA	0.515
Level of Service (LOS) A					Level of Se	rvice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

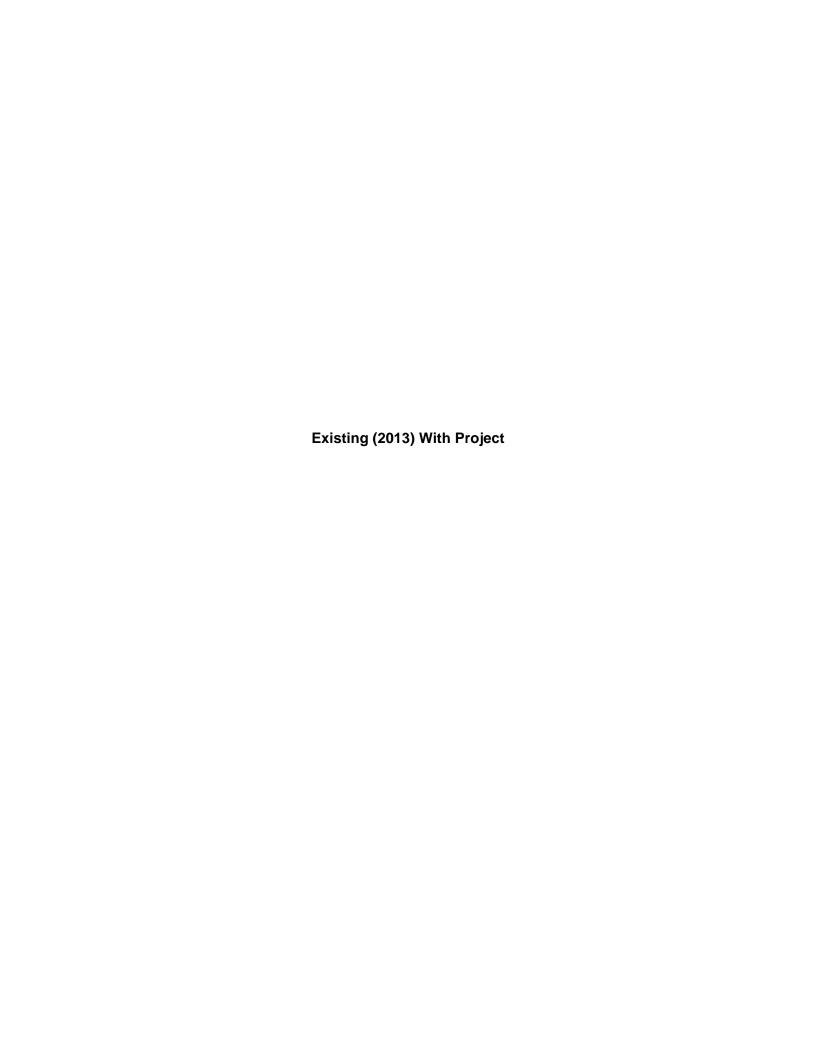
Intersection Number 24 Date October 7, 2013

Intersection Name North/South: Marina Freeway (SR-90) WB Off-Ramp

East/West: Culver Boulevard

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	518		259	259
	Left/Through	1			259	
Northbound	Through	0	234			
	Through/Right	1			279	
	Right	0	45	0		
	Total Lanes	3				
	Left	 1	142		142	
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	1	417	96	321	321
	Total Lanes	2				
			Sum of North	n/South Critica	al Volumes	580
	Left	1	191		191	191
	Left/Through	0				
Eastbound	Through	2	524		262	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	2	1,008		504	504
	Through/Right	0				
	Right	1	295	150	145	
	Total Lanes	3				
			Sum of Eas	st/West Critic	al Volumes	695
			Total Inters	section Critic	al Volumes	1,275
Number of Cle	earance Intervals	3		Intersection	n Capacity	1,425
					Base CMA	0.895
Signal Coordi	nation ATSAC	+ ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.795
				Level of Se	rvice (LOS)	С

Project Name Marina del Rey - Parcel 44 Project


Intersection Number 25 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard East/West: Jefferson Boulevard

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	28		28	
	Left/Through	0				
Northbound	Through	4	2,166		542	542
	Through/Right	0				
	Right	1	439	210	229	
	Total Lanes	6				
	Left	2	334		184	184
	Left/Through	0				
Southbound	Through	3	1,825		553	
	Through/Right	1			553	
	Right	0	388	0		
	Total Lanes	6				
			Sum of North	South Critica	al Volumos	726

		;	Sum of North/South Critical Volumes				
	Left	1	42		42		
	Left/Through	0					
Eastbound	Through	2	140		66	66	
	Through/Right	1			66		
	Right	0	57	0			
	Total Lanes	4					
	Left	2	879		483	483	
	Left/Through	0					
Westbound	Through	2	273		136		
	Through/Right	0					
	Right	2	787	368	210		
	Total Lanes	6					

		Sum of East/West Critical Volumes	549
		Total Intersection Critical Volumes	1,275
Number of Clearance In	ntervals 4	Intersection Capacity	1,375
		Base CMA	0.927
Signal Coordination	ATSAC + ATCS	Signal Coordination Adjustment	-0.100
		Final CMA	0.827
		Level of Service (LOS)	D

Project Name Marina del Rey - Parcel 44 Project **Intersection Number** 1 Date October 7, 2013 **Intersection Name** North/South: Lincoln Boulevard East/West: Venice Boulevard **Intersection Control** Signalized **Analysis Period** AM Peak Hour Existing (2013) With Project **Analysis Scenario**

s Scenario	Existing (2013)	With Project				
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	172		95	
	Left/Through	0				
Northbound	Through	1	1,625		879	879
	Through/Right	1			879	
	Right	0	133	0		
	Total Lanes	4				
	Left	2	 179		98	98
	Left/Through	0				
Southbound	Through	1	1,211		629	
	Through/Right	1			629	
	Right	0	47	0		
	Total Lanes	4				
		:	Sum of North	/South Critic	al Volumes	977
	Left	2	139		76	76
	Left/Through	0				
Eastbound	Through	3	841		280	
	Through/Right	0				
	Right	1	124	95	29	
	Total Lanes	6				
	Left	2	374		206	
	Left/Through	0				
Westbound	Through	2	995		498	498
	Through/Right	0				
	Right	1	227	98	129	
	Total Lanes	5				
			Sum of Eas	st/West Critic	al Volumes	574
			Total Inters	section Critic	al Volumes	1,551
Number of Cle	earance Intervals	4		Intersection	n Capacity	1,375
					Base CMA	1.128
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	1.028
				Level of Se	rvice (LOS)	F

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 2 Date October 7, 2013

Intersection Name North/South: Pacific Avenue

East/West: Washington Boulevard

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Existing (2013) With Project

					Assigned	
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Lane Volumes	Critical Moves
	Left	0	2			
	Left/Through	1			135	
Northbound	Through	0	133			
	Through/Right	1			192	192
	Right	0	192	0		
	Total Lanes	2				
	Left	0	371			
	Left/Through	1			371	371
Southbound	Through	0	68			
	Through/Right	1			85	
	Right	0	17	0		
	Total Lanes	2				
			Sum of North	n/South Critica	al Volumes	563
	Left	0	19			19
	Left/Through	0				
Eastbound	Left/Through/Right	1	60		92	
	Through/Right	0				
	Right	0	13	0		
	Total Lanes	1				
	Left	1	107		107	
	Left/Through	0				
Westbound	Through	1	64		64	
	Through/Right	0				
	Right	1	694	371	323	323
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	342
			Total Inters	section Critica	al Volumes	905
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.635
Signal Coordi	nation ATSAC + A	ATCS	Signal C	Coordination A	-	-0.100
					Final CMA	0.535
				Level of Ser	rvice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project
Intersection Number 3 Date October 7, 2013

Intersection Name North/South: Via Dolce/Dell Avenue

East/West: Washington Boulevard

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Existing (2013) With Project

sis occitatio	Existing (2013) W	iti i Toject	•			
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	135		135	135
	Left/Through	0				
Northbound	Through	1	38		38	
	Through/Right	0				
	Right	1	195	46	149	
	Total Lanes	3				
	Left	0	4			
	Left/Through	0				
Southbound	Left/Through/Right	1	5		22	22
	Through/Right	0				
	Right	0	13	0		
	Total Lanes	1				
		;	Sum of North	n/South Critica	al Volumes	157
	Left	1	12		12	12
	Left/Through	0				
Eastbound	Through	2	585		292	
	Through/Right	0				
	Right	1	43	43	0	
	Total Lanes	4				
	Left	1	70		70	
	Left/Through	0				
Westbound	Through	2	746		373	373
	Through/Right	0				
	Right	1	48	4	44	
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	385
			Total Inter	section Critica	al Volumes	542
Number of Cle	earance Intervals	2		Intersectio	n Capacity	1,500
					Base CMA	0.361
Signal Coordi	nation ATSAC + A	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.261
				Level of Ser	rvice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 4 Date October 7, 2013

Intersection NameNorth/South:Via Marina/Ocean AvenueEast/West:Washington Boulevard

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Existing (2013) With Project

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	440		242	
	Left/Through	0				
Northbound	Through	1	337		337	337
	Through/Right	0				
	Right	1	385	59	326	
	Total Lanes	4				
	Left	1	 18		18	
	Left/Through	0				
Southbound	Through	0	127			
	Through/Right	1			195	195
	Right	0	68	0		
	Total Lanes	2				
		;	Sum of North	/South Critica	al Volumes	532
	Left	1	43		43	_
	Left/Through	0				
Eastbound	Through	2	599		300	300
	Through/Right	0				
	Right	1	184	168	16	
	Total Lanes	4				
	Left	1	118		118	118
	Left/Through	0				
Westbound	Through	2	395		198	
	Through/Right	0				
	Right	1	42	42	0	
	Total Lanes	4				
			Sum of Eas	st/West Critic	al Volumes	418
			Total Inters	section Critica	al Volumes	950
Number of Cle	earance Intervals	3		Intersection	n Capacity	1,425
					Base CMA	0.667
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.567
				Level of Ser	rvice (LOS)	Α

North/South Opposed Phasing

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 5 Date October 7, 2013

Intersection Name North/South: Palawan Way East/West: Washington Boulevard

Intersection Control Two-Way STOP

Analysis Period AM Peak Hour

Analysis Scenario Existing (2013) With Project

sis Scenario	Existing (2013)	With Project				
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	1	240	0	240	240
	Total Lanes	1				
	Left	0	0			
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
		;	Sum of North	n/South Critica	al Volumes	240
	Left	0	0			
	Left/Through	0				
Eastbound	Through	2	923		462	462
	Through/Right	0				
	Right	1	84	84	0	
	Total Lanes	3				
	Left	1	156		156	156
	Left/Through	0				
Westbound	Through	2	578		289	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	618
			Total Inter	section Critica	al Volumes	858
Number of Cle	earance Intervals	0		Intersection	n Capacity	1,200
					Base CMA	0.715
Signal Coordi	nation None		Signal C	Coordination A	Adjustment	0.000
					Final CMA	0.715
				Level of Se	rvice (LOS)	С

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 6 Date October 7, 2013

Intersection Name North/South: Abbot Kinney Boulevard East/West: Washington Boulevard

Intersection Control Signalized

Analysis Period AM Peak Hour

Analysis Scenario Existing (2013) With Project

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	1	415		269	269
	Left/Through	0				
Southbound	Left/Through/Right	1	0		269	
	Through/Right	0				
	Right	0	123	0		
	Total Lanes	2				
		;	Sum of North	n/South Critica	al Volumes	269
	Left	1	165		165	165
	Left/Through	0				
Eastbound	Through	2	1,049		524	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	2	599		300	
	Through/Right	0				
	Right	1	828	269	559	559
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	724
			Total Inters	section Critica	al Volumes	993
Number of Cle	earance Intervals	2		Intersectio	n Capacity	1,500
					Base CMA	0.662
Signal Coordi	nation ATSAC + A	ATCS	Signal C	Coordination A	-	-0.100
					Final CMA	0.562
				Level of Ser	vice (LOS)	Α

WB Rt. Turn Overlap with SB Left

Assigned

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 7 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Washington Boulevard

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Existing (2013) With Project

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	511		281	
	Left/Through	0				
Northbound	Through	2	1,780		658	658
	Through/Right	1			658	
	Right	0	194	0		
	Total Lanes	5				
	Left	2	306		168	168
	Left/Through	0				
Southbound	Through	2	1,239		458	
	Through/Right	1			458	
	Right	0	134	0		
	Total Lanes	5				
		;	Sum of North	n/South Critica	al Volumes	826
	Left	2	129		71	
	Left/Through	0				
Eastbound	Through	2	729		364	364
	Through/Right	0				
	Right	1	564	281	283	
	Total Lanes	5				
	Left	2	 141		78	78
	Left/Through	0				
Westbound	Through	2	651		326	
	Through/Right	0				
	Right	1	211	168	43	
	Total Lanes	5				
			Sum of Eas	st/West Critica	al Volumes	442
			Total Inters	section Critica	al Volumes	1,268
lumber of Cl	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	0.922
ignal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A		-0.100
					Final CMA	0.822
				Level of Ser	rvice (LOS)	D

Project Name Marina del Rey - Parcel 44 Project

Date October 7, 2013 **Intersection Number**

Intersection Name North/South: Glencoe Avenue/Costco Plaza Driveway

> East/West: Washington Boulevard

Intersection Control Signalized **Analysis Period** AM Peak Hour

Analysis

s i cilou	AM I Cak I loui					
s Scenario	Existing (2013)	With Project				
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	255		159	159
	Left/Through	1			159	
Northbound	Through	0	63			
	Through/Right	0				
	Right	1	342	278	64	
	Existing (2013) With Project Right-Turn Lane Type Lane No. of Lanes Volumes Right-Turn Volumes Maximum Max					
	Left	1	101		71	71
	Left/Through	1			71	
Southbound	Through	0	41			
	Through/Right	0				
	Right	1	23	22	1	
	Total Lanes	3				
		;	Sum of North	/South Critica	al Volumes	230
	Left	1	22		22	
	Left/Through	0				
Eastbound	Through	2	1,003		502	502
	Through/Right	0				
	Right	1	132	132	0	
	Total Lanes	4				
	Left	1	 278		278	278
	Left/Through	0				
Westbound	Through	2	697		287	
	Through/Right	1			287	
	Right	0	164	0		
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	780
			Total Inter	section Critica	al Volumes	1,010
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	0.735
Signal Coordi	nation ATSAC -	+ ATCS	Signal C	Coordination A	-	-0.100
					Final CMA	0.635

Level of Service (LOS)

В

Project Name Marina del Rey - Parcel 44 Project

Intersection Number Date October 7, 2013

Intersection Name North/South: Via Marina

East/West: Admiralty Way

Intersection Control Signalized AM Peak Hour **Analysis Period**

Analysis

s Period	AM Peak Hour					
Scenario	Existing (2013)	With Project				
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	2	561		280	280
	Through/Right	0				
	Right	1	753	753	0	
	Left/Through 0					
	Left	1	260		260	260
	Left/Through	0				
Southbound	Through	3	170		57	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	4				
		5	Sum of North	/South Critica	al Volumes	540
	Left	0	0			
	Left/Through	0				
Eastbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	2	342		188	188
	Left/Through	0				
Westbound	Through	0	0			
	Through/Right	0				
	Right	2	637	520	58	
	Total Lanes	4				
				st/West Critica		188
			Total Inters	section Critica		728
lumber of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.511
Signal Coordi	nation ATSAC -	+ ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.411
				Level of Ser	vice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 10 Date October 7, 2013

Intersection Name

North/South: Palawan Way

East/West: Admiralty Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Existing (2013) With Project

sis Scenario	Existing (2013) V	Vith Project				
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
•	Left	1	28		28	
	Left/Through	0				
Northbound	Through	0	67			
	Through/Right	1			121	121
	Right	0	54	0		
	Total Lanes	2				
	Left	1	143		143	143
	Left/Through	0				
Southbound	Through	1	21		21	
	Through/Right	0				
	Right	1	94	45	49	
	Total Lanes	3				
		;	Sum of North	/South Critica	al Volumes	264
	Left	1	90		90	90
	Left/Through	0				
Eastbound	Through	1	879		444	
	Through/Right	1			444	
	Right	0	8	0		
	Total Lanes	3				
	Left	1	45		45	
	Left/Through	0				
Westbound	Through	1	882		492	492
	Through/Right	1			492	
	Right	0	103	0		
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	582
			Total Inters	section Critica	al Volumes	846
Number of Cle	earance Intervals	2		Intersectio	n Capacity	1,500
					Base CMA	0.564
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.464
				Level of Sei	vice (LOS)	Α
					•	

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 11 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Maxella Avenue/Marina Pointe Drive

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Existing (2013) With Project

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	56		31	
	Left/Through	0				
Northbound	Through	3	2,298		766	766
	Through/Right	0				
	Right	1	215	106	109	
	Total Lanes	6				
	Left	2	120		66	66
	Left/Through	0				
Southbound	Through	3	1,849		476	
	Through/Right	1			476	
	Right	0	56	0		
	Total Lanes	6				
		;	Sum of North	/South Critica	al Volumes	832
	Left	1	63		63	
	Left/Through	0				
Eastbound	Through	1	79		79	
	Through/Right	0				
	Right	1	129	31	98	98
	Total Lanes	3				
	Left	1	183		106	106
	Left/Through	1			106	
Westbound	Through	0	29			
	Through/Right	0				
	Right	1	111	66	45	
	Total Lanes	3				

East/West Opposed Phasing EB/WB Rt. Turn Overlap With NB/SB Lefts

NB Rt. Turn Overlap with WB Left

Number of Clearance Intervals 4 Intersection Critical Volumes 1,036

Base CMA 0.753

Signal Coordination ATSAC + ATCS Signal Coordination Adjustment -0.100

Final CMA 0.653

Level of Service (LOS)

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 12 Date October 7, 2013

Intersection Name North/South: Glencoe Avenue

East/West: Maxella Avenue

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Existing (2013) With Project

ois occitatio	Existing (2013) V	viti i Toject	•			
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	79		79	
	Left/Through	0				
Northbound	Through	1	454		454	454
	Through/Right	0				
	Right	1	60	58	2	
	Total Lanes	3				
	Left	 1	22		22	22
	Left/Through	0				
Southbound	Through	1	364		220	
	Through/Right	1			220	
	Right	0	77	0		
	Total Lanes	3				
		;	Sum of North	n/South Critic	al Volumes	476
	Left	1	114		114	114
	Left/Through	0				
Eastbound	Through	1	76		76	
	Through/Right	0				
	Right	1	116	116	0	
	Total Lanes	3				
	Left	1	82		82	
	Left/Through	0				
Westbound	Through	1	86		78	78
	Through/Right	1			78	
	Right	0	71	0		
	Total Lanes	3				
			Sum of Eas	st/West Critic	al Volumes	192
			Total Inter	section Critic	al Volumes	668
Number of Cle	earance Intervals	2		Intersection	n Capacity	1,500
					Base CMA	0.445
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.345
				Level of Se	rvice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 13 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Marina Expressway (SR-90)

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Existing (2013) With Project

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	2	1,602		630	630
	Through/Right	1			630	
	Right	0	289	0		
	Total Lanes	3				
	Left	2	868		477	477
	Left/Through	0				
Southbound	Through	3	1,330		443	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	5				
		;	Sum of North	/South Critica	al Volumes	1,107
	Left	0	0			
	Left/Through	0				
Eastbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	2	148		81	81
	Left/Through	0				
Westbound	Through	0	0			
	Through/Right	0				
	Right	2	913	913	0	
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	81
			Total Inters	section Critica	al Volumes	1,188
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.834
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.734

Assigned

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 14 Date October 7, 2013

Intersection Name North/South: Admiralty Way

East/West: Bali Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	7		7	
	Left/Through	0				
Northbound	Through	1	1,042		604	604
	Through/Right	1			604	
	Right	0	165	0		
	Total Lanes	3				
	Left	1	319		319	319
	Left/Through	0				
Southbound	Through	1	1,277		642	
	Through/Right	1			642	
	Right	0	7	0		
	Total Lanes	3				
		;	Sum of North	/South Critica	al Volumes	923
	Left	0	12			12
	Left/Through	1			14	
Eastbound	Through	0	9			
	Through/Right	1			14	
	Right	0	6	0		
	Total Lanes	2				
	Left	1	16		16	
	Left/Through	0				
Westbound	Through	0	29			
	Through/Right	1			29	29
	Right	1	298	298	0	
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	41
			Total Inters	section Critica	al Volumes	964
Number of Clo	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	0.701
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.601
				Level of Ser	rvice (LOS)	В

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 15 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Bali Way/Auto Dealership Driveway

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Existing (2013) With Project

Approach Direction Lan		lo. of anes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves	
Left			108		108	108	
Left/Thro	ough	0					
Northbound Through		2	1,534		518		
Through	/Right	1			518		
Right		0	20	0			
Tota	I Lanes	4					
Left		1	3		3		
Left/Thro	ough	0					
Southbound Through		2	1,259		489	489	
Through	/Right	1			489		
Right		0	208	0			
Tota	I Lanes	4					
		S	um of North	al Volumes	597		
Left		1	327		164	164	
Left/Thro	ough	1			164		~
Eastbound Through		0	2				Sinc
Through	/Right	0					Pha
Right		1	141	54	87		peg
Tota	l Lanes	3					East/West Opposed Phasing
Left		0	0				est C
Left/Thro	•	0					Ž
	ough/Right	1	2		10	10	Eas
Through	/Right	0					
Right	_	0	8	0			
Tota	Il Lanes	1					
			Sum of Eas	st/West Critica	al Volumes	174	
			Total Inters	section Critica	al Volumes	771	
Number of Clearance In	tervals 4			Intersectio	n Capacity	1,375	
					Base CMA	0.561	
	ATSAC + ATO	CS	Signal C	oordination A	Adjustment	-0.100	
Signal Coordination	AISACTAI		J		_		
Signal Coordination	AISAC + AIC		J		Final CMA	0.461	

East/West Opposed Phasing

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 16 Date October 7, 2013

Intersection Name

North/South: Admiralty Way

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Existing (2013) With Project

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	27		27	
	Left/Through	0				
Northbound	Through	1	864		494	494
	Through/Right	1			494	
	Right	0	124	0		
	Total Lanes	3				
	Left	1	235		235	235
	Left/Through	0				
Southbound	Through	1	981		502	
	Through/Right	1			502	
	Right	0	24	0		
	Total Lanes	3				
		;	Sum of North	n/South Critica	al Volumes	729
	Left	1	40		34	
	Left/Through	1			34	
Eastbound	Through	0	29			
	Through/Right	1			34	34
	Right	0	33	0		
	Total Lanes	3				
	Left	1	118		87	
	Left/Through	1			87	
Westbound	Through	0	56			
	Through/Right	0				
	Right	1	374	235	139	139
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	173
			Total Inter	section Critica	al Volumes	902
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	0.656
Signal Coordi	nation ATSAC +	ATCS	Signal Coordination Adjustment			-0.100
					Final CMA	0.556
				Level of Ser	rvice (LOS)	Α

East/West Opposed Phasing WB Rt. Turn Overlap with SB Left

NB Rt. Turn Overlap with WB Left

Hirsch/Green Transportation Consulting, Inc. Critical Movement Analysis (CMA) Worksheet

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 17 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	209		209	
	Left/Through	0				
Northbound	Through	3	2,627		876	876
	Through/Right	0				
	Right	1	478	156	322	
	Total Lanes	5				
	Left	1	183		183	183
	Left/Through	0				
Southbound	Through	2	1,485		511	
	Through/Right	1			511	
	Right	0	47	0		
	Total Lanes	4				
		;	Sum of North	n/South Critica	al Volumes	1,059
	Left	0	0			
	Left/Through	0				
Eastbound	Through	1	159		92	92
	Through/Right	1			92	
	Right	0	26	0		
	Total Lanes	2				
	Left	2	284		156	156
	Left/Through	0				
Westbound	Through	1	396		239	
	Through/Right	1			239	
	Right	0	82	0		
	Total Lanes	4				
			Sum of Eas	st/West Critic	al Volumes	248
			Total Inters	section Critica	al Volumes	1,307
Number of Cle	earance Intervals	4		Intersection	n Capacity	1,375
					Base CMA	0.951
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	-	-0.100
					Final CMA	0.851
				Level of Se	rvice (LOS)	D

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 18 Date October 7, 2013

Intersection Name North/South: EB Marina Expressway (SR-90)

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	1	22		22	
	Left/Through	0				
Southbound	Through	1	1,111		563	563
	Through/Right	1			563	
	Right	0	15	0		
	Total Lanes	3				
		;	Sum of North	n/South Critica	al Volumes	563
	Left	0	0			
	Left/Through	0				
Eastbound	Through	1	387		284	284
	Through/Right	1			284	
	Right	1	464	0	284	
	Total Lanes	3				
	Left	2	347		191	191
	Left/Through	0				
Westbound	Through	2	821		410	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	475
			Total Inter	section Critica	al Volumes	1,038
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.728
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.628
				Level of Ser	rvice (LOS)	В

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 19 Date October 7, 2013

Intersection Name North/South: WB Marina Expressway (SR-90)

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	337		337	
	Left/Through	1			480	
Northbound	Through	1	961		480	480
	Through/Right	0				
	Right	1	381	38	343	
	Total Lanes	4				
	Left	0	0			
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
		;	Sum of North	n/South Critica	al Volumes	480
	Left	1	4		4	4
	Left/Through	0				
Eastbound	Through	2	404		202	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	2	806		274	274
	Through/Right	1			274	
	Right	0	16	0		
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	278
			Total Inters	section Critica	al Volumes	758
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.532
Signal Coordi	nation ATSAC -	- ATCS	Signal Coordination Adjustment			-0.100
					Final CMA	0.432
				Level of Ser	vice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 20 Date October 7, 2013

Intersection NameNorth/South:Glencoe AvenueEast/West:Mindanao Way

AM Peak Hour

Intersection Control Signalized

Analysis Period

	3 (1 1)	,			Assigned	
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Lane Volumes	Critical Moves
	Left	1	42		42	42
	Left/Through	0				
Northbound	Through	1	168		93	
	Through/Right	1			93	
	Right	0	18	0		
	Total Lanes	3				
	Left	1	 51		51	
	Left/Through	0				
Southbound	Through	1	135		135	
	Through/Right	0				
	Right	1	360	187	173	173
	Total Lanes	3				
		:	Sum of North	al Volumes	215	
	Left	1	374		374	374
	Left/Through	0				
Eastbound	Through	1	315		198	
	Through/Right	1			198	
	Right	0	81	0		
	Total Lanes	3				
	Left	1	14		14	
	Left/Through	0				
Westbound	Through	1	395		232	232
	Through/Right	1			232	
	Right	0	68	0		
	Total Lanes	3				
			Sum of Eas	st/West Critic	al Volumes	606
			Total Inter	section Critica	al Volumes	821
Number of Cle	earance Intervals	2		Intersection	n Capacity	1,500
					Base CMA	0.547
Signal Coordi	nation ATSAC	+ ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.447
				Level of Se	rvice (LOS)	Α

SB Rt. Turn Overlap with EB Left

Hirsch/Green Transportation Consulting, Inc. Critical Movement Analysis (CMA) Worksheet

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 21 Date October 7, 2013

Intersection Name North/South: Admiralty Way

East/West: Fiji Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

is Scenario	Existing (2013)	With Project				
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	2	619		340	340
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	1	47	43	4	
	Total Lanes	3				
		;	Sum of North	n/South Critica	al Volumes	340
	Left	1	43		43	43
	Left/Through	0				
Eastbound	Through	2	91		46	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	1	113		113	113
	Through/Right	0				
	Right	1	656	656	0	
	Total Lanes	2				
			Sum of Eas	st/West Critica	al Volumes	156
			Total Inters	section Critica	al Volumes	496
Number of Cle	earance Intervals	2		Intersectio	n Capacity	1,500
					Base CMA	0.331
Signal Coordi	nation ATSAC -	- ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.231
				Level of Ser	vice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 22 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Fiji Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

sis Scenario	Existing (2013)	with Project				
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	626		344	
	Left/Through	0				
Northbound	Through	2	3,108		1,049	1,049
	Through/Right	1			1,049	
	Right	0	38	0		
	Total Lanes	5				
	Left	1	38		38	38
	Left/Through	0				
Southbound	Through	2	1,733		594	
	Through/Right	1			594	
	Right	0	50	0		
	Total Lanes	4				
		;	Sum of North	/South Critica	al Volumes	1,087
	Left	1	176		176	176
	Left/Through	0				
Eastbound	Through	1	21		21	
	Through/Right	0				
	Right	1	551	551	0	
	Total Lanes	3				
	Left	0	11			
	Left/Through	1			11	11
Westbound	Through	0	2			
	Through/Right	1			2	
	Right	0	0	0		
	Total Lanes	2				
			Sum of Eas	st/West Critic	al Volumes	187
			Total Inter	section Critica	al Volumes	1,274
Number of Cl	earance Intervals	4		Intersection	n Capacity	1,375
					Base CMA	0.927
Signal Coordi	nation ATSAC +	- ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.827
				Level of Se	rvice (LOS)	D

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 23 Date October 7, 2013

Intersection Name North/South: Marina Freeway (SR-90) EB On/Off-Ramps

East/West: Culver Boulevard

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	1	21		21	
	Left/Through	0				
Southbound	Through	1	0		0	
	Through/Right	1			116	116
	Right	0	116	0		
	Total Lanes	3				
		;	Sum of North	n/South Critica	al Volumes	116
	Left	0	0			
	Left/Through	0				
Eastbound	Through	3	1,829		610	610
	Through/Right	0				
	Right	2	832	0	416	
	Total Lanes	5				
	Left	1	127		127	127
	Left/Through	0				
Westbound	Through	2	480		240	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	737
			Total Inters	section Critica	al Volumes	853
Number of Cle	earance Intervals	2		Intersectio	n Capacity	1,500
					Base CMA	0.569
Signal Coordi	nation ATSAC -	+ ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.469
				Level of Ser	vice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 24 Date October 7, 2013

Intersection Name North/South: Marina Freeway (SR-90) WB Off-Ramp

East/West: Culver Boulevard

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	137		137	
	Left/Through	1			196	
Northbound	Through	0	271			
	Through/Right	1			196	196
	Right	0	120	0		
	Total Lanes	3				
	Left	 1	112		 112	112
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	1	157	157	0	
	Total Lanes	2				
		:	Sum of North	n/South Critica	al Volumes	308
	Left	1	509		509	509
	Left/Through	0				
Eastbound	Through	2	1,460		730	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	2	335		168	
	Through/Right	0				
	Right	1	325	56	269	269
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	778
			Total Inters	section Critica	al Volumes	1,086
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.762
Signal Coordi	nation ATSAC -	+ ATCS	Signal C	Signal Coordination Adjustment		
					Final CMA	0.662
				Level of Ser	vice (LOS)	В

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 25 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Jefferson Boulevard

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Existing (2013) With Project

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves	
	Left	1	20		20		
	Left/Through	0					
Northbound	Through	4	2,837		709	709	
	Through/Right	0					
	Right	1	713	77	636		
	Total Lanes	6					
	Left	2	558		307	307	
	Left/Through	0					
Southbound	Through	3	1,502		440		
	Through/Right	1			440		
	Right	0	257	0			
	Total Lanes	6					
		;	Sum of North	/South Critic	al Volumes	1,016	
	Left	1	254		254	254	
	Left/Through	0					
Eastbound	Through	2	385		139		
	Through/Right	1			139		
	Right	0	32	0			
	Total Lanes	4					
	Left	2	561		309	309	
	Left/Through	0					
Westbound	Through	2	154		77		
	Through/Right	0					
	Right	2	708	614	47		
	Total Lanes	6					
			Sum of Eas	st/West Critic	al Volumes	563	
Total Intersection Critical Volumes							

East/West Opposed Phasing WB Rt. Turn Overlap with SB Left


Number of Clearance Intervals 4 Intersection Critical Volumes 1,579

Base CMA 1.148

Signal Coordination ATSAC + ATCS Signal Coordination Adjustment -0.100

Final CMA 1.048

Level of Service (LOS) F

Project Name Marina del Rey - Parcel 44 Project **Intersection Number** 1 Date October 7, 2013 **Intersection Name** North/South: Lincoln Boulevard East/West: Venice Boulevard **Intersection Control** Signalized **Analysis Period** PM Peak Hour **Analysis Scenario** Existing (2013) With Project

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves	
	Left	2	147		81		
	Left/Through	0					
Northbound	Through	1	1,474		826	826	
	Through/Right	1			826		
	Right	0	179	0			
	Total Lanes	4					
	Left	2	 168		92	92	
	Left/Through	0					
Southbound	Through	1	957		497		
	Through/Right	1			497		
	Right	0	37	0			
	Total Lanes	4					
		;	Sum of North	n/South Critica	al Volumes	918	
	Left	2	114		63	63	
	Left/Through	0					
Eastbound	Through	3	872		291		
	Through/Right	0					
	Right	1	143	81	62		
	Total Lanes	6					
	Left	2	248		136		
	Left/Through	0					
Westbound	Through	2	935		468	468	
	Through/Right	0					
	Right	1	138	92	46		
	Total Lanes	5					
			Sum of Eas	st/West Critica	al Volumes	531	
			Total Inters	section Critica	al Volumes	1,449	
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375	
					Base CMA	1.054	
Signal Coordination ATSAC + ATCS Signal Coordination Adju				Adjustment	-0.100		
					Final CMA	0.954	
Level of Service (LOS)							

Project Name Marina del Rey - Parcel 44 Project

Date October 7, 2013 **Intersection Number** 2

Intersection Name North/South: Pacific Avenue

East/West: Washington Boulevard

Intersection Control Signalized **Analysis Period** PM Peak Hour

Analysis

is Period is Scenario	PM Peak Hour Existing (2013) W	ith Project					
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves	
	Left	0	2				
	Left/Through	1			71		ğ
Northbound	Through	0	69				asir
	Through/Right	1			128	128	l Ph
	Right	0	128	0			sec
	Total Lanes	2					North/South Opposed Phasing
	Left	0	685				uth (
	Left/Through	1			685	685	NSC
Southbound	Through	0	118				lort
	Through/Right	1			144		<
	Right	0	26	0			
	Total Lanes	2					
		;	Sum of North	n/South Critica	al Volumes	813	
	Left	0	20				
	Left/Through	0					
Eastbound	Left/Through/Right	1	91		129	129	
	Through/Right	0					
	Right	0	18	0			
	Total Lanes	1					
	Left	1	 176		176	176	
	Left/Through	0					
Westbound	Through	1	60		60		
	Through/Right	0					
	Right	1	435	435	0		
	Total Lanes	3					
			Sum of Eas	st/West Critica	al Volumes	305	
			Total Inters	section Critica	al Volumes	1,118	
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425	
					Base CMA	0.785	
Signal Coordi	nation ATSAC + A	ATCS	Signal C	Coordination A	-	-0.100	
					Final CMA	0.685	
				Level of Ser	rvice (LOS)	В	

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 3 Date October 7, 2013

Intersection NameNorth/South:Via Dolce/Dell AvenueEast/West:Washington Boulevard

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

sis Scenario	Existing (2013) W	ith Project/				
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	50		50	50
	Left/Through	0				
Northbound	Through	1	11		11	
	Through/Right	0				
	Right	1	95	71	24	
	Total Lanes	3				
	Left	0	20			
	Left/Through	0				
Southbound	Left/Through/Right	1	28		62	62
	Through/Right	0				
	Right	0	14	0		
	Total Lanes	1				
		;	Sum of North	/South Critica	al Volumes	112
	Left	1	13		13	
	Left/Through	0				
Eastbound	Through	2	752		376	376
	Through/Right	0				
	Right	1	110	25	85	
	Total Lanes	4 				
	Left	1	142		142	142
	Left/Through	0				
Westbound	Through	2	660		330	
	Through/Right	0				
	Right	1	49	44	5	
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	518
			Total Inters	section Critica	al Volumes	630
Number of Cle	earance Intervals	2		Intersectio	n Capacity	1,500
					Base CMA	0.420
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.320
				Level of Ser	vice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 4 Date October 7, 2013

Intersection NameNorth/South:Via Marina/Ocean AvenueEast/West:Washington Boulevard

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Analysis Scenario Existing (2013) With Project

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	335		184	
	Left/Through	0				
Northbound	Through	1	242		242	242
	Through/Right	0				
	Right	1	237	85	152	
	Total Lanes	4				
	Left	1	34		34	
	Left/Through	0				
Southbound	Through	0	447			
	Through/Right	1			556	556
	Right	0	109	0		
	Total Lanes	2				
		;	Sum of North	/South Critica	al Volumes	798
	Left	1	37		37	_
	Left/Through	0				
Eastbound	Through	2	595		298	298
	Through/Right	0				
	Right	1	346	121	225	
	Total Lanes	4				
	Left	1	170		170	170
	Left/Through	0				
Westbound	Through	2	525		262	
	Through/Right	0				
	Right	1	47	47	0	
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	468
			Total Inters	section Critica	al Volumes	1,266
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.888
Signal Coordination ATSAC + ATCS Signal Coordination Adjustment					-0.100	
					Final CMA	0.788
				Level of Ser	rvice (LOS)	С

North/South Opposed Phasing

Project Name Marina del Rey - Parcel 44 Project
Intersection Number 5 Date October 7, 2013
Intersection Name North/South: Palawan Way
East/West: Washington Boulevard
Intersection Control Two-Way STOP

Intersection ControlTwo-Way STOPAnalysis PeriodPM Peak Hour

sis Scenario	Existing (2013)	With Project				
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	1	155	0	155	155
	Total Lanes	1				
	Left	0	0			
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
		5	Sum of North	n/South Critica	al Volumes	155
	Left	0	0			_
	Left/Through	0				
Eastbound	Through	2	727		364	364
	Through/Right	0				
	Right	1	195	78	117	
	Total Lanes	3				
	Left	1	434		434	434
	Left/Through	0				
Westbound	Through	2	762		381	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	798
			Total Inters	section Critica	al Volumes	953
Number of Cle	earance Intervals	0		Intersectio	n Capacity	1,200
					Base CMA	0.794
Signal Coordi	nation None		Signal C	Coordination A	Adjustment	0.000
					Final CMA	0.794
				Level of Ser	vice (LOS)	С

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 6 Date October 7, 2013

Intersection Name North/South: Abbot Kinney Boulevard East/West: Washington Boulevard
Intersection Control Signalized

Analysis Period PM Peak Hour

Analysis Scenario Existing (2013) With Project

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	1	739		473	473
	Left/Through	0				
Southbound	Left/Through/Right	1	0		473	
	Through/Right	0				
	Right	0	207	0		
	Total Lanes	2				
		;	Sum of North	/South Critica	al Volumes	473
	Left	1	113		113	113
	Left/Through	0				
Eastbound	Through	2	746		373	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	2	955		478	478
	Through/Right	0				
	Right	1	569	473	96	
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	591
			Total Inters	section Critica	al Volumes	1,064
Number of Cle	earance Intervals	2		Intersectio	n Capacity	1,500
					Base CMA	0.709
Signal Coordination ATSAC + ATCS Signal Coordination Adjustment -					-0.100	
Final CMA 0					0.609	
				Level of Ser	vice (LOS)	В

WB Rt. Turn Overlap with SB Left

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 7 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Washington Boulevard

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	496		273	
	Left/Through	0				
Northbound	Through	2	1,686		652	652
	Through/Right	1			652	
	Right	0	271	0		
	Total Lanes	5				
	Left	2	230		126	126
	Left/Through	0				
Southbound	Through	2	1,246		451	
	Through/Right	1			451	
	Right	0	107	0		
	Total Lanes	5				
		;	Sum of North	n/South Critica	al Volumes	778
	Left	2	109		60	
	Left/Through	0				
Eastbound	Through	2	905		452	452
	Through/Right	0				
	Right	1	532	273	259	
	Total Lanes	5				
	Left	2	298		164	164
	Left/Through	0				
Westbound	Through	2	820		410	
	Through/Right	0				
	Right	1	297	126	171	
	Total Lanes	5				
			Sum of Eas	st/West Critica	al Volumes	616
			Total Inter	section Critica	al Volumes	1,394
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	1.014
Signal Coordi	nation ATSAC +	ATCS	Signal Coordination Adjustment			-0.100
					Final CMA	0.914
				Level of Ser	rvice (LOS)	E

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 8 Date October 7, 2013

Intersection Name North/South: Glencoe Avenue/Costco Plaza Driveway

East/West: Washington Boulevard

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Analysis Scenario Existing (2013) With Project

is Scenario	Existing (2013)	With Project				
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	186		184	184
	Left/Through	1			184	
Northbound	Through	0	183			
	Through/Right	0				
	Right	1	346	346	0	
	Total Lanes	3				
	Left	1	503		326	326
	Left/Through	1			326	
Southbound	Through	0	148			
	Through/Right	0				
	Right	1	81	55	26	
	Total Lanes	3				
		•	Sum of North	/South Critica	al Volumes	510
	Left	1	55		55	_
	Left/Through	0				
Eastbound	Through	2	1,090		545	545
	Through/Right	0				
	Right	1	297	184	113	
	Total Lanes	4				
	Left	1	512		512	512
	Left/Through	0				
Westbound	Through	2	1,215		500	
	Through/Right	1			500	
	Right	0	286	0		
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	1,056
			Total Inters	section Critica	al Volumes	1,566
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	1.139
Signal Coordi	nation ATSAC	+ ATCS	Signal C	Coordination A	-	-0.100
					Final CMA	1.039

Level of Service (LOS)

F

Project Name Marina del Rey - Parcel 44 Project

Intersection Number Date October 7, 2013

Intersection Name North/South: Via Marina East/West: Admiralty Way

Intersection Control Signalized PM Peak Hour **Analysis Period**

Analysi

s Period	PM Peak Hour					
s Scenario	Existing (2013)	With Project				
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	2	335		168	168
	Through/Right	0				
	Right	1	513	513	0	
	Total Lanes	3				
	Left	 1	610		610	610
	Left/Through	0				
Southbound	Through	3	374		125	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	4				
		5	Sum of North	/South Critica	al Volumes	778
	Left	0	0			
	Left/Through	0				
Eastbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	2	1,035		569	569
	Left/Through	0				
Westbound	Through	0	0			
	Through/Right	0				
	Right	2	463	463	0	
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	569
			Total Inters	section Critica	al Volumes	1,347
Number of Clo	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.945
Signal Coordi	nation ATSAC -	- ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.845
				Level of Ser	rvice (LOS)	D

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 10 Date October 7, 2013

Intersection Name

North/South: Palawan Way

East/West: Admiralty Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	16		16	
	Left/Through	0				
Northbound	Through	0	32			
	Through/Right	1			72	72
	Right	0	40	0		
	Total Lanes	2				
	Left	 1	380		380	380
	Left/Through	0				
Southbound	Through	1	64		64	
	Through/Right	0				
	Right	1	171	24	147	
	Total Lanes	3				
		:	Sum of North	n/South Critica	al Volumes	452
	Left	1	49		49	49
	Left/Through	0				
Eastbound	Through	1	1,109		560	
	Through/Right	1			560	
	Right	0	10	0		
	Total Lanes	3				
	Left	1	72		72	
	Left/Through	0				
Westbound	Through	1	1,275		682	682
	Through/Right	1			682	
	Right	0	90	0		
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	731
			Total Inter	section Critica	al Volumes	1,183
Number of Cle	earance Intervals	2	Intersection Capacity			1,500
					Base CMA	0.789
Signal Coordination ATSAC + ATCS			Signal Coordination Adjustment			-0.100
Final CMA						0.689
				Level of Ser	rvice (LOS)	В

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 11 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Maxella Avenue/Marina Pointe Drive

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Analysis Scenario Existing (2013) With Project

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	194		107	
	Left/Through	0				
Northbound	Through	3	2,115		705	705
	Through/Right	0				
	Right	1	266	176	90	
	Total Lanes	6				
	Left	2	143		79	79
	Left/Through	0				
Southbound	Through	3	1,915		506	
	Through/Right	1			506	
	Right	0	110	0		
	Total Lanes	6				
		;	Sum of North	n/South Critica	al Volumes	784
	Left	1	80		80	80
	Left/Through	0				
Eastbound	Through	1	72		72	
	Through/Right	0				
	Right	1	45	45	0	
	Total Lanes	3				
	Left	1	264		176	176
	Left/Through	1			176	
Westbound	Through	0	89			
	Through/Right	0				
	Right	1	174	79	95	
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	256
			Total Inter	section Critica	al Volumes	1,040
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
				Base CMA	0.756	
Signal Coordination ATSAC + ATCS			Signal C	Coordination A	Adjustment	-0.100

Final CMA

Level of Service (LOS)

0.656

В

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 12 Date October 7, 2013

Intersection Name North/South: Glencoe Avenue

East/West: Maxella Avenue

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	125		125	125
	Left/Through	0				
Northbound	Through	1	524		524	
	Through/Right	0				
	Right	1	82	82	0	
	Total Lanes	3				
	Left	1	51		51	
	Left/Through	0				
Southbound	Through	1	707		452	452
	Through/Right	1			452	
	Right	0	198	0		
	Total Lanes	3				
Sum of North/South Critical Volumes						
	Left	1	191		191	191
	Left/Through	0				
Eastbound	Through	1	137		137	
	Through/Right	0				
	Right	1	199	62	137	
	Total Lanes	3				
	Left	1	101		101	
	Left/Through	0				
Westbound	Through	1	180		124	124
	Through/Right	1			124	
	Right	0	67	0		
	Total Lanes	3				
			Sum of Eas	st/West Critic	al Volumes	315
			Total Inter	section Critica	al Volumes	892
Number of Cle	earance Intervals	2		Intersection	n Capacity	1,500
					Base CMA	0.595
Signal Coordi	nation ATSAC +	ATCS	Signal Coordination Adjustment			-0.100
					Final CMA	0.495
				Level of Se	rvice (LOS)	Α

Assigned

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 13 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Marina Expressway (SR-90)

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	2	1,698		640	640
	Through/Right	1			640	
	Right	0	222	0		
	Total Lanes	3				
	Left	2	815		448	448
	Left/Through	0				
Southbound	Through	3	1,546		515	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	5				
		:	Sum of North	/South Critica	al Volumes	1,088
	Left	0	0			
	Left/Through	0				
Eastbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	2	200		110	110
	Left/Through	0				
Westbound	Through	0	0			
	Through/Right	0				
	Right	2	900	896	2	
	Total Lanes	4				
				st/West Critica		110
			Total Inters	section Critica	al Volumes	1,198
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.841
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	-	-0.100
					Final CMA	0.741
				Level of Ser	rvice (LOS)	С

Approach

Right-Turn

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 14 Date October 7, 2013

No. of

Intersection Name North/South: Admiralty Way

East/West: Bali Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach

Analysis Scenario Existing (2013) With Project

Direction	Lane Type	Lanes	Volumes	on Red	Volumes	Moves
	Left	1	9		9	
	Left/Through	0				
Northbound	Through	1	1,275		714	714
	Through/Right	1			714	
	Right	0	153	0		
	Total Lanes	3				
	Left	1	262		262	262
	Left/Through	0				
Southbound	Through	1	1,381		696	
	Through/Right	1			696	
	Right	0	11	0		
	Total Lanes	3				
		;	Sum of North	n/South Critica	al Volumes	976
	Left	0	24			24
	Left/Through	1			34	
Eastbound	Through	0	33			
	Through/Right	1			34	
	Right	0	10	0		
	Total Lanes	2				
	Left	1	49		49	
	Left/Through	0				
Westbound	Through	0	19			
	Through/Right	1			82	
	Right	1	406	262	82	82
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	106
			Total Inter	section Critica	al Volumes	1,082
Number of Cl	earance Intervals	4		Intersectio	n Capacity	1,375
				Base CMA	0.787	
Signal Coordi	ination ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.687

Assigned

Lane

Critical

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 15 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Bali Way/Auto Dealership Driveway

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	150		150	150
	Left/Through	0				
Northbound	Through	2	1,587		535	
	Through/Right	1			535	
	Right	0	19	0		
	Total Lanes	4				
	Left	1	2		2	
	Left/Through	0				
Southbound	Through	2	1,458		596	596
	Through/Right	1			596	
	Right	0	329	0		
	Total Lanes	4				
		;	Sum of North	n/South Critica	al Volumes	746
	Left	1	375		190	190
	Left/Through	1			190	,
Eastbound	Through	0	4			2.00
	Through/Right	0				0 70
	Right	1	78	75	3	5
	Total Lanes	3				41 41 41
	Left	0	6			č
	Left/Through	0				, V
Westbound	Left/Through/Right	1	0		41	41 (
	Through/Right	0				
	Right	0	35	0		
	Total Lanes	1				
			Sum of Eas	st/West Critica	al Volumes	231
			Total Inter	section Critica	al Volumes	977
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	0.711
Signal Coordi	nation ATSAC + A	ATCS	Signal C	Coordination A	-	-0.100
					Final CMA	0.611
				Level of Ser	rvice (LOS)	В

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 16 Date October 7, 2013

Intersection Name North/South: Admiralty Way

East/West: Mindanao Way

Intersection Control Signalized Analysis P

Analysis

s Period	PM Peak Hour						
s Scenario	Existing (2013)	With Project					
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves	
	Left	1	22		22		
	Left/Through	0					
Northbound	Through	1	777		466	466	
	Through/Right	1			466		
	Right	0	156	0			
	Total Lanes	3					
	Left	1	374		374	374	
	Left/Through	0					
Southbound	Through	1	959		498		
	Through/Right	1			498		
	Right	0	36	0			
	Total Lanes	3					
		;	Sum of North	/South Critica	al Volumes	840	
	Left	1	97		74		
	Left/Through	1			74		
Eastbound	Through	0	98				sing
	Through/Right	1			74	74	has
	Right	0	27	0			ed F
	Total Lanes	3					soda
	Left	1	327		215	215	East/West Opposed Phasing
	Left/Through	1			215		./We
Westbound	Through	0	103				<u>=</u> ast
	Through/Right	0					F
	Right	1	522	374	148		
	Total Lanes	3					
			Sum of Eas	st/West Critica	al Volumes	289	
			Total Inters	section Critica	al Volumes	1,129	
Number of Clo	earance Intervals	4		Intersectio	n Capacity	1,375	
					Base CMA	0.821	
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	-	-0.100	
					Final CMA	0.721	
				Level of Ser	vice (LOS)	С	

WB Rt. Turn Overlap with SB Left

NB Rt. Turn Overlap with WB Left

Hirsch/Green Transportation Consulting, Inc. Critical Movement Analysis (CMA) Worksheet

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 17 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	328		328	328
	Left/Through	0				
Northbound	Through	3	1,821		607	
	Through/Right	0				
	Right	1	406	305	101	
	Total Lanes	5				
	Left	1	151		151	
	Left/Through	0				
Southbound	Through	2	1,258		434	434
	Through/Right	1			434	
	Right	0	44	0		
	Total Lanes	4				
		;	Sum of North	/South Critica	al Volumes	762
	Left	0	0			
	Left/Through	0				
Eastbound	Through	1	406		296	296
	Through/Right	1			296	
	Right	0	187	0		
	Total Lanes	2				
	Left	2	555		305	305
	Left/Through	0				
Westbound	Through	1	940		510	
	Through/Right	1			510	
	Right	0	80	0		
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	601
			Total Inters	section Critica	al Volumes	1,363
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	0.991
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	-	-0.100
					Final CMA	0.891
				Level of Ser	rvice (LOS)	D

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 18 Date October 7, 2013

Intersection Name North/South: EB Marina Expressway (SR-90)

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	1	30		30	
	Left/Through	0				
Southbound	Through	1	978		494	494
	Through/Right	1			494	
	Right	0	11	0		
	Total Lanes	3				
			Sum of North	n/South Critica	al Volumes	494
	Left	0	0			
	Left/Through	0				
Eastbound	Through	1	441		313	
	Through/Right	1			313	
	Right	1	498	0	313	
	Total Lanes	3				
	Left	2	515		283	
	Left/Through	0				
Westbound	Through	2	1,544		772	772
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	4				
			Sum of Eas	st/West Critic	al Volumes	772
			Total Inter	section Critica	al Volumes	1,266
Number of Cle	earance Intervals	3		Intersection	n Capacity	1,425
					Base CMA	0.888
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.788
				Level of Se	rvice (LOS)	С

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 19 Date October 7, 2013

Intersection Name North/South: WB Marina Expressway (SR-90)

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	324		324	
	Left/Through	1			525	
Northbound	Through	1	1,050		525	525
	Through/Right	0				
	Right	1	384	202	182	
	Total Lanes	4				
	Left	0	0			
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
			Sum of North	n/South Critic	al Volumes	525
	Left	1	14		14	14
	Left/Through	0				
Eastbound	Through	2	425		212	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	2	1,774		602	602
	Through/Right	1			602	
	Right	0	32	0		
	Total Lanes	3				
			Sum of Eas	st/West Critic	al Volumes	616
			Total Inter	section Critic	al Volumes	1,141
Number of Cle	earance Intervals	3		Intersection	n Capacity	1,425
					Base CMA	0.801
Signal Coordi	nation ATSAC +	- ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.701
				Level of Se	rvice (LOS)	С

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 20 Date October 7, 2013

Intersection Name North/South: Glencoe Avenue

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	89		89	89
	Left/Through	0				
Northbound	Through	1	202		112	
	Through/Right	1			112	
	Right	0	21	0		
	Total Lanes	3				
	Left	1	132		132	
	Left/Through	0				
Southbound	Through	1	201		201	
	Through/Right	0				
	Right	1	1,172	184	988	988
	Total Lanes	3				
		;	Sum of North	/South Critica	al Volumes	1,077
	Left	1	368		368	368
	Left/Through	0				
Eastbound	Through	1	413		234	
	Through/Right	1			234	
	Right	0	55	0		
	Total Lanes	3				
	Left	1	8		8	
	Left/Through	0				
Westbound	Through	1	453		276	276
	Through/Right	1			276	
	Right	0	98	0		
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	644
			Total Inters	section Critica	al Volumes	1,721
Number of Cle	earance Intervals	2		Intersectio	n Capacity	1,500
					Base CMA	1.147
Signal Coordi	nation ATSAC -	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	1.047
				Level of Ser	vice (LOS)	F

SB Rt. Turn Overlap with EB Left

Hirsch/Green Transportation Consulting, Inc. Critical Movement Analysis (CMA) Worksheet

Project Name	Marina del Rey - Parcel 44 Project

Intersection Number 21 Date October 7, 2013

Intersection Name North/South: Admiralty Way

East/West: Fiji Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

s Scenario	Existing (2013)	with Project				
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	2	599		329	329
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	1	78	53	25	
	Total Lanes	3				
			Sum of North	n/South Critica	al Volumes	329
	Left	1	53		53	53
	Left/Through	0				
Eastbound	Through	2	196		98	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	1	141		141	141
	Through/Right	0				
	Right	1	562	562	0	
	Total Lanes	2				
			Sum of Eas	st/West Critic	al Volumes	194
			Total Inter	section Critica	al Volumes	523
Number of Cl	earance Intervals	2		Intersection	n Capacity	1,500
					Base CMA	0.349
Signal Coordi	nation ATSAC	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.249
				Level of Se	rvice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 22 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Fiji Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	552		304	304
	Left/Through	0				
Northbound	Through	2	2,425		815	
	Through/Right	1			815	
	Right	0	21	0		
	Total Lanes	5				
	Left	1	26		26	
	Left/Through	0				
Southbound	Through	2	1,912		665	665
	Through/Right	1			665	
	Right	0	82	0		
	Total Lanes	4				
		:	Sum of North	n/South Critica	al Volumes	969
	Left	1	95		95	95
	Left/Through	0				
Eastbound	Through	1	16		16	
	Through/Right	0				
	Right	1	655	655	0	
	Total Lanes	3				
	Left	0	34			
	Left/Through	1			46	
Westbound	Through	0	20			
	Through/Right	1			46	46
	Right	0	38	0		
	Total Lanes	2				
			Sum of Eas	st/West Critica	al Volumes	141
			Total Inter	section Critica	al Volumes	1,110
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	0.807
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.707
				Level of Ser	rvice (LOS)	С

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 23 Date October 7, 2013

Intersection Name North/South: Marina Freeway (SR-90) EB On/Off-Ramps

East/West: Culver Boulevard

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	 1	94		94	94
	Left/Through	0				
Southbound	Through	1	0		0	
	Through/Right	1			55	
	Right	0	55	0		
	Total Lanes	3				
			Sum of North	n/South Critica	al Volumes	94
	Left	0	0			
	Left/Through	0				
Eastbound	Through	3	612		204	
	Through/Right	0				
	Right	2	188	20	84	
	Total Lanes	5				
	Left	1	254		254	
	Left/Through	0				
Westbound	Through	2	1,679		840	840
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
			Sum of Eas	st/West Critic	al Volumes	840
			Total Inter	section Critic	al Volumes	934
Number of Cle	earance Intervals	2		Intersection	n Capacity	1,500
					Base CMA	0.623
Signal Coordi	nation ATSAC	+ ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.523
				Level of Se	rvice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 24 Date October 7, 2013

Intersection Name North/South: Marina Freeway (SR-90) WB Off-Ramp

East/West: Culver Boulevard

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Analysis Scenario Existing (2013) With Project

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	518		259	259
	Left/Through	1			259	
Northbound	Through	0	234			
	Through/Right	1			279	
	Right	0	45	0		
	Total Lanes	3				
	Left	1	142		142	
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	1	417	96	321	321
	Total Lanes	2				
		;	Sum of North	n/South Critica	al Volumes	580
	Left	1	191		191	191
	Left/Through	0				
Eastbound	Through	2	533		266	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	2	1,012		506	506
	Through/Right	0				
	Right	1	301	150	151	
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	697
			Total Inters	section Critica	al Volumes	1,277
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.896
Signal Coordi	Signal Coordination ATSAC + ATCS Signal Coordination Adjustment					-0.100
					Final CMA	0.796
				Level of Ser	rvice (LOS)	С

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 25 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Jefferson Boulevard

Intersection Control Signalized **Analysis Period** PM Peak Hour

Analysis Scenario Existing (2013) With Project

is occitatio	Existing (2013)	with roject					
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves	
	Left	1	28		28		
	Left/Through	0					
Northbound	Through	4	2,188		547	547	
	Through/Right	0					
	Right	1	439	210	229		
	Total Lanes	6					
	Left	2	351		193	193	
	Left/Through	0					
Southbound	Through	3	1,842		560		
	Through/Right	1			560		
	Right	0	396	0			
	Total Lanes	6					
			Sum of North	/South Critic	al Volumes	740	
	Left	1	42		42		
	Left/Through	0					
Eastbound	Through	2	140		66	66	i
	Through/Right	1			66		i
	Right	0	57	0			•
	Total Lanes	4					
	Left	2	879		483	483	
	Left/Through	0					;
Westbound	Through	2	273		136		
	Through/Right	0					٠
	Right	2	807	386	210		
	Total Lanes	6					
			Sum of Eas	st/West Critic	al Volumes	549	
			Total Inter	section Critic	al Volumes	1,289	
Number of Cl	earance Intervals	4		Intersection	n Capacity	1,375	
					Base CMA	0.937	
Signal Coordi	gnal Coordination ATSAC + ATCS			Signal Coordination Adjustment			
					Final CMA	0.837	
				Level of Se	rvice (LOS)	D	

WB Rt. Turn Overlap with SB Left East/West Opposed Phasing

Intersection No. 16, Admiralty Way and Mindanao Way
(Assumes Completion of Currently Ongoing County Installation of
Dual Southbound Left-Turn Lanes on Admiralty Way)

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 16 Date October 7, 2013

Intersection Name

North/South: Admiralty Way

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Existing (2013) With Project Plus County-Installed SB Dual Left-Turn Lanes

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	27		27	
	Left/Through	0				
Northbound	Through	1	864		494	494
	Through/Right	1			494	
	Right	0	124	0		
	Total Lanes	3				
	Left	2	235		129	129
	Left/Through	0				
Southbound	Through	1	981		502	
	Through/Right	1			502	
	Right	0	24	0		
	Total Lanes	4				
		;	Sum of North	/South Critic	al Volumes	623
	Left	1	40		34	
	Left/Through	1			34	
Eastbound	Through	0	29			
	Through/Right	1			34	34
	Right	0	33	0		
	Total Lanes	3				
	Left	1	118		87	
	Left/Through	1			87	
Westbound	Through	0	56		0	
	Through/Right	0				
	Right	1	374	129	245	245
	Total Lanes	3				
			Sum of Eas	st/West Critic	al Volumes	279
			Total Inters	section Critica	al Volumes	902
Number of Cle	earance Intervals	4		Intersection	n Capacity	1,375
					Base CMA	0.656
Signal Coordi	Signal Coordination ATSAC + ATCS Signal Coordination Adjustment					-0.100
					Final CMA	0.556
				Level of Ser	rvice (LOS)	Α

East/West Opposed Phasing WB Rt. Turn Overlap with SB Left

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 16 Date October 7, 2013

Intersection Name

North/South: Admiralty Way

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Analysis Scenario Existing (2013) With Project Plus County-Installed SB Dual Left-Turn Lanes

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Lane Volumes	Critical Moves
	Left	1	22		22	
	Left/Through	0				
Northbound	Through	1	777		466	466
	Through/Right	1			466	
	Right	0	156	0		
	Total Lanes	3				
	Left	2	374		206	206
	Left/Through	0				
Southbound	Through	1	959		498	
	Through/Right	1			498	
	Right	0	36	0		
	Total Lanes	4				
		;	Sum of North	n/South Critica	al Volumes	672
	Left	1	97		74	
	Left/Through	1			74	
Eastbound	Through	0	98			
	Through/Right	1			74	74
	Right	0	27	0		
	Total Lanes	3				
	Left	1	327		215	
	Left/Through	1			215	
Westbound	Through	0	103			
	Through/Right	0				
	Right	1	522	206	316	316
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	390
			Total Inter	section Critica	al Volumes	1,062
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	0.772 -0.100
Signal Coordi	ignal Coordination ATSAC + ATCS			Signal Coordination Adjustment		
					Final CMA	0.672
				Level of Ser	rvice (LOS)	В

East/West Opposed Phasing WB Rt. Turn Overlap with SB Left

Assigned

No Feasible Mitigation For:

Intersection No. 1, Lincoln Boulevard and Venice Boulevard, Intersection No. 7, Lincoln Boulevard and Washington Boulevard,

or

Intersection No. 17, Lincoln Boulevard and Mindanao Way

Future (2016) With Ambient Growth (Los Angeles County Intersections Only)

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 9 Date October 7, 2013

Intersection Name

North/South: Via Marina

East/West: Admiralty Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Future (2016) With Ambient Growth Only (LACo Only)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	2	571		286	286
	Through/Right	0				
	Right	1	761	761	0	
	Total Lanes	3				
	Left	1	262		262	262
	Left/Through	0				
Southbound	Through	3	173		58	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	4				
		;	Sum of North	/South Critica	al Volumes	548
	Left	0	0			
	Left/Through	0				
Eastbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	2	345		190	190
	Left/Through	0				
Westbound	Through	0	0			
	Through/Right	0				
	Right	2	646	524	61	
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	190
			Total Inters	section Critica	al Volumes	738
umber of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.518
gnal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	_	-0.100
					Final CMA	0.418
				Level of Ser	rvice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 10 Date October 7, 2013

Intersection Name

North/South: Palawan Way

East/West: Admiralty Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Future (2016) With Ambient Growth Only (LACo Only)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	29			
	Left/Through	1			76	
Northbound	Through	0	68			
	Through/Right	1			76	76
	Right	0	55	0		
	Total Lanes	2				
	Left	 1	143		143	143
	Left/Through	0				
Southbound	Through	1	21		21	
	Through/Right	0				
	Right	1	96	46	50	
	Total Lanes	3				
		;	Sum of North	/South Critica	al Volumes	219
	Left	1	92		92	92
	Left/Through	0				
Eastbound	Through	1	886		447	
	Through/Right	1			447	
	Right	0	8	0		
	Total Lanes	3				
	Left	1	46		46	
	Left/Through	0				
Westbound	Through	2	893		446	446
	Through/Right	0				
	Right	1	105	25	80	
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	538
			Total Inters	section Critica	al Volumes	757
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.531
Signal Coordi	Signal Coordination ATSAC + ATCS Signal Coordination Adjustment					-0.100
					Final CMA	0.431
				Level of Ser	rvice (LOS)	Α

North/South Opposed Phasing

Assigned

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 14 Date October 7, 2013

Intersection Name North/South: Admiralty Way

East/West: Bali Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Future (2016) With Ambient Growth Only (LACo Only)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Lane Volumes	Critical Moves
	Left	1	12		12	
	Left/Through	0				
Northbound	Through	1	1,055		608	608
	Through/Right	1			608	
	Right	0	160	0		
	Total Lanes	3				
	Left	2	325		179	179
	Left/Through	0				
Southbound	Through	1	1,289		648	
	Through/Right	1			648	
	Right	0	6	0		
	Total Lanes	4				
		•	Sum of North	/South Critica	al Volumes	787
	Left	0	13			13
	Left/Through	1			14	
Eastbound	Through	0	8			
	Through/Right	1			14	
	Right	0	7	0		
	Total Lanes	2				
	Left	1	16		16	
	Left/Through	0				
Westbound	Through	0	30			
	Through/Right	1			77	
	Right	1	303	179	77	77
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	90
			Total Inters	section Critica	al Volumes	877
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	0.638
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.538
				Level of Ser	rvice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 16 Date October 7, 2013

Intersection Name

North/South: Admiralty Way

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Future (2016) With Ambient Growth Only (LACo Only)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves	
	Left	1	24		24		
	Left/Through	0					
Northbound	Through	1	880		503	503	
	Through/Right	1			503		
	Right	0	126	0			
	Total Lanes	3					
	Left	2	239		131	131	
	Left/Through	0					
Southbound	Through	1	999		508		
	Through/Right	1			508		
	Right	0	17	0			
	Total Lanes	4					
		;	Sum of North	n/South Critica	al Volumes	634	
	Left	1	26		26		
	Left/Through	0					Б
Eastbound	Through	0	18				sing
	Through/Right	1			51	51	Phe
	Right	0	33	0			pəs
	Total Lanes	2					East/West Opposed Phasing
	Left	1	120		70		est (
	Left/Through	1			70		₹W€
Westbound	Through	0	21				Eas
	Through/Right	0					_
	Right	1	378	131	247	247	
	Total Lanes	3					
			Sum of Eas	st/West Critica	al Volumes	298	
			Total Inter	section Critica	al Volumes	932	
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375	
					Base CMA	0.678	
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100	
					Final CMA	0.578	
				Level of Ser	rvice (LOS)	Α	

East West Opposed Frasing WB Rt. Turn Overlap with SB Left

SB Rt. Turn Overlap with EB Left

Hirsch/Green Transportation Consulting, Inc. Critical Movement Analysis (CMA) Worksheet

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 21 Date October 7, 2013


Intersection Name North/South: Admiralty Way

East/West: Fiji Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Future (2016) With Ambient Growth Only (LACo Only)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	2	629		346	346
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	1	48	44	4	
	Total Lanes	3				
		;	Sum of North	n/South Critica	al Volumes	346
	Left	1	44		44	44
	Left/Through	0				
Eastbound	Through	2	93		46	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	1	115		115	115
	Through/Right	0				
	Right	1	665	665	0	
	Total Lanes	2				
			Sum of Eas	st/West Critica	al Volumes	159
			Total Inter	section Critica	al Volumes	505
Number of Cle	earance Intervals	2		Intersectio	n Capacity	1,500
					Base CMA	0.337
Signal Coordi	ignal Coordination ATSAC + ATCS			Signal Coordination Adjustment		
					Final CMA	0.237
				Level of Ser	rvice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 9 Date October 7, 2013

Intersection Name

North/South: Via Marina

East/West: Admiralty Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Analysis Scenario Future (2016) With Ambient Growth Only (LACo Only)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	2	341		170	170
	Through/Right	0				
	Right	1	502	502	0	
	Total Lanes	3				
	Left	1	610		610	610
	Left/Through	0				
Southbound	Through	3	381		127	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	4				
		;	Sum of North	/South Critica	al Volumes	780
	Left	0	0			
	Left/Through	0				
Eastbound	Through	0	0			
Easibound	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	2	1,034		569	569
	Left/Through	0				
Westbound	Through	0	0			
	Through/Right	0				
	Right	2	453	453	0	
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	569
			Total Inters	section Critica	al Volumes	1,349
umber of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.947
ignal Coordi	nation ATSAC +	ATCS	Signal C	coordination A	Adjustment	-0.100
					Final CMA	0.847
				Level of Ser	rvice (LOS)	D

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 10 Date October 7, 2013

Intersection Name

North/South: Palawan Way

East/West: Admiralty Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Analysis Scenario Future (2016) With Ambient Growth Only (LACo Only)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	16			
	Left/Through	1			45	
Northbound	Through	0	33			
	Through/Right	1			45	45
	Right	0	41	0		
	Total Lanes	2				
	Left	1	376		376	376
	Left/Through	0				
Southbound	Through	1	65		65	
	Through/Right	0				
	Right	1	174	25	149	
	Total Lanes	3				
		;	Sum of North	n/South Critica	al Volumes	421
	Left	1	50		50	50
	Left/Through	0				
Eastbound	Through	1	1,098		554	
	Through/Right	1			554	
	Right	0	10	0		
	Total Lanes	3				
	Left	1	73		73	
	Left/Through	0				
Westbound	Through	2	1,260		630	630
	Through/Right	0				
	Right	1	92	74	18	
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	680
			Total Inters	section Critica	al Volumes	1,101
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.773
Signal Coordi	Signal Coordination ATSAC + ATCS Signal Coordination Adjustment					-0.100
					Final CMA	0.673
				Level of Ser	rvice (LOS)	В

North/South Opposed Phasing

Approach

Right-Turn

Assigned

Lane

Critical

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 14 Date October 7, 2013

No. of

Intersection Name North/South: Admiralty Way

East/West: Bali Way

Intersection Control Signalized **Analysis Period** PM Peak Hour

Approach

Analysis Scenario Future (2016) With Ambient Growth Only (LACo Only)

Direction	Lane Type	Lanes	Volumes	on Red	Volumes	Moves
	Left	1	11		11	
	Left/Through	0				
Northbound	Through	1	1,269		690	690
	Through/Right	1			690	
	Right	0	112	0		
	Total Lanes	3				
	Left	2	267		147	147
	Left/Through	0				
Southbound	Through	1	1,367		688	
	Through/Right	1			688	
	Right	0	8	0		
	Total Lanes	4				
Sum of North/South Critical Volumes						
	Left	0	16			16
	Left/Through	1			21	
Eastbound	Through	0	21			
	Through/Right	1			28	
	Right	0	12	0		
	Total Lanes	2				
	Left	1	22		22	
	Left/Through	0				
Westbound	Through	0	11			
	Through/Right	1			138	
	Right	1	413	147	138	138
	Total Lanes	3				
				st/West Critica		154
N			lotal Inter	section Critica		991
Number of Clo	earance Intervals	4		Intersectio		1,375
Signal Coard	nation ATSAC.	ATCS	Sianal C	Coordination /	Base CMA	0.721 -0.100
Signal Coordi	Signal Coordination ATSAC + ATCS			Signal Coordination Adjustment Final CMA		
				Level of Ser		0.621 B
				Level Of Sel	VICE (LOG)	5

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 16 Date October 7, 2013

Intersection Name North/South: Admiralty Way

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Analysis Scenario Future (2016) With Ambient Growth Only (LACo Only)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves	
	Left	1	14		14		
	Left/Through	0					
Northbound	Through	1	782		470	470	
	Through/Right	1			470		
	Right	0	159	0			
	Total Lanes	3					
	Left	2	361		199	199	
	Left/Through	0					
Southbound	Through	1	967		492		
	Through/Right	1			492		
	Right	0	18	0			
	Total Lanes	4					
Sum of North/South Critical Volumes							
	Left	1	25		25		
	Left/Through	0					_
Eastbound	Through	0	44				sinc
	Through/Right	1			65	65	Pha
	Right	0	21	0			pe
	Total Lanes	2					Fast/West Opposed Phasing
	Left	1	333		180	180	O JS
	Left/Through	1			180		'We
Westbound	Through	0	26				Easi
	Through/Right	0					
	Right	1	495	199	296		
	Total Lanes	3					
			Sum of Eas	st/West Critic	al Volumes	361	
			Total Inter	section Critic	al Volumes	1,030	
Number of Clo	earance Intervals	4		Intersection	n Capacity	1,375	
					Base CMA	0.749	
Signal Coordi	nation ATSAC +	- ATCS	Signal C	Coordination A	Adjustment	-0.100	
					Final CMA	0.649	
				Level of Se	rvice (LOS)	В	

East/West Opposed Phasing WB Rt. Turn Overlap with SB Left

SB Rt. Turn Overlap with EB Left

Hirsch/Green Transportation Consulting, Inc. Critical Movement Analysis (CMA) Worksheet

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 21 Date October 7, 2013

Intersection Name North/South: Admiralty Way

East/West: Fiji Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Analysis Scenario Future (2016) With Ambient Growth Only (LACo Only)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	2	 595		327	327
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	1	79	54	25	
	Total Lanes	3				
		;	Sum of North	n/South Critica	al Volumes	327
	Left	1	54		54	54
	Left/Through	0				
Eastbound	Through	2	200		100	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	1	144		144	144
	Through/Right	0				
	Right	1	555	555	0	
	Total Lanes	2				
			Sum of Eas	st/West Critica	al Volumes	198
			Total Inters	section Critica	al Volumes	525
Number of Cle	earance Intervals	2		Intersectio	n Capacity	1,500
					Base CMA	0.350
Signal Coordi	nation ATSAC	+ ATCS	Signal Coordination Adjustment			-0.100
					Final CMA	0.250
				Level of Ser	vice (LOS)	Α

Future (2016) With Ambient Growth Plus Project (Los Angeles County Intersections Only)

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 9 Date October 7, 2013

Intersection Name

North/South: Via Marina

East/West: Admiralty Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Future (2016) With Ambient Growth Plus Project (LACo Only)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	2	571		286	286
	Through/Right	0				
	Right	1	767	767	0	
	Total Lanes	3				
	Left	 1	265		265	265
	Left/Through	0				
Southbound	Through	3	173		58	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	4				
		;	Sum of North	n/South Critica	al Volumes	551
	Left	0	0			
	Left/Through	0				
Eastbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	2	348		191	191
	Left/Through	0				
Westbound	Through	0	0			
	Through/Right	0				
	Right	2	648	530	59	
	Total Lanes	4				
			Sum of Eas	st/West Critic	al Volumes	191
			Total Inters	section Critica	al Volumes	742
Number of Cle	earance Intervals	3		Intersection	n Capacity	1,425
					Base CMA	0.521
Signal Coordi	nation ATSAC +	ATCS	Signal Coordination Adjustment			-0.100
					Final CMA	0.421
				Level of Se	rvice (LOS)	Α
					• ,	

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 10 Date October 7, 2013

Intersection Name

North/South: Palawan Way

East/West: Admiralty Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Future (2016) With Ambient Growth Plus Project (LACo Only)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	29			
	Left/Through	1			76	
Northbound	Through	0	68			
	Through/Right	1			76	76
	Right	0	55	0		
	Total Lanes	2				
	Left	 1	146		146	146
	Left/Through	0				
Southbound	Through	1	21		21	
	Through/Right	0				
	Right	1	96	46	50	
	Total Lanes	3				
		;	Sum of North	/South Critica	al Volumes	222
	Left	1	92		92	92
	Left/Through	0				
Eastbound	Through	1	895		452	
	Through/Right	1			452	
	Right	0	8	0		
	Total Lanes	3				
	Left	1	46		46	
	Left/Through	0				
Westbound	Through	2	898		449	449
	Through/Right	0				
	Right	1	105	25	80	
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	540
			Total Inters	section Critica	al Volumes	762
Number of Cle	arance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.535
Signal Coordination ATSAC + ATCS Signal Coordination Adjustment					-0.100	
					Final CMA	0.435
				Level of Ser	rvice (LOS)	Α

North/South Opposed Phasing

Assigned

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 14 Date October 7, 2013

Intersection Name North/South: Admiralty Way

East/West: Bali Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Future (2016) With Ambient Growth Plus Project (LACo Only)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Lane Volumes	Critical Moves
	Left	1	7		7	
	Left/Through	0				
Northbound	Through	1	1,061		614	614
	Through/Right	1			614	
	Right	0	168	0		
	Total Lanes	3				
	Left	2	325		179	179
	Left/Through	0				
Southbound	Through	1	1,300		654	
	Through/Right	1			654	
	Right	0	7	0		
	Total Lanes	4				
		;	Sum of North	n/South Critica	al Volumes	793
	Left	0	12			12
	Left/Through	1			14	
Eastbound	Through	0	9			
	Through/Right	1			14	
	Right	0	6	0		
	Total Lanes	2				
	Left	1	16		16	
	Left/Through	0				
Westbound	Through	0	30			
	Through/Right	1			77	
	Right	1	303	179	77	77
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	89
			Total Inter	section Critica	al Volumes	882
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	0.641
Signal Coordi	nation ATSAC +	ATCS	Signal Coordination Adjustment			-0.100
					Final CMA	0.541
				Level of Ser	rvice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 16 Date October 7, 2013

Intersection Name

North/South: Admiralty Way

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Future (2016) With Ambient Growth Plus Project (LACo Only)

	• •			-		
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	27		27	
	Left/Through	0				
Northbound	Through	1	880		503	503
	Through/Right	1			503	
	Right	0	126	0		
	Total Lanes	3				
	Left	2	239		131	131
	Left/Through	0				
Southbound	Through	1	999		512	
	Through/Right	1			512	
	Right	0	24	0		
	Total Lanes	4				
		;	Sum of North	n/South Critic	al Volumes	634
	Left	1	40		34	_
	Left/Through	1			34	
Eastbound	Through	0	29			
	Through/Right	1			34	34
	Right	0	34	0		
	Total Lanes	3				
	Left	1	120		88	
	Left/Through	1			88	
Westbound	Through	0	56			
	Through/Right	0				
	Right	1	381	131	250	250
	Total Lanes	3				
			Sum of Eas	st/West Critic	al Volumes	284
			Total Inter	section Critic	al Volumes	918
Number of Cl	earance Intervals	4		Intersection	on Capacity	1,375
					Base CMA	0.668
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	-	-0.100
					Final CMA	0.568
				Level of Se	rvice (LOS)	Α
				Level of Se	ivice (LOO)	^

East/West Opposed Phasing WB Rt. Turn Overlap with SB Left

SB Rt. Turn Overlap with EB Left

Hirsch/Green Transportation Consulting, Inc. Critical Movement Analysis (CMA) Worksheet

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 21 Date October 7, 2013


Intersection Name North/South: Admiralty Way

East/West: Fiji Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Future (2016) With Ambient Growth Plus Project (LACo Only)

Approach		No. of	Approach	Right-Turn	Assigned Lane	Critical
Direction	Lane Type	Lanes	Volumes	on Red	Volumes	Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	2	630		346	346
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	1	48	44	4	
	Total Lanes	3				
		;	Sum of North	n/South Critica	al Volumes	346
	Left	1	44		44	44
	Left/Through	0				
Eastbound	Through	2	93		46	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	1	115		115	115
	Through/Right	0				
	Right	1	668	668	0	
	Total Lanes	2				
			Sum of Ea	st/West Critic	al Volumes	159
			Total Inter	section Critica	al Volumes	505
Number of Cle	earance Intervals	2		Intersection	n Capacity	1,500
					Base CMA	0.337
Signal Coordi	nation ATSAC -	+ ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.237
				Level of Se	rvice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 9 Date October 7, 2013

Intersection Name

North/South: Via Marina

East/West: Admiralty Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Analysis Scenario Future (2016) With Ambient Growth Plus Project (LACo Only)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	2	341		170	170
	Through/Right	0				
	Right	1	522	522	0	
	Total Lanes	3				
	Left	1	621		621	621
	Left/Through	0				
Southbound	Through	3	381		127	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	4				
		;	Sum of North	/South Critica	al Volumes	791
	Left	0	0			
	Left/Through	0				
Eastbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	2	1,053		579	579
	Left/Through	0				
Westbound	Through	0	0			
	Through/Right	0				
	Right	2	471	471	0	
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	579
			Total Inters	section Critica	al Volumes	1,370
umber of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.961
ignal Coordi	nation ATSAC +	ATCS	Signal C	coordination A	Adjustment	-0.100
					Final CMA	0.861
				Level of Ser	rvice (LOS)	D

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 10 Date October 7, 2013

Intersection Name

North/South: Palawan Way

East/West: Admiralty Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Analysis Scenario Future (2016) With Ambient Growth Plus Project (LACo Only)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	16			
	Left/Through	1			45	
Northbound	Through	0	33			
	Through/Right	1			45	45
	Right	0	41	0		
	Total Lanes	2				
	Left	1	386		386	386
	Left/Through	0				
Southbound	Through	1	65		65	
	Through/Right	0				
	Right	1	174	25	149	
	Total Lanes	3				
		Sum of North/South Critical Volumes				
	Left	1	50		50	50
	Left/Through	0				
Eastbound	Through	1	1,129		570	
	Through/Right	1			570	
	Right	0	10	0		
	Total Lanes	3				
	Left	1	73		73	
	Left/Through	0				
Westbound	Through	2	1,297		648	648
	Through/Right	0				
	Right	1	92	74	18	
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	698
			Total Inter	section Critica	al Volumes	1,129
Number of Cl	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.792
Signal Coordi	ination ATSAC -	+ ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.692
				Level of Se	rvice (LOS)	В

North/South Opposed Phasing

Approach

Right-Turn

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 14 Date October 7, 2013

No. of

Intersection Name North/South: Admiralty Way

East/West: Bali Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach

Analysis Scenario Future (2016) With Ambient Growth Plus Project (LACo Only)

Direction	Lane Type	Lanes	Volumes	on Red	Volumes	Moves	
	Left	1	9		9		
	Left/Through	0					
Northbound	Through	1	1,298		726	726	
	Through/Right	1			726		
	Right	0	155	0			
	Total Lanes	3					
	Left	2	267		147	147	
	Left/Through	0					
Southbound	Through	1	1,405		708		
	Through/Right	1			708		
	Right	0	11	0			
	Total Lanes	4					
Sum of North/South Critical Volumes							
	Left	0	24			24	
	Left/Through	1			28		
Eastbound	Through	0	33				
	Through/Right	1			38		
	Right	0	10	0			
	Total Lanes	2					
	Left	1	49		49		
	Left/Through	0					
Westbound	Through	0	19				
	Through/Right	1			142		
	Right	1	413	147	142	142	
	Total Lanes	3					
			Sum of Eas	st/West Critica	al Volumes	166	
			Total Inter	section Critica	al Volumes	1,039	
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375	
					Base CMA	0.756	
Signal Coordination ATSAC + ATCS			Signal Coordination Adjustment			-0.100	
					Final CMA	0.656	
				Level of Ser	vice (LOS)	В	

Assigned

Lane

Critical

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 16 Date October 7, 2013

Intersection Name

North/South: Admiralty Way

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Analysis Scenario Future (2016) With Ambient Growth Plus Project (LACo Only)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	22		22	
	Left/Through	0				
Northbound	Through	1	791		475	475
	Through/Right	1			475	
	Right	0	159	0		
	Total Lanes	3				
	Left	2	380		209	209
	Left/Through	0				
Southbound	Through	1	976		506	
	Through/Right	1			506	
	Right	0	36	0		
	Total Lanes	4				
		;	Sum of North	al Volumes	684	
	Left	1	97		74	
	Left/Through	1			74	
Eastbound	Through	0	99			
	Through/Right	1			74	74
	Right	0	27	0		
	Total Lanes	3				
	Left	1	333		218	
	Left/Through	1			218	
Westbound	Through	0	103			
	Through/Right	0				
	Right	1	531	209	322	322
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	396
			Total Inters	section Critica	al Volumes	1,080
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	0.785
Signal Coordi	nation ATSAC +	ATCS	Signal Coordination Adjustment			-0.100
					Final CMA	0.685
				Level of Ser	rvice (LOS)	В

East/West Opposed Phasing WB Rt. Turn Overlap with SB Left

SB Rt. Turn Overlap with EB Left

Hirsch/Green Transportation Consulting, Inc. Critical Movement Analysis (CMA) Worksheet

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 21 Date October 7, 2013

Intersection Name North/South: Admiralty Way

East/West: Fiji Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Analysis Scenario Future (2016) With Ambient Growth Plus Project (LACo Only)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	2	610		336	336
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	1	79	54	25	
	Total Lanes	3				
		;	Sum of North	n/South Critica	al Volumes	336
	Left	1	54		54	54
	Left/Through	0				
Eastbound	Through	2	200		100	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	1	144		144	144
	Through/Right	0				
	Right	1	572	572	0	
	Total Lanes	2				
			Sum of Eas	st/West Critica	al Volumes	198
			Total Inter	section Critica	al Volumes	534
Number of Cle	earance Intervals	2		Intersectio	n Capacity	1,500
					Base CMA	0.356
Signal Coordi	nation ATSAC +	ATCS	Signal Coordination Adjustment			-0.100
					Final CMA	0.256
				Level of Ser	rvice (LOS)	Α

Future (2016) With Ambient Growth Plus Project Plus Project-Specific Mitigation (Los Angeles County Intersections Only)

No Project-Specific Significant Impacts Under This Analysis Scenario (No Mitigation Required)

Future (2016) Without Project (City of Los Angeles Intersections Only)

Project Name Marina del Rey - Parcel 44 Project **Intersection Number** 1 Date October 7, 2013 **Intersection Name** North/South: Lincoln Boulevard East/West: Venice Boulevard **Intersection Control** Signalized **Analysis Period** AM Peak Hour **Analysis Scenario** Future (2016) Without Project (LADOT Only)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	238		131	
	Left/Through	0				
Northbound	Through	1	1,912		1,038	1,038
	Through/Right	1			1,038	
	Right	0	165	0		
	Total Lanes	4				
	Left	2	193		106	106
	Left/Through	0				
Southbound	Through	1	1,500		774	
	Through/Right	1			774	
	Right	0	49	0		
	Total Lanes	4				
		:	Sum of North	n/South Critic	al Volumes	1,144
	Left	2	143		79	79
	Left/Through	0				
Eastbound	Through	3	859		286	
	Through/Right	0				
	Right	1	210	131	79	
	Total Lanes	6				
	Left	2	402		221	
	Left/Through	0				
Westbound	Through	2	1,016		508	508
	Through/Right	0				
	Right	1	247	106	141	
	Total Lanes	5				
			Sum of Eas	st/West Critic	al Volumes	587
			Total Inters	section Critic	al Volumes	1,731
Number of Cle	earance Intervals	4		Intersection	n Capacity	1,375
					Base CMA	1.259
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
-			•		Final CMA	1.159
				Level of Se	rvice (LOS)	F
					, /	

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 2 Date October 7, 2013

Intersection Name North/South: Pacific Avenue

East/West: Washington Boulevard

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Future (2016) Without Project (LADOT Only)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	2			
	Left/Through	1			137	
Northbound	Through	0	135			
	Through/Right	1			195	195
	Right	0	195	0		
	Total Lanes	2				
	Left	0	398			
	Left/Through	1			398	398
Southbound	Through	0	69			
	Through/Right	1			86	
	Right	0	17	0		
	Total Lanes	2				
			Sum of North	/South Critica	al Volumes	593
	Left	0	19			19
	Left/Through	0				
Eastbound	Left/Through/Right	1	61		93	
	Through/Right	0				
	Right	0	13	0		
	Total Lanes	1				
	Left	1	109		109	
	Left/Through	0				
Westbound	Through	1	65		65	
	Through/Right	0				
	Right	1	736	398	338	338
	Total Lanes	3				
			Sum of Eas	st/West Critic	al Volumes	357
			Total Inters	section Critica	al Volumes	950
Number of Cle	earance Intervals	3		Intersection	n Capacity	1,425
					Base CMA	0.667
Signal Coordi	nation ATSAC + A	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.567
				Level of Ser	rvice (LOS)	Α

North/South Opposed Phasing

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 3 Date October 7, 2013

Intersection Name

North/South: Via Dolce/Dell Avenue

East/West: Washington Boulevard

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

sis Scenario	Future (2016) W	nthout Proj	ect (LADOT C	Jniy)		
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	150		150	150
	Left/Through	0				
Northbound	Through	1	39		39	
	Through/Right	0				
	Right	1	199	48	151	
	Total Lanes	3				
	Left	0	9			
	Left/Through	0				
Southbound	Left/Through/Right	1	5		27	27
	Through/Right	0				
	Right	0	13	0		
	Total Lanes	1				
		;	Sum of North	n/South Critica	al Volumes	177
	Left	1	12		12	12
	Left/Through	0				
Eastbound	Through	2	611		306	
	Through/Right	0				
	Right	1	49	49	0	
	Total Lanes	4				
	Left	1	71		71	
	Left/Through	0				
Westbound	Through	2	781		390	390
	Through/Right	0				
	Right	1	54	13	41	
	Total Lanes	4				
			Sum of Eas	st/West Critic	al Volumes	402
			Total Inter	section Critica	al Volumes	579
Number of Cle	earance Intervals	2		Intersection	n Capacity	1,500
					Base CMA	0.386
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.286
				Level of Se	rvice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 4 Date October 7, 2013

Intersection NameNorth/South:Via Marina/Ocean AvenueEast/West:Washington Boulevard

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Future (2016) Without Project (LADOT Only)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	475		261	
	Left/Through	0				
Northbound	Through	1	352		352	
	Through/Right	0				
	Right	1	511	79	432	432
	Total Lanes	4				
	Left	1	 18		18	
	Left/Through	0				
Southbound	Through	0	133			
	Through/Right	1			202	202
	Right	0	69	0		
	Total Lanes	2				
		;	Sum of North	/South Critica	al Volumes	634
	Left	1	44		44	_
	Left/Through	0				
Eastbound	Through	2	621		310	310
	Through/Right	0				
	Right	1	201	201	0	
	Total Lanes	4				
	Left	1	 159		159	159
	Left/Through	0				
Westbound	Through	2	402		201	
	Through/Right	0				
	Right	1	43	43	0	
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	469
			Total Inters	section Critica	al Volumes	1,103
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.774
Signal Coordination ATSAC + ATCS Signal Coordination Adjustment					-0.100	
					Final CMA	0.674
				Level of Ser	rvice (LOS)	В

North/South Opposed Phasing

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 5 Date October 7, 2013

Intersection Name North/South: Palawan Way

East/West: Washington Boulevard

Intersection ControlTwo-Way STOPAnalysis PeriodAM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	1	351	0	351	351
	Total Lanes	1				
	Left	0	0			
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
		;	Sum of North	n/South Critica	al Volumes	351
	Left	0	0			
	Left/Through	0				
Eastbound	Through	2	1,062		531	531
	Through/Right	0				
	Right	1	93	93	0	
	Total Lanes	3				
	Left	1	215		215	215
	Left/Through	0				
Westbound	Through	2	627		314	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
			Sum of Eas	st/West Critic	al Volumes	746
			Total Inters	section Critica	al Volumes	1,097
Number of Cl	earance Intervals	0		Intersection	n Capacity	1,200
					Base CMA	0.914
Signal Coordi	nation None		Signal C	Coordination A	Adjustment	0.000
					Final CMA	0.914
				Level of Se	nico (LOS)	E

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 6 Date October 7, 2013

Intersection Name North/South: Abbot Kinney Boulevard East/West: Washington Boulevard

Intersection Control Signalized

Analysis Period AM Peak Hour

Future (2016) Without Project (LADOT Only)

1

0

0

2

2

ATSAC + ATCS

Analysis Scenario

Southbound

Left/Through/Right

Total Lanes

Through/Right

Right

Number of Clearance Intervals

Signal Coordination

Approach No. of Approach Right-Turn Lane Critical Direction **Volumes** on Red **Volumes** Moves Lane Type Lanes Left 0 0 Left/Through 0 Northbound 0 Through 0 Through/Right 0 Right 0 0 0 **Total Lanes** 0 Left 1 282 434 282 Left/Through 0

0

130

Assigned

282

0

Total Intersection Critical Volumes

Signal Coordination Adjustment

Intersection Capacity

Level of Service (LOS)

Base CMA

Final CMA

			Sum of North	n/South Critic	al Volumes	282
	Left	1	177		177	177
	Left/Through	0				
Eastbound	Through	2	1,288		644	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3	-			
	Left	0	0			
	Left/Through	0				
Westbound	Through	2	700		350	
	Through/Right	0				
	Right	1	848	282	566	566
	Total Lanes	3	-		_	
			Sum of Ea	st/West Critic	al Volumes	743

1,025

1,500

0.683

-0.100 0.583

Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 7 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Washington Boulevard

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	536		295	
	Left/Through	0				
Northbound	Through	2	2,070		765	765
	Through/Right	1			765	
	Right	0	225	0		
	Total Lanes	5				
	Left	2	339		 186	186
	Left/Through	0				
Southbound	Through	2	1,578		581	
	Through/Right	1			581	
	Right	0	164	0		
	Total Lanes	5				
		;	Sum of North	n/South Critica	al Volumes	951
	Left	2	208		114	
	Left/Through	0				
Eastbound	Through	2	878		439	439
	Through/Right	0				
	Right	1	603	295	308	
	Total Lanes	5				
	Left	2	158		87	87
	Left/Through	0				
Westbound	Through	2	714		357	
	Through/Right	0				
	Right	1	245	186	59	
	Total Lanes	5				
			Sum of Eas	st/West Critica	al Volumes	526
			Total Inters	section Critica	al Volumes	1,477
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	1.074
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.974
				Level of Ser	rvice (LOS)	E

Project Name Marina del Rey - Parcel 44 Project

Date October 7, 2013 **Intersection Number**

Intersection Name North/South: Glencoe Avenue/Costco Plaza Driveway

> East/West: Washington Boulevard

Intersection Control Signalized AM Peak Hour **Analysis Period**

Analysis

s Period	AM Peak Hour					
s Scenario	Future (2016)	Without Proj	ect (LADOT (Only)		
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	260		162	162
	Left/Through	1			162	
Northbound	Through	0	64			
	Through/Right	0				
	Right	1	351	285	66	
	Total Lanes	3				
	Left	 1	103		72	72
	Left/Through	1			72	
Southbound	Through	0	42			
	Through/Right	0				
	Right	1	23	22	1	
	Total Lanes	3				
		:	Sum of North	/South Critica	al Volumes	234
	Left	1	22		22	
	Left/Through	0				
Eastbound	Through	2	1,217		608	608
	Through/Right	0				
	Right	1	134	134	0	
	Total Lanes	4				
	Left	1	285		285	285
	Left/Through	0				
Westbound	Through	2	800		322	
	Through/Right	1			322	
	Right	0	167	0		
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	893
			Total Inters	section Critica	al Volumes	1,127
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	0.820
Signal Coordi	nation ATSAC -	+ ATCS	Signal C	Coordination A	_	-0.100
					Final CMA	0.720

Level of Service (LOS)

C

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 11 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Maxella Avenue/Marina Pointe Drive

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Future (2016) Without Project (LADOT Only)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	57		31	
	Left/Through	0				
Northbound	Through	3	2,624		875	875
	Through/Right	0				
	Right	1	225	124	101	
	Total Lanes	6				
	Left	2	 131		72	72
	Left/Through	0				
Southbound	Through	3	2,224		570	
	Through/Right	1			570	
	Right	0	57	0		
	Total Lanes	6				
		;	Sum of North	n/South Critica	al Volumes	947
	Left	1	64		64	
	Left/Through	0				
Eastbound	Through	1	80		80	
	Through/Right	0				
	Right	1	131	31	100	100
	Total Lanes	3				
	Left	1	218		124	124
	Left/Through	1			124	
Westbound	Through	0	30			
	Through/Right	0				
	Right	1	148	72	76	
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	224
			Total Inters	section Critica	al Volumes	1,171
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	0.852
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100

Final CMA

Level of Service (LOS)

0.752

С

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 12 Date October 7, 2013

Intersection Name North/South: Glencoe Avenue

East/West: Maxella Avenue

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

ois occitatio	1 dtd16 (2010) V	williout i lo	Ject (LADOT (Jilly)		
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	86		86	
	Left/Through	0				
Northbound	Through	1	465		465	465
	Through/Right	0				
	Right	1	61	58	3	
	Total Lanes	3				
	Left	1	22		22	22
	Left/Through	0				
Southbound	Through	1	373		226	
	Through/Right	1			226	
	Right	0	78	0		
	Total Lanes	3				
		;	Sum of North	n/South Critica	al Volumes	487
	Left	1	116		116	116
	Left/Through	0				
Eastbound	Through	1	82		82	
	Through/Right	0				
	Right	1	154	130	24	
	Total Lanes	3				
	Left	1	83		83	
	Left/Through	0				
Westbound	Through	1	90		81	81
	Through/Right	1			81	
	Right	0	72	0		
	Total Lanes	3				
			Sum of Eas	st/West Critic	al Volumes	197
			Total Inter	section Critica	al Volumes	684
Number of Cle	earance Intervals	2		Intersection	n Capacity	1,500
					Base CMA	0.456
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.356
				Level of Se	rvice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 13 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Marina Expressway (SR-90)

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	2	1,869		721	721
	Through/Right	1			721	
	Right	0	294	0		
	Total Lanes	3				
	Left	2	924		508	508
	Left/Through	0				
Southbound	Through	3	1,688		563	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	5				
		;	Sum of North	n/South Critica	al Volumes	1,229
	Left	0	0			
	Left/Through	0				
Eastbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	2	 151		83	83
	Left/Through	0				
Westbound	Through	0	0			
	Through/Right	0				
	Right	2	983	983	0	
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	83
			Total Inters	section Critica	al Volumes	1,312
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.921
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.821
				Level of Ser	rvice (LOS)	D
					·	

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 15 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Bali Way/Auto Dealership Driveway

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Future (2016) Without Project (LADOT Only)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	118		118	118
	Left/Through	0				
Northbound	Through	2	1,800		607	
	Through/Right	1			607	
	Right	0	20	0		
	Total Lanes	4				
	Left	 1	3		3	
	Left/Through	0				
Southbound	Through	2	1,619		609	609
	Through/Right	1			609	
	Right	0	209	0		
	Total Lanes	4				
		:	Sum of North	n/South Critica	al Volumes	727
	Left	1	333		168	168
	Left/Through	1			168	
Eastbound	Through	0	2			
	Through/Right	0				
	Right	1	152	59	93	
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Left/Through/Right	1	2		10	10
	Through/Right	0				
	Right	0	8	0		
	Total Lanes	1				
			Sum of Eas	st/West Critica	al Volumes	178
			Total Inters	section Critica	al Volumes	905
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	0.658
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	•	-0.100
					Final CMA	0.558
				Level of Ser	rvice (LOS)	Α

East/West Opposed Phasing

NB Rt. Turn Overlap with WB Left

Hirsch/Green Transportation Consulting, Inc. Critical Movement Analysis (CMA) Worksheet

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 17 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	205		205	
	Left/Through	0				
Northbound	Through	3	2,921		974	974
	Through/Right	0				
	Right	1	499	168	331	
	Total Lanes	5				
	Left	 1	 185		185	185
	Left/Through	0				
Southbound	Through	2	1,847		635	
	Through/Right	1			635	
	Right	0	59	0		
	Total Lanes	4				
Sum of North/South Critical Volumes						
	Left	0	0			
	Left/Through	0				
Eastbound	Through	1	379		200	200
	Through/Right	1			200	
	Right	0	21	0		
	Total Lanes	2				
	Left	2	305		168	168
	Left/Through	0				
Westbound	Through	1	494		288	
	Through/Right	1			288	
	Right	0	83	0		
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	368
			Total Inter	section Critica	al Volumes	1,527
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	1.111
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	1.011
				Level of Ser	vice (LOS)	F

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 18 Date October 7, 2013

Intersection Name North/South: EB Marina Expressway (SR-90)

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Approach Direction	Lane Type	No. of	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	1	22		22	
	Left/Through	0				
Southbound	Through	1	1,171		593	593
	Through/Right	1			593	
	Right	0	15	0		
	Total Lanes	3				
Sum of North/South Critical Volumes						593
	Left	0	0			
	Left/Through	0				
Eastbound	Through	1	413		365	365
	Through/Right	1			365	
	Right	1	681	0	365	
	Total Lanes	3				
	Left	2	 378		208	208
	Left/Through	0				
Westbound	Through	2	943		472	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	573
			Total Inters	section Critica	al Volumes	1,166
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.818
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.718
				Level of Ser	rvice (LOS)	С

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 19 Date October 7, 2013

Intersection Name North/South: WB Marina Expressway (SR-90)

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	437		437	
	Left/Through	1			516	
Northbound	Through	1	1,031		516	516
	Through/Right	0				
	Right	1	391	41	350	
	Total Lanes	4				
	Left	0	0			
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
Sum of North/South Critical Volumes						516
	Left	1	4		4	4
	Left/Through	0				
Eastbound	Through	2	428		214	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	2	859		292	292
	Through/Right	1			292	
	Right	0	16	0		
	Total Lanes	3				
			Sum of Eas	st/West Critic	al Volumes	296
			Total Inter	section Critica	al Volumes	812
Number of Cle	earance Intervals	3		Intersection	n Capacity	1,425
					Base CMA	0.570
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.470
				Level of Se	rvice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 20 Date October 7, 2013

Intersection Name North/South: Glencoe Avenue

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	43		43	43
	Left/Through	0				
Northbound	Through	1	171		94	
	Through/Right	1			94	
	Right	0	18	0		
	Total Lanes	3				
	Left	1	63		63	
	Left/Through	0				
Southbound	Through	1	137		137	
	Through/Right	0				
	Right	1	394	194	200	200
	Total Lanes	3				
Sum of North/South Critical Volumes						
	Left	1	387		387	387
	Left/Through	0				
Eastbound	Through	1	337		210	
	Through/Right	1			210	
	Right	0	82	0		
	Total Lanes	3				
	Left	1	14		14	
	Left/Through	0				
Westbound	Through	1	413		242	242
	Through/Right	1			242	
	Right	0	72	0		
	Total Lanes	3				
			Sum of Eas	st/West Critic	al Volumes	629
			Total Inters	section Critic	al Volumes	872
Number of Cle	earance Intervals	2		Intersection	n Capacity	1,500
					Base CMA	0.581
Signal Coordination ATSAC + ATCS Signal Coordination				Coordination A	Adjustment	-0.100
					Final CMA	0.481
				Level of Se	rvice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 22 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Fiji Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	718		395	
	Left/Through	0				
Northbound	Through	2	3,374		1,138	1,138
	Through/Right	1			1,138	
	Right	0	39	0		
	Total Lanes	5				
	Left	1	39		39	39
	Left/Through	0				
Southbound	Through	2	2,071		719	
	Through/Right	1			719	
	Right	0	85	0		
	Total Lanes	4				
	Sum of North/South Critical Volumes					
	Left	1	219		219	219
	Left/Through	0				
Eastbound	Through	1	21		21	
	Through/Right	0				
	Right	1	706	706	0	
	Total Lanes	3				
	Left	0	11			
	Left/Through	1			11	11
Westbound	Through	0	2			
	Through/Right	1			2	
	Right	0	0	0		
	Total Lanes	2				
			Sum of Eas	st/West Critic	al Volumes	230
			Total Inters	section Critic	al Volumes	1,407
Number of Cle	earance Intervals	4		Intersection	n Capacity	1,375
					Base CMA	1.023
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
Final CMA					0.923	
				Level of Se	rvice (LOS)	E

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 23 Date October 7, 2013

Intersection Name North/South: Marina Freeway (SR-90) EB On/Off-Ramps

East/West: Culver Boulevard

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	1	62		62	
	Left/Through	0				
Southbound	Through	1	0		0	
	Through/Right	1			118	118
	Right	0	118	0		
	Total Lanes	3				
		;	Sum of North	n/South Critica	al Volumes	118
	Left	0	0			
	Left/Through	0				
Eastbound	Through	3	1,876		625	625
	Through/Right	0				
	Right	2	855	0	428	
	Total Lanes	5				
	Left	1	129		129	129
	Left/Through	0				
Westbound	Through	2	503		252	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	754
			Total Inter	section Critica	al Volumes	872
Number of Cle	earance Intervals	2		Intersectio	n Capacity	1,500
					Base CMA	0.581
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.481
				Level of Sei	rvice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 24 Date October 7, 2013

Intersection Name North/South: Marina Freeway (SR-90) WB Off-Ramp

East/West: Culver Boulevard

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	146		146	
	Left/Through	1			199	
Northbound	Through	0	276			
	Through/Right	1			199	199
	Right	0	122	0		
	Total Lanes	3				
	Left	1	114		114	114
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	1	160	160	0	
	Total Lanes	2				
Sum of North/South Critical Volumes						
	Left	1	518		518	518
	Left/Through	0				
Eastbound	Through	2	1,541		770	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	2	348		174	
	Through/Right	0				
	Right	1	352	57	295	295
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	813
			Total Inters	section Critica	al Volumes	1,126
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.790
Signal Coordination ATSAC + ATCS Signal Coordination Adjustment					-0.100	
Final CMA						0.690
				Level of Ser	rvice (LOS)	В

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 25 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Jefferson Boulevard

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour


Analysis Scenario Future (2016) Without Project (LADOT Only)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	20		20	
	Left/Through	0				
Northbound	Through	4	2,962		740	
	Through/Right	0				
	Right	1	925	82	843	843
	Total Lanes	6				
	Left	2	 889		489	489
	Left/Through	0				
Southbound	Through	3	1,645		482	
	Through/Right	1			482	
	Right	0	282	0		
	Total Lanes	6				
Sum of North/South Critical Volumes						1,332
	Left	1	259		259	259
	Left/Through	0				
Eastbound	Through	2	406		146	
	Through/Right	1			146	
	Right	0	33	0		
	Total Lanes	4				
	Left	2	772		425	425
	Left/Through	0				
Westbound	Through	2	164		82	
	Through/Right	0				
	Right	2	925	925	0	
	Total Lanes	6				
			Sum of Eas	st/West Critica	al Volumes	684
			Total Inters	section Critica	al Volumes	2,016
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	1.466
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
				Cincl CMA	4 200	

Final CMA

Level of Service (LOS)

1.366 F

Project Name Marina del Rey - Parcel 44 Project **Intersection Number** 1 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard East/West: Venice Boulevard

Intersection Control Signalized **Analysis Period** PM Peak Hour

Analysis

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	255		140	
	Left/Through	0				
Northbound	Through	1	1,879		1,051	1,051
	Through/Right	1			1,051	
	Right	0	223	0		
	Total Lanes	4				
	Left	2	193		106	106
	Left/Through	0				
Southbound	Through	1	1,344		692	
	Through/Right	1			692	
	Right	0	41	0		
	Total Lanes	4				
		;	Sum of North	n/South Critica	al Volumes	1,157
	Left	2	119		65	65
	Left/Through	0				
Eastbound	Through	3	900		300	
	Through/Right	0				
	Right	1	248	140	108	
	Total Lanes	6				
	Left	2	294		162	
	Left/Through	0				
Westbound	Through	2	964		482	482
	Through/Right	0				
	Right	1	165	106	59	
	Total Lanes	5				
			Sum of Eas	st/West Critica	al Volumes	547
			Total Inters	section Critica	al Volumes	1,704
umber of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	1.239
ignal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	1.139
				Level of Ser	!aa /I OC\	F

Project Name Marina del Rey - Parcel 44 Project

Date October 7, 2013 **Intersection Number** 2

Intersection Name North/South: Pacific Avenue

> East/West: Washington Boulevard

Intersection Control Signalized **Analysis Period** DM Dook Hour

Analysis

PM Peak Hour					
Future (2016) W	ithout Proj	ect (LADOT 0	Only)		
Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
Left	0	2			
Left/Through	1			72	
Through	0	70			
Through/Right	1			130	130
Right	0	130	0		
Total Lanes	2				
Left	0	732			
Left/Through	1			732	732
Through	0	120			
Through/Right	1			146	
Right	0	26	0		
Total Lanes	2				
Sum of North/South Critical Volumes					
Left	0	20			
Left/Through	0				
Left/Through/Right	1	93		131	131
Through/Right	0				
Right	0	18	0		
Total Lanes	1				
Left	1	 179		179	179
Left/Through	0				
Through	1	61		61	
Through/Right	0				
Right	1	476	476	0	
Total Lanes	3				
		Sum of Eas	st/West Critica	al Volumes	310
		Total Inters	section Critica	al Volumes	1,172
arance Intervals	3		Intersectio	n Capacity	1,425
				Base CMA	0.822
nation ATSAC + A	ATCS	Signal C	oordination A	Adjustment	-0.100
				Final CMA	0.722
					V
	Lane Type Left Left/Through Through/Right Right Total Lanes Left Left/Through Through/Right Right Total Lanes Left Left/Through Chrough/Right Right Total Lanes Left Left/Through/Right Through/Right Right Total Lanes Left Left/Through Right Total Lanes Left Left/Through Through/Right Right Total Lanes Left Left/Through Through	Lane TypeNo. of LanesLeft0Left/Through1Through/Right1Right0Total Lanes2Left0Left/Through1Through/Right1Right0Total Lanes2Left0Left/Through/Right1Through/Right0Left/Through/Right0Right0Total Lanes1Left1Left1Left/Through0Through/Right0Through/Right0Through/Right0Right0Total Lanes3	Lane TypeNo. of LanesApproach VolumesLeft02Left/Through11Through070Through/Right11Right0130Total Lanes2Left0732Left/Through11Through/Right120Through/Right126Total Lanes2Sum of NorthLeft020Left/Through/Right193Through/Right018Total Lanes1179Left/Through01Through/Right01Through/Right01Through/Right01Through/Right01Total Lanes3Sum of East Total Interstance Intervals3	Lane Type No. of Lanes Approach Volumes Right-Turn on Red Left 0 2 Left/Through 1 70 Through/Right 1 30 Through/Right 1 30 Total Lanes 2 30 Left/Through 1 30 Through/Right 1 30 Through/Right 1 30 Total Lanes 2 30 Left/Through/Right 1 30 Through/Right 1 30 Total Lanes 2 30 Left/Through/Right 1 93 Through/Right 0 18 0 Total Lanes 1 179 Left/Through 0 1 61 Through/Right 0 1 61 Through/Right 0 1 61 Through/Right 0 1 476 476 Total Lanes 3 3 Sum of East/W	Lane Type No. of Lanes Approach Volumes Right-Turn on Red Assigned Lane Volumes Left 0 2 72 72 Left/Through 1 0 70 72 Through/Right 1 0 130 0 130 Right 0 732 130 0 732 146

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 3 Date October 7, 2013

Intersection NameNorth/South:Via Dolce/Dell AvenueEast/West:Washington Boulevard

Intersection Control Signalized
Analysis Period PM Peak Hour

sis Scenario	Future (2016) W	/ithout Proj	ect (LADOT (Only)		
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	58		58	58
	Left/Through	0				
Northbound	Through	1	11		11	
	Through/Right	0				
	Right	1	97	72	25	
	Total Lanes	3				
	Left	0	27			
	Left/Through	0				
Southbound	Left/Through/Right	1	29		70	70
	Through/Right	0				
	Right	0	14	0		
	Total Lanes	1				
		;	Sum of North	n/South Critica	al Volumes	128
	Left	1	13		13	
	Left/Through	0				
Eastbound	Through	2	790		395	395
	Through/Right	0				
	Right	1	122	29	93	
	Total Lanes	4				
	Left	1	145		145	145
	Left/Through	0				
Westbound	Through	2	698		349	
	Through/Right	0				
	Right	1	58	52	6	
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	540
			Total Inter	section Critica	al Volumes	668
Number of Clo	earance Intervals	2		Intersectio	n Capacity	1,500
					Base CMA	0.445
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
Final CMA					0.345	
				Level of Ser	rvice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 4 Date October 7, 2013

Intersection NameNorth/South:Via Marina/Ocean AvenueEast/West:Washington Boulevard

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Analysis Scenario Future (2016) Without Project (LADOT Only)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	380		209	
	Left/Through	0				
Northbound	Through	1	259		259	259
	Through/Right	0				
	Right	1	295	128	167	
	Total Lanes	4				
	Left	1	35		35	
	Left/Through	0				
Southbound	Through	0	466			
	Through/Right	1			577	577
	Right	0	111	0		
	Total Lanes	2				
Sum of North/South Critical Volumes						
	Left	1	39		39	
	Left/Through	0				
Eastbound	Through	2	620		310	310
	Through/Right	0				
	Right	1	371	130	241	
	Total Lanes	4				
	Left	1	257		257	257
	Left/Through	0				
Westbound	Through	2	540		270	
	Through/Right	0				
	Right	1	48	48	0	
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	567
			Total Inter	section Critica	al Volumes	1,403
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.985
Signal Coordi	nation ATSAC -	+ ATCS	Signal C	Coordination A	Adjustment	-0.100
Final CMA						0.885
				Level of Ser	vice (LOS)	D

North/South Opposed Phasing

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 5 Date October 7, 2013

Intersection Name North/South: Palawan Way

East/West: Washington Boulevard

Intersection ControlTwo-Way STOPAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	1	238	0	238	238
	Total Lanes	1				
	Left	0	0			
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
			Sum of North	n/South Critica	al Volumes	238
	Left	0	0			
	Left/Through	0				
Eastbound	Through	2	795		398	398
	Through/Right	0				
	Right	1	211	119	92	
	Total Lanes	3				
	Left	1	543		543	543
	Left/Through	0				
Westbound	Through	2	865		432	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
			Sum of Eas	st/West Critic	al Volumes	941
			Total Inter	section Critica	al Volumes	1,179
Number of Cl	earance Intervals	0		Intersection	n Capacity	1,200
					Base CMA	0.983
Signal Coordi	nation None		Signal C	Coordination A	Adjustment	0.000
					Final CMA	0.983
				Level of Se	rvice (LOS)	Е

Project NameMarina del Rey - Parcel 44 ProjectIntersection Number6DateOctober 7, 2013Intersection NameNorth/South: East/West: Washington BoulevardWashington BoulevardIntersection ControlSignalizedAnalysis PeriodPM Peak HourAnalysis ScenarioFuture (2016) Without Project (LADOT Only)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	1	765		493	493
	Left/Through	0				
Southbound	Left/Through/Right	1	0		493	
	Through/Right	0				
	Right	0	221	0		
	Total Lanes	2				
			Sum of North	n/South Critica	al Volumes	493
	Left	1	122		122	122
	Left/Through	0				
Eastbound	Through	2	888		444	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	2	1,152		576	576
	Through/Right	0				
	Right	1	597	493	104	
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	698
			Total Inters	section Critica	al Volumes	1,191
Number of Clearance Intervals 2		2		Intersectio	n Capacity	1,500
					Base CMA	0.794
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.694
				Level of Ser	vice (LOS)	В

WB Rt. Turn Overlap with SB Left

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 7 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Washington Boulevard

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	539		296	
	Left/Through	0				
Northbound	Through	2	2,144		819	819
	Through/Right	1			819	
	Right	0	314	0		
	Total Lanes	5				
	Left	2	 287		158	158
	Left/Through	0				
Southbound	Through	2	1,675		613	
	Through/Right	1			613	
	Right	0	163	0		
	Total Lanes	5				
		;	Sum of North	n/South Critica	al Volumes	977
	Left	2	149		82	
	Left/Through	0				
Eastbound	Through	2	995		498	498
	Through/Right	0				
	Right	1	570	296	274	
	Total Lanes	5				
	Left	2	341		188	188
	Left/Through	0				
Westbound	Through	2	945		472	
	Through/Right	0				
	Right	1	360	158	202	
	Total Lanes	5				
			Sum of Eas	st/West Critica	al Volumes	686
			Total Inter	section Critica	al Volumes	1,663
lumber of Clo	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	1.209
ignal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	1.109
				Level of Ser	rvice (LOS)	F

Project Name Marina del Rey - Parcel 44 Project

Date October 7, 2013 **Intersection Number**

Intersection Name North/South: Glencoe Avenue/Costco Plaza Driveway

> East/West: Washington Boulevard

Intersection Control Signalized **Analysis Period** PM Peak Hour

Analysis

s Scenario	Future (2016)	Without Proj	ect (LADOT (Only)		
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	189		188	188
	Left/Through	1			188	
Northbound	Through	0	186			
	Through/Right	0				
	Right	1	359	359	0	
	Total Lanes	3				
	Left	1	512		332	332
	Left/Through	1			332	
Southbound	Through	0	151			
	Through/Right	0				
	Right	1	82	56	26	
	Total Lanes	3				
		;	Sum of North	/South Critica	al Volumes	520
	Left	1	56		56	
	Left/Through	0				
Eastbound	Through	2	1,270		635	635
	Through/Right	0				
	Right	1	302	188	114	
	Total Lanes	4				
	Left	1	527		527	527
	Left/Through	0				
Westbound	Through	2	1,446		579	
	Through/Right	1			579	
	Right	0	291	0		
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	1,162
			Total Inter	section Critica	al Volumes	1,682
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	1.223
Signal Coordi	nation ATSAC -	+ ATCS	Signal C	Coordination A	-	-0.100
					Final CMA	1.123
				Level of Sei	rvice (LOS)	F

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 11 Date October 7, 2013

Lincoln Boulevard **Intersection Name** North/South:

> East/West: Maxella Avenue/Marina Pointe Drive

Intersection Control Signalized **Analysis Period** PM Peak Hour

Analysis Scenario Future (2016) Without Project (LADOT Only)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	198		109	
	Left/Through	0				
Northbound	Through	3	2,639		880	880
	Through/Right	0				
	Right	1	303	186	117	
	Total Lanes	6				
	Left	2	 178		98	98
	Left/Through	0				
Southbound	Through	3	2,411		631	
	Through/Right	1			631	
	Right	0	112	0		
	Total Lanes	6				
		;	Sum of North	n/South Critica	al Volumes	978
	Left	1	81		81	81
	Left/Through	0				
Eastbound	Through	1	73		73	
	Through/Right	0				
	Right	1	46	46	0	
	Total Lanes	3				
	Left	1	281		186	186
	Left/Through	1			186	
Westbound	Through	0	91			
	Through/Right	0				
	Right	1	186	98	88	
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	267
			Total Inter	section Critica	al Volumes	1,245
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	0.905
Signal Coordi	nation ATSAC	+ ATCS	Signal C	Coordination A	•	-0.100
					Final CMA	0.805

Level of Service (LOS) D

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 12 Date October 7, 2013

Intersection Name North/South: Glencoe Avenue

East/West: Maxella Avenue

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	158		158	158
	Left/Through	0				
Northbound	Through	1	540		540	
	Through/Right	0				
	Right	1	83	83	0	
	Total Lanes	3				
	Left	1	52		52	
	Left/Through	0				
Southbound	Through	1	726		464	464
	Through/Right	1			464	
	Right	0	202	0		
	Total Lanes	3				
			Sum of North	n/South Critica	al Volumes	622
	Left	1	194		194	194
	Left/Through	0				
Eastbound	Through	1	143		143	
	Through/Right	0				
	Right	1	209	79	130	
	Total Lanes	3				
	Left	1	103		103	
	Left/Through	0				
Westbound	Through	1	188		128	128
	Through/Right	1			128	
	Right	0	68	0		
	Total Lanes	3				
			Sum of Eas	st/West Critic	al Volumes	322
			Total Inter	section Critica	al Volumes	944
Number of Clearance Intervals 2				Intersection	n Capacity	1,500
	Base CMA					0.629
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.529
				Level of Se	rvice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 13 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Marina Expressway (SR-90)

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Analysis Scenario Future (2016) Without Project (LADOT Only)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	2	2,153		793	793
	Through/Right	1			793	
	Right	0	226	0		
	Total Lanes	3				
	Left	2	923		508	508
	Left/Through	0				
Southbound	Through	3	1,954		651	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	5				
		;	Sum of North	/South Critica	al Volumes	1,301
	Left	0	0			
	Left/Through	0				
Eastbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	2	204		112	112
	Left/Through	0				
Westbound	Through	0	0			
	Through/Right	0				
	Right	2	1,010	1,010	0	
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	112
			Total Inters	section Critica	al Volumes	1,413
Number of Clearance Intervals 3		3		Intersectio	n Capacity	1,425
					Base CMA	0.992
Signal Coordi	nation ATSAC +	ATCS	Signal C	coordination A	Adjustment	-0.100
					Final CMA	0.892
				Level of Ser	rvice (LOS)	D

Assigned

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 15 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Bali Way/Auto Dealership Driveway

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Analysis Scenario Future (2016) Without Project (LADOT Only)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	159		159	159
	Left/Through	0				
Northbound	Through	2	2,042		687	
	Through/Right	1			687	
	Right	0	19	0		
	Total Lanes	4				
	Left	1	2		2	
	Left/Through	0				
Southbound	Through	2	1,898		733	733
	Through/Right	1			733	
	Right	0	301	0		
	Total Lanes	4				
		;	Sum of North	n/South Critica	al Volumes	892
	Left	1	380		192	192
	Left/Through	1			192	7
Eastbound	Through	0	4			2
	Through/Right	0				2
	Right	1	82	80	2	7
	Total Lanes	3				42
	Left	0	6			·
	Left/Through	0				747
Westbound	Left/Through/Right	1	0		42	42 ۾
	Through/Right	0				
	Right	0	36	0		
	Total Lanes	1				
			Sum of Eas	st/West Critica	al Volumes	234
			Total Inter	section Critica	al Volumes	1,126
Number of Clearance Intervals 4				Intersectio	n Capacity	1,375
					Base CMA	0.819
Signal Coordin	nation ATSAC + A	ATCS	Signal Coordination Adjustment			-0.100
					Final CMA	0.719
				Level of Ser	rvice (LOS)	С

East/West Opposed Phasing

NB Rt. Turn Overlap with WB Left

Hirsch/Green Transportation Consulting, Inc. Critical Movement Analysis (CMA) Worksheet

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 17 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	304		304	
	Left/Through	0				
Northbound	Through	3	2,287		762	762
	Through/Right	0				
	Right	1	455	332	123	
	Total Lanes	5				
	Left	1	152		152	152
	Left/Through	0				
Southbound	Through	2	1,664		581	
	Through/Right	1			581	
	Right	0	80	0		
	Total Lanes	4				
		;	Sum of North	n/South Critica	al Volumes	914
	Left	0	0			
	Left/Through	0				
Eastbound	Through	1	557		361	361
	Through/Right	1			361	
	Right	0	165	0		
	Total Lanes	2				
	Left	2	604		332	332
	Left/Through	0				
Westbound	Through	1	1,139		610	
	Through/Right	1			610	
	Right	0	80	0		
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	693
			Total Inter	section Critica	al Volumes	1,607
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	1.169
Signal Coordi	nation ATSAC -	- ATCS	Signal C	Coordination A	•	-0.100
					Final CMA	1.069
				Level of Ser	vice (LOS)	F

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 18 Date October 7, 2013

Intersection Name North/South: EB Marina Expressway (SR-90)

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	1	31		31	
	Left/Through	0				
Southbound	Through	1	1,089		550	550
	Through/Right	1			550	
	Right	0	11	0		
	Total Lanes	3				
		;	Sum of North	n/South Critica	al Volumes	550
	Left	0	0			
	Left/Through	0				
Eastbound	Through	1	475		380	
	Through/Right	1			380	
	Right	1	665	0	380	
	Total Lanes	3				
	Left	2	527		290	
	Left/Through	0				
Westbound	Through	2	1,792		896	896
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	4				
			Sum of Eas	st/West Critic	al Volumes	896
			Total Inter	section Critica	al Volumes	1,446
Number of Cle	Number of Clearance Intervals 3			Intersection	n Capacity	1,425
					Base CMA	1.015
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.915
				Level of Se	rvice (LOS)	E

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 19 Date October 7, 2013

Intersection Name North/South: WB Marina Expressway (SR-90)

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	527		527	
	Left/Through	1			582	
Northbound	Through	1	1,163		582	582
	Through/Right	0				
	Right	1	412	204	208	
	Total Lanes	4				
	Left	0	0			
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
Sum of North/South Critical Volumes						
	Left	1	14		14	14
	Left/Through	0				
Eastbound	Through	2	458		229	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	2	1,832		622	622
	Through/Right	1			622	
	Right	0	33	0		
	Total Lanes	3				
			Sum of Eas	st/West Critic	al Volumes	636
			Total Inters	section Critica	al Volumes	1,218
Number of Cle	earance Intervals	3		Intersection	n Capacity	1,425
					Base CMA	0.855
Signal Coordination ATSAC + ATCS Signal Coordination Adjustment					-0.100	
					Final CMA	0.755
				Level of Se	rvice (LOS)	С

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 20 Date October 7, 2013

Intersection Name North/South: Glencoe Avenue

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	91		91	91
	Left/Through	0				
Northbound	Through	1	206		114	
	Through/Right	1			114	
	Right	0	21	0		
	Total Lanes	3				
	Left	1	137		137	
	Left/Through	0				
Southbound	Through	1	205		205	
	Through/Right	0				
	Right	1	1,202	202	1,000	1,000
	Total Lanes	3				
Sum of North/South Critical Volumes						
	Left	1	403		403	403
	Left/Through	0				
Eastbound	Through	1	439		248	
	Through/Right	1			248	
	Right	0	56	0		
	Total Lanes	3				
	Left	1	8		8	
	Left/Through	0				
Westbound	Through	1	478		294	294
	Through/Right	1			294	
	Right	0	110	0		
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	697
			Total Inter	section Critica	al Volumes	1,788
Number of Cle	earance Intervals	2		Intersection	n Capacity	1,500
					Base CMA	1.192
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	1.092
				Level of Ser	rvice (LOS)	F

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 22 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Fiji Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	734		404	404
	Left/Through	0				
Northbound	Through	2	2,794		938	
	Through/Right	1			938	
	Right	0	21	0		
	Total Lanes	5				
	Left	1	26		26	
	Left/Through	0				
Southbound	Through	2	2,252		809	809
	Through/Right	1			809	
	Right	0	174	0		
	Total Lanes	4				
		;	Sum of North	n/South Critica	al Volumes	1,213
	Left	1	217		217	217
	Left/Through	0				
Eastbound	Through	1	16		16	
	Through/Right	0				
	Right	1	833	833	0	
	Total Lanes	3				
	Left	0	35			
	Left/Through	1			47	
Westbound	Through	0	20			
	Through/Right	1			47	47
	Right	0	39	0		
	Total Lanes	2				
			Sum of Eas	st/West Critic	al Volumes	264
			Total Inter	section Critica	al Volumes	1,477
Number of Cle	earance Intervals	4		Intersection	n Capacity	1,375
					Base CMA	1.074
Signal Coordination ATSAC + ATCS Signal Coordination Adjustment					Adjustment	-0.100
Final CMA						0.974
				Level of Se	rvice (LOS)	E

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 23 Date October 7, 2013

Intersection Name North/South: Marina Freeway (SR-90) EB On/Off-Ramps

East/West: Culver Boulevard

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves	
	Left	0	0				
	Left/Through	0					
Northbound	Through	0	0				
	Through/Right	0					
	Right	0	0	0			
	Total Lanes	0					
	Left	1	129		129	129	
	Left/Through	0					
Southbound	Through	1	0		0		
	Through/Right	1			56		
	Right	0	56	0			
	Total Lanes	3					
Sum of North/South Critical Volumes							
	Left	0	0				
	Left/Through	0					
Eastbound	Through	3	645		215		
	Through/Right	0					
	Right	2	206	36	85		
	Total Lanes	5					
	Left	1	259		259		
	Left/Through	0					
Westbound	Through	2	1,732		866	866	
	Through/Right	0					
	Right	0	0	0			
	Total Lanes	3					
			Sum of Eas	st/West Critic	al Volumes	866	
			Total Inters	section Critica	al Volumes	995	
Number of Cle	earance Intervals	2		Intersection	n Capacity	1,500	
					Base CMA	0.663	
Signal Coordi	nation ATSAC	+ ATCS	Signal C	Coordination A	Adjustment	-0.100	
					Final CMA	0.563	
				Level of Se	rvice (LOS)	Α	

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 24 Date October 7, 2013

Intersection Name North/South: Marina Freeway (SR-90) WB Off-Ramp

East/West: Culver Boulevard

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	541		270	270
	Left/Through	1			270	
Northbound	Through	0	238			
	Through/Right	1			284	
	Right	0	46	0		
	Total Lanes	3				
	Left	 1	 145		145	
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	1	425	97	328	328
	Total Lanes	2				
Sum of North/South Critical Volumes						
	Left	1	194		194	194
	Left/Through	0				
Eastbound	Through	2	597		298	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	2	1,039		520	520
	Through/Right	0				
	Right	1	344	157	187	
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	714
			Total Inter	section Critica	al Volumes	1,312
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.921
Signal Coording	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.821
				Level of Ser	rvice (LOS)	D

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 25 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Jefferson Boulevard

Intersection Control Signalized **Analysis Period** PM Peak Hour

Analysis S

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	29		29	
	Left/Through	0				
Northbound	Through	4	2,349		587	587
	Through/Right	0				
	Right	1	638	214	424	
	Total Lanes	6				
	Left	2	679		373	373
	Left/Through	0				
Southbound	Through	3	1,992		607	
	Through/Right	1			607	
	Right	0	436	0		
	Total Lanes	6				
		;	Sum of North	/South Critic	al Volumes	960
	Left	1	43		43	
	Left/Through	0				
Eastbound	Through	2	165		74	74
	Through/Right	1			74	
	Right	0	58	0		
	Total Lanes	4				
	Left	2	1,150		632	632
	Left/Through	0				
Westbound	Through	2	304		152	
	Through/Right	0				
	Right	2	1,175	746	214	
	Total Lanes	6				
			Sum of Eas	st/West Critic	al Volumes	706
			Total Inters	section Critic	al Volumes	1,666
Number of Cle	earance Intervals	4		Intersection	n Capacity	1,375
					Base CMA	1.212
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	1.112

Future (2016) With Project
(Includes Cumulative Development Traffic)
(County and City of Los Angeles Intersections)

Project Name Marina del Rey - Parcel 44 Project
Intersection Number 1 Date October 7, 2013
Intersection Name North/South: Lincoln Boulevard East/West: Venice Boulevard
Intersection Control Signalized
Analysis Period AM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	238		131	
	Left/Through	0				
Northbound	Through	1	1,914		1,041	1,041
	Through/Right	1			1,041	
	Right	0	168	0		
	Total Lanes	4				
	Left	2	 193		106	106
	Left/Through	0				
Southbound	Through	1	1,503		776	
	Through/Right	1			776	
	Right	0	49	0		
	Total Lanes	4				
		;	Sum of North	n/South Critica	al Volumes	1,147
	Left	2	143		79	79
	Left/Through	0				
Eastbound	Through	3	859		286	
	Through/Right	0				
	Right	1	210	131	79	
	Total Lanes	6				
	Left	2	408		224	
	Left/Through	0				
Westbound	Through	2	1,016		508	508
	Through/Right	0				
	Right	1	247	106	141	
	Total Lanes	5				
			Sum of Eas	st/West Critica	al Volumes	587
			Total Inters	section Critica	al Volumes	1,734
lumber of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	1.261
Signal Coordination ATSAC + ATCS			Signal C	Coordination A	Adjustment	-0.100
					Final CMA	1.161
				Level of Ser	ioo (I OC)	F

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 2 Date October 7, 2013

Intersection Name North/South: Pacific Avenue

East/West: Washington Boulevard

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Future (2016) With Project (Includes Cumulative Development)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	2			
	Left/Through	1			137	
Northbound	Through	0	135			
	Through/Right	1			195	195
	Right	0	195	0		
	Total Lanes	2				
	Left	0	400			
	Left/Through	1			400	400
Southbound	Through	0	69			
	Through/Right	1			86	
	Right	0	17	0		
	Total Lanes	2				
		;	Sum of North	/South Critica	al Volumes	595
	Left	0	19			19
	Left/Through	0				
Eastbound	Left/Through/Right	1	61		93	
	Through/Right	0				
	Right	0	13	0		
	Total Lanes	1				
	Left	1	109		109	
	Left/Through	0				
Westbound	Through	1	65		65	
	Through/Right	0				
	Right	1	738	400	338	338
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	357
			Total Inters	section Critica	al Volumes	952
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.668
Signal Coordination ATSAC + ATCS Signal Coordination Adjustment						-0.100
					Final CMA	0.568
				Level of Ser	vice (LOS)	Α

North/South Opposed Phasing

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 3 Date October 7, 2013

Intersection Name

North/South: Via Dolce/Dell Avenue
East/West: Washington Boulevard

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Approach Direction	Lane Type	No. of	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	150		150	150
	Left/Through	0				
Northbound	Through	1	39		39	
	Through/Right	0				
	Right	1	199	49	150	
	Total Lanes	3				
	Left	0	10			
	Left/Through	0				
Southbound	Left/Through/Right	1	5		28	28
	Through/Right	0				
	Right	0	13	0		
	Total Lanes	1				
Sum of North/South Critical Volumes						
	Left	1	12		12	12
	Left/Through	0				
Eastbound	Through	2	613		306	
	Through/Right	0				
	Right	1	49	49	0	
	Total Lanes	4				
	Left	1	71		71	
	Left/Through	0				
Westbound	Through	2	783		392	392
	Through/Right	0				
	Right	1	54	14	40	
	Total Lanes	4				
			Sum of Eas	st/West Critic	al Volumes	404
			Total Inter	section Critica	al Volumes	582
Number of Cle	earance Intervals	2		Intersection	n Capacity	1,500
					Base CMA	0.388
Signal Coordi	nation ATSAC + A	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.288
				Level of Se	rvice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 4 Date October 7, 2013

Intersection NameNorth/South:Via Marina/Ocean AvenueEast/West:Washington Boulevard

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Future (2016) With Project (Includes Cumulative Development)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves	
	Left	2	477		262		
	Left/Through	0					
Northbound	Through	1	352		352		
	Through/Right	0					
	Right	1	511	79	432	432	
	Total Lanes	4					
	Left	1	19		19		
	Left/Through	0					
Southbound	Through	0	135				
	Through/Right	1			204	204	
	Right	0	69	0			
	Total Lanes	2					
Sum of North/South Critical Volumes							
	Left	1	44		44		
	Left/Through	0					
Eastbound	Through	2	623		312	312	
	Through/Right	0					
	Right	1	202	202	0		
	Total Lanes	4					
	Left	1	159		159	159	
	Left/Through	0					
Westbound	Through	2	402		201		
	Through/Right	0					
	Right	1	43	43	0		
	Total Lanes	4					
			Sum of Eas	st/West Critica	al Volumes	471	
			Total Inters	section Critica	al Volumes	1,107	
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425	
					Base CMA	0.777	
Signal Coordination ATSAC + ATCS Signal Coordination Adjustment					-0.100		
					Final CMA	0.677	
Level of Service (LOS)							

North/South Opposed Phasing

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 5 Date October 7, 2013

Intersection Name North/South: Palawan Way

East/West: Washington Boulevard

Intersection ControlTwo-Way STOPAnalysis PeriodAM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	1	351	0	351	351
	Total Lanes	1				
	Left	0	0			
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
		;	Sum of North	n/South Critica	al Volumes	351
	Left	0	0			
	Left/Through	0				
Eastbound	Through	2	1,062		531	531
	Through/Right	0				
	Right	1	96	96	0	
	Total Lanes	3				
	Left	1	215		215	215
	Left/Through	0				
Westbound	Through	2	627		314	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
			Sum of Eas	st/West Critic	al Volumes	746
			Total Inter	section Critica	al Volumes	1,097
Number of Cle	earance Intervals	0		Intersection	n Capacity	1,200
					Base CMA	0.914
Signal Coordi	nation None		Signal C	Coordination A	Adjustment	0.000
					Final CMA	0.914
				Level of Ser	rvice (LOS)	E

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 6 Date October 7, 2013

Intersection NameNorth/South:Abbot Kinney BoulevardEast/West:Washington Boulevard

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Future (2016) With Project (Includes Cumulative Development)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	1	435		282	282
	Left/Through	0				
Southbound	Left/Through/Right	1	0		282	
	Through/Right	0				
	Right	0	130	0		
	Total Lanes	2				
		;	Sum of North	n/South Critica	al Volumes	282
	Left	1	177		177	177
	Left/Through	0				
Eastbound	Through	2	1,288		644	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	2	700		350	
	Through/Right	0				
	Right	1	849	282	567	567
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	744
			Total Inter	section Critica	al Volumes	1,026
Number of Cle	earance Intervals	2		Intersectio	n Capacity	1,500
					Base CMA	0.684
Signal Coordination ATSAC + ATCS Signal Coordination Ac			-	-0.100		
					Final CMA	0.584
				Level of Ser	vice (LOS)	Α

Assigned

Assigned

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 7 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Washington Boulevard

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Lane Volumes	Critical Moves		
	Left	2	537		295			
	Left/Through	0						
Northbound	Through	2	2,075		767	767		
	Through/Right	1			767			
	Right	0	227	0				
	Total Lanes	5						
	Left	2	339		186	186		
	Left/Through	0						
Southbound	Through	2	1,587		584			
	Through/Right	1			584			
	Right	0	164	0				
	Total Lanes	5						
Sum of North/South Critical Volumes								
	Left	2	208		114			
	Left/Through	0						
Eastbound	Through	2	878		439	439		
	Through/Right	0						
	Right	1	604	295	309			
	Total Lanes	5						
	Left	2	163		90	90		
	Left/Through	0						
Westbound	Through	2	714		357			
	Through/Right	0						
	Right	1	245	186	59			
	Total Lanes	5						
			Sum of Eas	st/West Critica	al Volumes	529		
			Total Inter	section Critica	al Volumes	1,482		
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375		
					Base CMA	1.078		
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	-	-0.100		
					Final CMA	0.978		
				Level of Ser	rvice (LOS)	E		

Project Name Marina del Rey - Parcel 44 Project

Intersection Number Date October 7, 2013

Intersection Name North/South: Glencoe Avenue/Costco Plaza Driveway

> East/West: Washington Boulevard

Intersection Control Signalized **Analysis Period** AM Peak Hour

Analysis

is Scenario	Future (2016) With Project (Includes Cumulative Development)					
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	260		162	162
	Left/Through	1			162	
Northbound	Through	0	64			
	Through/Right	0				
	Right	1	351	286	65	
	Total Lanes	3				
	Left	1	103		72	72
	Left/Through	1			72	
Southbound	Through	0	42			
	Through/Right	0				
	Right	1	23	22	1	
	Total Lanes	3				
		:	Sum of North	n/South Critica	al Volumes	234
	Left	1	22		22	
	Left/Through	0				
Eastbound	Through	2	1,219		610	610
	Through/Right	0				
	Right	1	134	134	0	
	Total Lanes	4				
	Left	1	286		286	286
	Left/Through	0				
Westbound	Through	2	805		324	
	Through/Right	1			324	
	Right	0	167	0		
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	896
			Total Inters	section Critica	al Volumes	1,130
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
Base CMA				0.822		
Signal Coordination ATSAC + ATCS Signal Coordination Adjustment				-0.100		

Final CMA

Level of Service (LOS)

0.722 С

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 9 Date October 7, 2013

Intersection Name

North/South: Via Marina

East/West: Admiralty Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Base CMA 0.615 Signal Coordination ATSAC + ATCS Signal Coordination Adjustment -0.100	Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves	
Northbound		Left	0	0				
Through/Right		Left/Through	0					
Right	Northbound	Through	2	695		348	348	
Total Lanes 3		Through/Right	0					
Couthbound Cou		Right	1	1,010	1,010	0		
Southbound Through		Total Lanes	3					
Southbound		Left	1	285		285	285	
Through/Right		Left/Through	0					
Right	Southbound	Through	3	215		72		
Total Lanes 4 Sum of North/South Critical Volumes 633		Through/Right	0					
Left		Right	0	0	0			
Left		Total Lanes	4					
Eastbound	Sum of North/South Critical Volumes							
Eastbound		Left	0	0				
Through/Right		Left/Through	0					
Right	Eastbound	Through	0	0				
Total Lanes 0 Left 2 442 243 243 Westbound Through 0 0 Through/Right 0 81 570 56 Total Lanes 4 Sum of East/West Critical Volumes 70 1,425 Number of Clearance Intervals 3 Intersection Capacity 1,425 Signal Coordination ATSAC + ATCS Signal Coordination Adjustment -0.100 Final CMA 0.515		Through/Right	0					
Left 2 442 243 243 Westbound Through 0 0 Through/Right 0 Right 2 681 570 56 Total Lanes 4 Sum of East/West Critical Volumes 7 Total Intersection Critical Volumes 876 Number of Clearance Intervals 3 Intersection Capacity 1,425 Signal Coordination ATSAC + ATCS Signal Coordination Adjustment -0.100 Final CMA 0.515		Right	0	0	0			
Westbound Through 0 0 Through/Right 0 Right 2 681 570 56 Total Lanes 4 Sum of East/West Critical Volumes Total Intersection Critical Volumes 876 Number of Clearance Intervals 3 Intersection Capacity 1,425 Base CMA 0.615 Signal Coordination ATSAC + ATCS Signal Coordination Adjustment -0.100 Final CMA 0.515		Total Lanes	0					
Westbound Through 0 0 Through/Right 0 Right 2 681 570 56 Total Lanes 4 Sum of East/West Critical Volumes 243 Total Intersection Critical Volumes 876 Number of Clearance Intervals 3 Intersection Capacity 1,425 Base CMA 0.615 Signal Coordination ATSAC + ATCS Signal Coordination Adjustment -0.100 Final CMA 0.515		Left	2	442		243	243	
Through/Right 0 Right 2 681 570 56 Total Lanes 4 Sum of East/West Critical Volumes 243 Total Intersection Critical Volumes 876 Number of Clearance Intervals 3 Intersection Capacity 1,425 Base CMA 0.615 Signal Coordination ATSAC + ATCS Signal Coordination Adjustment -0.100 Final CMA 0.515		Left/Through	0					
Right 2 681 570 56 Total Lanes 4 Sum of East/West Critical Volumes 243 Total Intersection Critical Volumes 876 Number of Clearance Intervals 3 Intersection Capacity 1,425 Base CMA 0.615 Signal Coordination ATSAC + ATCS Signal Coordination Adjustment -0.100 Final CMA 0.515	Westbound	Through	0	0				
Sum of East/West Critical Volumes 243 Total Intersection Critical Volumes 876 Number of Clearance Intervals 3 Intersection Capacity 1,425 Base CMA 0.615 Signal Coordination ATSAC + ATCS Signal Coordination Adjustment -0.100 Final CMA 0.515		Through/Right	0					
Sum of East/West Critical Volumes Total Intersection Critical Volumes 876 Number of Clearance Intervals 3 Intersection Capacity Base CMA 0.615 Signal Coordination ATSAC + ATCS Signal Coordination Adjustment Final CMA 0.515		Right	2	681	570	56		
Number of Clearance Intervals 3 Intersection Critical Volumes 4,425 Base CMA 0.615 Signal Coordination ATSAC + ATCS Signal Coordination Adjustment -0.100 Final CMA 0.515		Total Lanes	4					
Number of Clearance Intervals 3 Intersection Capacity 1,425 Base CMA 0.615 Signal Coordination ATSAC + ATCS Signal Coordination Adjustment -0.100 Final CMA 0.515				Sum of Eas	st/West Critic	al Volumes	243	
Base CMA 0.615 Signal Coordination ATSAC + ATCS Signal Coordination Adjustment -0.100 Final CMA 0.515				Total Inters	section Critica	al Volumes	876	
Signal Coordination ATSAC + ATCS Signal Coordination Adjustment -0.100 Final CMA 0.515	Number of Cle	earance Intervals	3		Intersection	n Capacity	1,425	
Final CMA 0.515							0.615	
					-	-0.100		
Level of Service (LOS) A							0.515	
• • •					Level of Se	rvice (LOS)	Α	

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 10 Date October 7, 2013

Intersection Name

North/South: Palawan Way

East/West: Admiralty Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Future (2016) With Project (Includes Cumulative Development)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves	
	Left	0	55				
	Left/Through	1			154		
Northbound	Through	0	159				
	Through/Right	1			154	154	
	Right	0	93	0			
	Total Lanes	2					
	Left	1	 176		176	176	
	Left/Through	0					
Southbound	Through	1	73		73		
	Through/Right	0					
	Right	1	98	81	17		
	Total Lanes	3					
Sum of North/South Critical Volumes							
	Left	1	93		93		
	Left/Through	0					
Eastbound	Through	1	1,152		582	582	
	Through/Right	1			582		
	Right	0	13	0			
	Total Lanes	3					
	Left	1	78		78	78	
	Left/Through	0					
Westbound	Through	2	997		498		
	Through/Right	0					
	Right	1	110	36	74		
	Total Lanes	4					
			Sum of Eas	st/West Critica	al Volumes	660	
			Total Inter	section Critica	al Volumes	990	
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425	
					Base CMA	0.695	
Signal Coordination ATSAC + ATCS Signal Coordination Adjustment					-0.100		
					Final CMA	0.595	
Level of Service (LOS)							

North/South Opposed Phasing

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 11 Date October 7, 2013

Lincoln Boulevard **Intersection Name** North/South:

> East/West: Maxella Avenue/Marina Pointe Drive

Intersection Control Signalized **Analysis Period** AM Peak Hour

Analysis Scenario Future (2016) With Project (Includes Cumulative Development)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	57		31	
	Left/Through	0				
Northbound	Through	3	2,632		877	877
	Through/Right	0				
	Right	1	225	124	101	
	Total Lanes	6				
	Left	2	 131		72	72
	Left/Through	0				
Southbound	Through	3	2,239		574	
	Through/Right	1			574	
	Right	0	57	0		
	Total Lanes	6				
		;	Sum of North	n/South Critica	al Volumes	949
	Left	1	64		64	
	Left/Through	0				
Eastbound	Through	1	80		80	
	Through/Right	0				
	Right	1	131	31	100	100
	Total Lanes	3				
	Left	1	218		124	124
	Left/Through	1			124	
Westbound	Through	0	30			
	Through/Right	0				
	Right	1	148	72	76	
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	224
			Total Inters	section Critica	al Volumes	1,173
Number of Cle	earance Intervals	4	Intersection Capacity			1,375
				Base CMA		
Signal Coordi	Signal Coordination ATSAC + ATCS			Signal Coordination Adjustment		
				Final CMA	0.753	

NB Rt. Turn Overlap with WB Left

С Level of Service (LOS)

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 12 Date October 7, 2013

Intersection Name North/South: Glencoe Avenue

East/West: Maxella Avenue

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	86		86	
	Left/Through	0				
Northbound	Through	1	465		465	465
	Through/Right	0				
	Right	1	61	58	3	
	Total Lanes	3				
	Left	1	22		22	22
	Left/Through	0				
Southbound	Through	1	374		226	
	Through/Right	1			226	
	Right	0	78	0		
	Total Lanes	3				
Sum of North/South Critical Volumes						
	Left	1	116		116	116
	Left/Through	0				
Eastbound	Through	1	82		82	
	Through/Right	0				
	Right	1	154	130	24	
	Total Lanes	3				
	Left	1	83		83	
	Left/Through	0				
Westbound	Through	1	90		81	81
	Through/Right	1			81	
	Right	0	72	0		
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	197
			Total Inters	section Critica	al Volumes	684
Number of Cle	earance Intervals	2		Intersectio	n Capacity	1,500
Base CMA						0.456
Signal Coordination ATSAC + ATCS Signal Coordination Adjustment					-0.100	
					Final CMA	0.356
Level of Service (LOS)						

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 13 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Marina Expressway (SR-90)

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Approach	Lana Tura	No. of	Approach	Right-Turn	Assigned Lane	Critical	
Direction	Lane Type	Lanes	Volumes	on Red	Volumes	Moves	
	Left	0	0				
	Left/Through	0					
Northbound	Through	2	1,877		724	724	
	Through/Right	1			724		
	Right	0	294	0			
	Total Lanes	3					
	Left	2	924		508	508	
	Left/Through	0					
Southbound	Through	3	1,703		568		
	Through/Right	0					
	Right	0	0	0			
	Total Lanes	5					
Sum of North/South Critical Volumes							
	Left	0	0				
	Left/Through	0					
Eastbound	Through	0	0				
	Through/Right	0					
	Right	0	0	0			
	Total Lanes	0					
	Left	2	151		83	83	
	Left/Through	0					
Westbound	Through	0	0				
	Through/Right	0					
	Right	2	983	983	0		
	Total Lanes	4					
			Sum of Eas	st/West Critic	al Volumes	83	
			Total Inter	section Critica	al Volumes	1,315	
Number of Cle	earance Intervals	3		Intersection	n Capacity	1,425	
					Base CMA	0.923	
Signal Coordi	Signal Coordination ATSAC + ATCS		Signal C	Coordination A	Adjustment	-0.100	
					Final CMA	0.823	
				Level of Se	rvice (LOS)	D	

Assigned

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 14 Date October 7, 2013

Intersection Name North/South: Admiralty Way

East/West: Bali Way

Intersection Control Signalized **Analysis Period** AM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Lane Volumes	Critical Moves
	Left	1	7		7	
	Left/Through	0				
Northbound	Through	1	1,192		684	684
	Through/Right	1			684	
	Right	0	176	0		
	Total Lanes	3				
	Left	2	334		184	184
	Left/Through	0				
Southbound	Through	1	1,623		815	
	Through/Right	1			815	
	Right	0	7	0		
	Total Lanes	4				
		;	Sum of North	/South Critica	al Volumes	868
	Left	0	12			12
	Left/Through	1			14	
Eastbound	Through	0	9			
	Through/Right	1			14	
	Right	0	6	0		
	Total Lanes	2				
	Left	1	16		16	
	Left/Through	0				
Westbound	Through	0	30			
	Through/Right	1			77	
	Right	1	308	184	77	77
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	89
			Total Inters	section Critica	al Volumes	957
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	0.696 -0.100
Signal Coordi	Signal Coordination ATSAC + ATCS			Signal Coordination Adjustment		
					Final CMA	0.596
				Level of Ser	rvice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 15 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Bali Way/Auto Dealership Driveway

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Future (2016) With Project (Includes Cumulative Development)

	(/	,	,		' '		
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves	
	Left	1	115		115	115	
	Left/Through	0					
Northbound	Through	2	1,800		607		
	Through/Right	1			607		
	Right	0	20	0			
	Total Lanes	4					
	Left	1	3		3		
	Left/Through	0					
Southbound	Through	2	1,631		614	614	
	Through/Right	1	,		614		
	Right	0	212	0			
	Total Lanes	4					
Sum of North/South Critical Volumes							
	Left	1	341		172	172	
	Left/Through	1			172		~
Eastbound	Through	0	2				Sinc
	Through/Right	0					Pha
	Right	1	153	58	95		pe
	Total Lanes	3					Fast/West Opposed Phasing
	Left	0	0				0 /56
	Left/Through	0					<i>t/W</i>
Westbound	Left/Through/Right	1	2		10	10	Fas
	Through/Right	0					
	Right	0	8	0			
	Total Lanes	1					
			Sum of Eas	st/West Critic	al Volumes	182	
			Total Inter	section Critica	al Volumes	911	
Number of Clo	earance Intervals	4		Intersection	n Capacity	1,375	
					Base CMA	0.663	
Signal Coordi	nation ATSAC + A	ATCS	Signal C	Coordination A	Adjustment	-0.100	
Final CMA						0.563	
				Level of Se	rvice (LOS)	Α	

East/West Opposed Phasing

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 16 Date October 7, 2013

Intersection Name

North/South: Admiralty Way

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Future (2016) With Project (Includes Cumulative Development)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves	
	Left	1	32		32		
	Left/Through	0					
Northbound	Through	1	939		547	547	
	Through/Right	1			547		
	Right	0	155	0			
	Total Lanes	3					
	Left	2	424		233	233	
	Left/Through	0					
Southbound	Through	1	1,129		580		
	Through/Right	1			580		
	Right	0	32	0			
	Total Lanes	4					
		;	Sum of North	n/South Critica	al Volumes	780	
	Left	1	54		44		
	Left/Through	1			44		~
Eastbound	Through	0	38				sinc
	Through/Right	1			44	44	Pha
	Right	0	39	0			pe
	Total Lanes	3					East/West Opposed Phasing
	Left	1	162		121		st C
	Left/Through	1			121		We
Westbound	Through	0	80				<u>=</u> ast
	Through/Right	0					F
	Right	1	447	233	214	214	
	Total Lanes	3					
			Sum of Eas	st/West Critic	al Volumes	258	
			Total Inter	section Critica	al Volumes	1,038	
Number of Cle	earance Intervals	4		Intersection	n Capacity	1,375	
					Base CMA	0.755	
Signal Coordi	nation ATSAC +	ATCS	Signal Coordination Adjustment			-0.100	
					Final CMA	0.655	
				Level of Ser	rvice (LOS)	В	

East/West Opposed Phasing WB Rt. Turn Overlap with SB Left

NB Rt. Turn Overlap with WB Left

Hirsch/Green Transportation Consulting, Inc. Critical Movement Analysis (CMA) Worksheet

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 17 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	217		217	
	Left/Through	0				
Northbound	Through	3	2,918		973	973
	Through/Right	0				
	Right	1	499	168	331	
	Total Lanes	5				
	Left	1	186		186	186
	Left/Through	0				
Southbound	Through	2	1,847		639	
	Through/Right	1			639	
	Right	0	71	0		
	Total Lanes	4				
		;	Sum of North	n/South Critica	al Volumes	1,159
	Left	0	0			
	Left/Through	0				
Eastbound	Through	1	385		206	206
	Through/Right	1			206	
	Right	0	26	0		
	Total Lanes	2				
	Left	2	305		168	168
	Left/Through	0				
Westbound	Through	1	508		296	
	Through/Right	1			296	
	Right	0	83	0		
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	374
			Total Inter	section Critica	al Volumes	1,533
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
				Base CMA		
Signal Coordi	Signal Coordination ATSAC + ATCS			Signal Coordination Adjustment		
					Final CMA	1.015
				Level of Ser	rvice (LOS)	F

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 18 Date October 7, 2013

Intersection Name North/South: EB Marina Expressway (SR-90)

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	1	22		22	
	Left/Through	0				
Southbound	Through	1	1,171		593	593
	Through/Right	1			593	
	Right	0	15	0		
	Total Lanes	3				
		;	Sum of North	n/South Critica	al Volumes	593
	Left	0	0			
	Left/Through	0				
Eastbound	Through	1	414		367	367
	Through/Right	1			367	
	Right	1	687	0	367	
	Total Lanes	3				
	Left	2	378		208	208
	Left/Through	0				
Westbound	Through	2	957		478	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	<u>575</u>
			Total Inter	section Critica	al Volumes	1,168
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.820
Signal Coordination ATSAC + ATCS Signal Coordination Adjustment					-0.100	
	Final CMA					0.720
				Level of Ser	vice (LOS)	С

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 19 Date October 7, 2013

Intersection Name North/South: WB Marina Expressway (SR-90)

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	447		447	
	Left/Through	1			516	
Northbound	Through	1	1,031		516	516
	Through/Right	0				
	Right	1	391	42	349	
	Total Lanes	4				
	Left	0	0			
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
			Sum of North	n/South Critica	al Volumes	516
	Left	1	4		4	4
	Left/Through	0				
Eastbound	Through	2	429		214	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	2	863		293	293
	Through/Right	1			293	
	Right	0	16	0		
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	297
			Total Inters	section Critica	al Volumes	813
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.571
Signal Coordi	nation ATSAC -	+ ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.471
				Level of Ser	vice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 20 Date October 7, 2013

Intersection Name

North/South: Glencoe Avenue

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	43		43	43
	Left/Through	0				
Northbound	Through	1	171		94	
	Through/Right	1			94	
	Right	0	18	0		
	Total Lanes	3				
	Left	1	63		63	
	Left/Through	0				
Southbound	Through	1	137		137	
	Through/Right	0				
	Right	1	395	194	201	201
	Total Lanes	3				
		;	Sum of North	n/South Critica	al Volumes	244
	Left	1	387		387	387
	Left/Through	0				
Eastbound	Through	1	338		210	
	Through/Right	1			210	
	Right	0	82	0		
	Total Lanes	3				
	Left	1	14		14	
	Left/Through	0				
Westbound	Through	1	416		244	244
	Through/Right	1			244	
	Right	0	72	0		
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	631
			Total Inters	section Critica	al Volumes	875
Number of Cle	earance Intervals	2		Intersectio	n Capacity	1,500
					Base CMA	0.583
Signal Coordi	nation ATSAC +	ATCS	Signal Coordination Adjustment			-0.100
					Final CMA	0.483
	Level of Service (LOS)					

SB Rt. Turn Overlap with EB Left

Hirsch/Green Transportation Consulting, Inc. Critical Movement Analysis (CMA) Worksheet

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 21 Date October 7, 2013

Intersection Name North/South: Admiralty Way

East/West: Fiji Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	2	748		411	411
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	1	78	78	0	
	Total Lanes	3				
		;	Sum of North	n/South Critica	al Volumes	411
	Left	1	90		90	90
Eastbound	Left/Through	0				
	Through	2	161		80	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	1	174		174	174
	Through/Right	0				
	Right	1	727	727	0	
	Total Lanes	2				
			Sum of Eas	st/West Critica	al Volumes	264
			Total Intersection Critical Volumes			675
Number of Cle	earance Intervals	2		Intersectio	n Capacity	1,500
					Base CMA	0.450
Signal Coordi	nation ATSAC -	+ ATCS	Signal Coordination Adjustment			-0.100
					Final CMA	0.350
				Level of Ser	vice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 22 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Fiji Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	_ 2	721		397	
	Left/Through	0				
Northbound	Through	2	3,383		1,141	1,141
	Through/Right	1			1,141	
	Right	0	39	0		
	Total Lanes	5				
	Left	1	39		39	39
	Left/Through	0				
Southbound	Through	2	2,076		720	
	Through/Right	1			720	
	Right	0	85	0		
	Total Lanes	4				
		;	Sum of North	n/South Critica	al Volumes	1,180
	Left	1	219		219	219
	Left/Through	0				
Eastbound	Through	1	21		21	
	Through/Right	0				
	Right	1	707	707	0	
	Total Lanes	3				
	Left	0	 11			
	Left/Through	1			11	11
Westbound	Through	0	2			
	Through/Right	1			2	
	Right	0	0	0		
	Total Lanes	2				
			Sum of Eas	st/West Critic	al Volumes	230
			Total Inters	section Critic	al Volumes	1,410
Number of Cle	earance Intervals	4		Intersection	n Capacity	1,375
					Base CMA	1.025
Signal Coordi	nation ATSAC	+ ATCS	Signal C	Coordination A	Adjustment	-0.100
			Final CMA			0.925
Level of Service (LOS)						

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 23 Date October 7, 2013

Intersection Name North/South: Marina Freeway (SR-90) EB On/Off-Ramps

East/West: Culver Boulevard

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	1	63		63	
	Left/Through	0				
Southbound	Through	1	0		0	
	Through/Right	1			118	118
	Right	0	118	0		
	Total Lanes	3				
		;	Sum of North	n/South Critica	al Volumes	118
	Left	0	0			
	Left/Through	0				
Eastbound	Through	3	1,876		625	625
	Through/Right	0				
	Right	2	855	0	428	
	Total Lanes	5				
	Left	1	129		129	129
	Left/Through	0				
Westbound	Through	2	504		252	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	754
			Total Inter	section Critica	al Volumes	872
Number of Cle	earance Intervals	2		Intersectio	n Capacity	1,500
					Base CMA	0.581
Signal Coordi	nation ATSAC +	ATCS	Signal Coordination Adjustment			-0.100
					Final CMA	0.481
Level of Service (LOS)						Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 24 Date October 7, 2013

Intersection Name North/South: Marina Freeway (SR-90) WB Off-Ramp

East/West: Culver Boulevard

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	146		146	
	Left/Through	1			199	
Northbound	Through	0	276			
	Through/Right	1			199	199
	Right	0	122	0		
	Total Lanes	3				
	Left	 1	114		114	114
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	1	160	160	0	
	Total Lanes	2				
		;	Sum of North	n/South Critica	al Volumes	313
	Left	1	518		518	518
	Left/Through	0				
Eastbound	Through	2	1,542		771	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	2	349		174	
	Through/Right	0				
	Right	1	353	57	296	296
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	814
			Total Inters	section Critica	al Volumes	1,127
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.791
Signal Coordi	nation ATSAC -	+ ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.691
				Level of Ser	vice (LOS)	В

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 25 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Jefferson Boulevard

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Number of Clearance Intervals

Signal Coordination

Analysis Scenario Future (2016) With Project (Includes Cumulative Development)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	20		20	
	Left/Through	0				
Northbound	Through	4	2,968		742	
	Through/Right	0				
	Right	1	925	82	843	843
	Total Lanes	6				
	Left	2	892		491	491
	Left/Through	0				
Southbound	Through	3	1,648		482	
	Through/Right	1			482	
	Right	0	282	0		
	Total Lanes	6				
		:	Sum of North	n/South Critica	al Volumes	1,334
	Left	1	259		259	259
	Left/Through	0				
Eastbound	Through	2	406		146	
	Through/Right	1			146	
	Right	0	33	0		
	Total Lanes	4				
	Left	2	772		425	425
	Left/Through	0				
Westbound	Through	2	164		82	
	Through/Right	0				
	Right	2	930	930	0	
	Total Lanes	6				
			Sum of Eas	st/West Critic	al Volumes	684
			Total Inter	section Critica	al Volumes	2,018

East/West Opposed Phasing WB Rt. Turn Overlap with SB Left

Total Intersection Critical Volumes 2,018


Intersection Capacity 1,375

Base CMA 1.468

ATSAC + ATCS Signal Coordination Adjustment -0.100

Final CMA 1.368

Level of Service (LOS) F

Project NameMarina del Rey - Parcel 44 ProjectIntersection Number1DateOctober 7, 2013Intersection NameNorth/South:Lincoln Boulevard

East/West: Venice Boulevard

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	255		140	
	Left/Through	0				
Northbound	Through	1	1,889		1,066	1,066
	Through/Right	1			1,066	•
	Right	0	242	0		
	Total Lanes	4				
	Left	2	 193		106	106
	Left/Through	0				
Southbound	Through	1	1,354		698	
	Through/Right	1			698	
	Right	0	41	0		
	Total Lanes	4				
		;	Sum of North	/South Critica	al Volumes	1,172
	Left	2	119		65	65
	Left/Through	0				
Eastbound	Through	3	900		300	
	Through/Right	0				
	Right	1	248	140	108	
	Total Lanes	6				
	Left	2	315		173	
	Left/Through	0				
Westbound	Through	2	964		482	482
	Through/Right	0				
	Right	1	165	106	59	
	Total Lanes	5				
			Sum of Eas	st/West Critica	al Volumes	547
			Total Inters	section Critica	al Volumes	1,719
lumber of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	1.250
ignal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	1.150
				Level of Ser		F

Project Name Marina del Rey - Parcel 44 Project

Intersection Number Date October 7, 2013 2

Intersection Name North/South: Pacific Avenue

> East/West: Washington Boulevard

Intersection Control Signalized **Analysis Period** PM Peak Hour

Analysis

s Period	PM Peak Hour						
s Scenario	Future (2016) W	/ith Project	(Includes Cu	mulative Deve	lopment)		
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves	
	Left	0	2				
	Left/Through	1			72		5
Northbound	Through	0	70				nio
	Through/Right	1			130	130	Ph
	Right	0	130	0			pas
	Total Lanes	2					
	Left	0	742				North/South Opposed Phasing
Southbound	Left/Through	1			742	742	ν,
	Through	0	120				100
	Through/Right	1			146		2
	Right	0	26	0			
	Total Lanes	2					
		;	Sum of North	n/South Critica	al Volumes	872	
	Left	0	20				
	Left/Through	0					
Eastbound	Left/Through/Right	1	93		131	131	
	Through/Right	0					
	Right	0	18	0			
	Total Lanes	1					
	Left	1	179		179	179	
	Left/Through	0					
Westbound	Through	1	61		61		
	Through/Right	0					
	Right	1	486	486	0		
	Total Lanes	3					
			Sum of Eas	st/West Critica	al Volumes	310	
			Total Inters	section Critica	al Volumes	1,182	
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425	
					Base CMA	0.829	
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100	
					Final CMA	0.729	
				Level of Ser	vice (LOS)	С	

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 3 Date October 7, 2013

Intersection Name

North/South: Via Dolce/Dell Avenue
East/West: Washington Boulevard

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	58		58	58
	Left/Through	0				
Northbound	Through	1	11		11	
	Through/Right	0				
	Right	1	97	72	25	
	Total Lanes	3				
	Left	0	31			
	Left/Through	0				
Southbound	Left/Through/Right	1	29		74	74
	Through/Right	0				
	Right	0	14	0		
	Total Lanes	1				
		;	Sum of North	n/South Critica	al Volumes	132
	Left	1	13		13	
	Left/Through	0				
Eastbound	Through	2	800		400	400
	Through/Right	0				
	Right	1	122	29	93	
	Total Lanes	4				
	Left	1	145		145	145
	Left/Through	0				
Westbound	Through	2	708		354	
	Through/Right	0				
	Right	1	61	54	7	
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	545
			Total Inters	section Critica	al Volumes	677
Number of Cle	earance Intervals	2		Intersectio	n Capacity	1,500
					Base CMA	0.451
Signal Coordi	nation ATSAC + A	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.351
				Level of Ser	rvice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 4 Date October 7, 2013

Intersection NameNorth/South:Via Marina/Ocean AvenueEast/West:Washington Boulevard

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Analysis Scenario Future (2016) With Project (Includes Cumulative Development)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	393		216	
	Left/Through	0				
Northbound	Through	1	264		264	264
	Through/Right	0				
	Right	1	295	128	167	
	Total Lanes	4				
	Left	1	38		38	
	Left/Through	0				
Southbound	Through	0	470			
	Through/Right	1			581	581
	Right	0	111	0		
	Total Lanes	2				
		;	Sum of North	/South Critica	al Volumes	845
	Left	1	39		39	
	Left/Through	0				
Eastbound	Through	2	627		314	314
	Through/Right	0				
	Right	1	378	132	246	
	Total Lanes	4				
	Left	1	257		257	257
	Left/Through	0				
Westbound	Through	2	540		270	
	Through/Right	0				
	Right	1	48	48	0	
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	571
			Total Inters	section Critica	al Volumes	1,416
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.994
Signal Coordi	nation ATSAC -	+ ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.894
				Level of Ser	vice (LOS)	D

North/South Opposed Phasing

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 5 Date October 7, 2013

Intersection Name North/South: Palawan Way

East/West: Washington Boulevard

Intersection ControlTwo-Way STOPAnalysis PeriodPM Peak Hour

sis Scenario	Future (2016)	with Project	(includes Cu	mulative Deve	. ,	
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	1	238	0	238	238
	Total Lanes	1				
	Left	0	0			
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
		;	Sum of North	n/South Critica	al Volumes	238
	Left	0	0			
	Left/Through	0				
Eastbound	Through	2	795		398	398
	Through/Right	0				
	Right	1	221	119	102	
	Total Lanes	3				
	Left	1	543		543	543
	Left/Through	0				
Westbound	Through	2	865		432	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
			Sum of Eas	st/West Critic	al Volumes	941
			Total Inters	section Critica	al Volumes	1,179
Number of Cle	earance Intervals	0		Intersection	n Capacity	1,200
					Base CMA	0.983
Signal Coordi	nation None		Signal C	Coordination A	Adjustment	0.000
					Final CMA	0.983
				Level of Se	rvice (LOS)	E

Project NameMarina del Rey - Parcel 44 ProjectIntersection Number6DateOctober 7, 2013Intersection NameNorth/South:
East/West:Abbot Kinney Boulevard
Washington Boulevard

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	 1	775		498	498
	Left/Through	0				
Southbound	Left/Through/Right	1	0		498	
	Through/Right	0				
	Right	0	221	0		
	Total Lanes	2				
		;	Sum of North	n/South Critica	al Volumes	498
	Left	1	122		122	122
	Left/Through	0				
Eastbound	Through	2	888		444	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	2	1,152		576	576
	Through/Right	0				
	Right	1	606	498	108	
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	698
			Total Inters	section Critica	al Volumes	1,196
Number of Cl	earance Intervals	2		Intersectio	n Capacity	1,500
					Base CMA	0.797
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.697
				Level of Ser	rvice (LOS)	В

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 7 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Washington Boulevard

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	548		301	
	Left/Through	0				
Northbound	Through	2	2,173		833	833
	Through/Right	1			833	
	Right	0	327	0		
	Total Lanes	5				
	Left	2	287		158	158
	Left/Through	0				
Southbound	Through	2	1,706		623	
	Through/Right	1			623	
	Right	0	163	0		
	Total Lanes	5				
		;	Sum of North	n/South Critica	al Volumes	991
	Left	2	149		82	
	Left/Through	0				
Eastbound	Through	2	995		498	498
	Through/Right	0				
	Right	1	580	301	279	
	Total Lanes	5				
	Left	2	358		197	197
	Left/Through	0				
Westbound	Through	2	945		472	
	Through/Right	0				
	Right	1	360	158	202	
	Total Lanes	5				
			Sum of Eas	st/West Critic	al Volumes	695
			Total Inter	section Critica	al Volumes	1,686
Number of Cle	earance Intervals	4		Intersection	n Capacity	1,375
					Base CMA	1.226
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	1.126
				Level of Se	rvice (LOS)	F

Project Name Marina del Rey - Parcel 44 Project

Date October 7, 2013 **Intersection Number**

Intersection Name North/South: Glencoe Avenue/Costco Plaza Driveway

> East/West: Washington Boulevard

Intersection Control Signalized **Analysis Period** PM Peak Hour

Analysis

s Scenario	Future (2016) With Project (Includes Cumulative Development)					
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	189		188	188
	Left/Through	1			188	
Northbound	Through	0	186			
	Through/Right	0				
	Right	1	362	362	0	
	Total Lanes	3				
	Left	1	512		332	332
	Left/Through	1			332	
Southbound	Through	0	151			
	Through/Right	0				
	Right	1	82	56	26	
	Total Lanes	3				
		•	Sum of North	/South Critica	al Volumes	520
	Left	1	56		56	
	Left/Through	0				
Eastbound	Through	2	1,283		642	642
	Through/Right	0				
	Right	1	302	188	114	
	Total Lanes	4				
	Left	1	531		531	531
	Left/Through	0				
Westbound	Through	2	1,463		585	
	Through/Right	1			585	
	Right	0	291	0		
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	1,173
			Total Inters	section Critica	al Volumes	1,693
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	1.231
Signal Coordi	nation ATSAC	+ ATCS	Signal C	Coordination A	•	-0.100
					Final CMA	1.131

Level of Service (LOS)

F

Project Name Marina del Rey - Parcel 44 Project

Intersection Number Date October 7, 2013

Intersection Name North/South: Via Marina East/West: Admiralty Way

Intersection Control Signalized **Analysis Period** PM Peak Hour

Analysi

is Scenario	Future (2016)	With Project	(Includes Cu	mulative Deve	lopment)	
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	2	489		244	244
	Through/Right	0				
	Right	1	662	662	0	
	Total Lanes	3				
	Left	1	659		659	659
	Left/Through	0				
Southbound	Through	3	467		156	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	4				
		:	Sum of North	/South Critica	al Volumes	903
	Left	0	0			
	Left/Through	0				
Eastbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	2	1,254		690	690
	Left/Through	0	·			
Westbound	Through	0	0			
	Through/Right	0				
	Right	2	538	538	0	
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	690
			Total Inters	section Critica	al Volumes	1,593
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	1.118
Signal Coordi	nation ATSAC -	- ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	1.018
				Level of Ser	rvice (LOS)	F
					, ,	

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 10 Date October 7, 2013

Intersection Name

North/South: Palawan Way

East/West: Admiralty Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Analysis Scenario Future (2016) With Project (Includes Cumulative Development)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	36			
	Left/Through	1			106	
Northbound	Through	0	105			
	Through/Right	1			106	106
	Right	0	71	0		
	Total Lanes	2				
	Left	1	419		419	419
	Left/Through	0				
Southbound	Through	1	153		153	
	Through/Right	0				
	Right	1	175	26	149	
	Total Lanes	3				
		;	Sum of North	n/South Critica	al Volumes	525
	Left	1	52		52	52
	Left/Through	0				
Eastbound	Through	1	1,305		661	
	Through/Right	1			661	
	Right	0	18	0		
	Total Lanes	3				
	Left	1	126		126	
	Left/Through	0				
Westbound	Through	2	1,544		772	772
	Through/Right	0				
	Right	1	108	76	32	
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	824
			Total Inters	section Critica	al Volumes	1,349
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.947
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.847
				Level of Ser	vice (LOS)	D

North/South Opposed Phasing

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 11 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Maxella Avenue/Marina Pointe Drive

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Analysis Scenario Future (2016) With Project (Includes Cumulative Development)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	198		109	
	Left/Through	0				
Northbound	Through	3	2,690		897	897
	Through/Right	0				
	Right	1	303	186	117	
	Total Lanes	6				
	Left	2	 178		98	98
	Left/Through	0				
Southbound	Through	3	2,469		645	
	Through/Right	1			645	
	Right	0	112	0		
	Total Lanes	6				
		;	Sum of North	n/South Critica	al Volumes	995
	Left	1	81		81	81
	Left/Through	0				
Eastbound	Through	1	73		73	
	Through/Right	0				
	Right	1	46	46	0	
	Total Lanes	3				
	Left	1	281		186	186
	Left/Through	1			186	
Westbound	Through	0	91			
	Through/Right	0				
	Right	1	186	98	88	
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	267
			Total Inter	section Critica	al Volumes	1,262
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	0.918
Signal Coordi	nation ATSAC -	+ ATCS	Signal C	Coordination A	Adjustment	-0.100

Final CMA

Level of Service (LOS)

0.818

D

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 12 Date October 7, 2013

Intersection Name

North/South: Glencoe Avenue

East/West: Maxella Avenue

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	158		158	158
	Left/Through	0				
Northbound	Through	1	543		543	
	Through/Right	0				
	Right	1	83	83	0	
	Total Lanes	3				
	Left	1	52		52	
	Left/Through	0				
Southbound	Through	1	730		466	466
	Through/Right	1			466	
	Right	0	202	0		
	Total Lanes	3				
		;	Sum of North	n/South Critica	al Volumes	624
	Left	1	194		194	194
	Left/Through	0				
Eastbound	Through	1	143		143	
	Through/Right	0				
	Right	1	209	79	130	
	Total Lanes	3				
	Left	1	103		103	
	Left/Through	0				
Westbound	Through	1	188		128	128
	Through/Right	1			128	
	Right	0	68	0		
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	322
			Total Inter	section Critica	al Volumes	946
Number of Cle	earance Intervals	2		Intersectio	n Capacity	1,500
					Base CMA	0.631
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.531
				Level of Ser	rvice (LOS)	Α

Assigned

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 13 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Marina Expressway (SR-90)

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	2	2,204		810	810
	Through/Right	1			810	
	Right	0	226	0		
	Total Lanes	3				
	Left	2	923		508	508
	Left/Through	0				
Southbound	Through	3	2,012		671	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	5				
		;	Sum of North	n/South Critica	al Volumes	1,318
	Left	0	0			
	Left/Through	0				
Eastbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	2	204		112	112
	Left/Through	0				
Westbound	Through	0	0			
	Through/Right	0				
	Right	2	1,010	1,010	0	
	Total Lanes	4				
			Sum of Eas	st/West Critic	al Volumes	112
			Total Inters	section Critica	al Volumes	1,430
Number of Cle	earance Intervals	3		Intersection	n Capacity	1,425
					Base CMA	1.004
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.904
				Level of Se	rvice (LOS)	E

Approach

Right-Turn

Assigned

Lane

Critical

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 14 Date October 7, 2013

No. of

Intersection Name North/South: Admiralty Way

East/West: Bali Way

Intersection Control Signalized **Analysis Period** PM Peak Hour

Approach

Direction	Lane Type	Lanes	Volumes	on Red	Volumes	Moves
	Left	1	9		9	
	Left/Through	0				
Northbound	Through	1	1,606		906	906
	Through/Right	1			906	
	Right	0	205	0		
	Total Lanes	3				
	Left	2	274		151	151
	Left/Through	0				
Southbound	Through	1	1,634		822	
	Through/Right	1			822	
	Right	0	11	0		
	Total Lanes	4				
		;	Sum of North	/South Critica	al Volumes	1,057
	Left	0	24			24
	Left/Through	1			28	
Eastbound	Through	0	33			
	Through/Right	1			39	
	Right	0	10	0		
	Total Lanes	2				
	Left	1	49		49	
	Left/Through	0				
Westbound	Through	0	19			
	Through/Right	1			144	
	Right	1	421	151	144	144
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	168
			Total Inters	section Critica	al Volumes	1,225
Number of Cl	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	0.891
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	-	-0.100
					Final CMA	0.791
				Level of Ser	vice (LOS)	С

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 15 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Bali Way/Auto Dealership Driveway

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Analysis Scenario Future (2016) With Project (Includes Cumulative Development)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	161		161	161
	Left/Through	0				
Northbound	Through	2	2,042		687	
	Through/Right	1			687	
	Right	0	19	0		
	Total Lanes	4				
	Left	1	2		2	
	Left/Through	0				
Southbound	Through	2	1,923		752	752
	Through/Right	1			752	
	Right	0	334	0		
	Total Lanes	4				
		,	Sum of North	n/South Critica	al Volumes	913
	Left	1	431		218	218
	Left/Through	1			218	_
Eastbound	Through	0	4			sipo
	Through/Right	0				D 250
	Right	1	86	80	6	, G
	Total Lanes	3				42
	Left	0	6			5
	Left/Through	0				JW.
Westbound	Left/Through/Right	1	0		42	42
	Through/Right	0				4
	Right	0	36	0		
	Total Lanes	1				
			Sum of Eas	st/West Critica	al Volumes	260
			Total Inter	section Critica	al Volumes	1,173
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	0.853
Signal Coordi	nation ATSAC + A	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.753
				Level of Ser	rvice (LOS)	С

East/West Opposed Phasing

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 16 Date October 7, 2013

Intersection Name

North/South: Admiralty Way

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Analysis Scenario Future (2016) With Project (Includes Cumulative Development)

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	34		34	
	Left/Through	0				
Northbound	Through	1	925		568	568
	Through/Right	1			568	
	Right	0	211	0		
	Total Lanes	3				
	Left	2	472		260	260
	Left/Through	0				
Southbound	Through	1	1,094		574	
	Through/Right	1			574	
	Right	0	55	0		
	Total Lanes	4				
		;	Sum of North	/South Critica	al Volumes	828
	Left	1	184		129	
	Left/Through	1			129	
Eastbound	Through	0	149			
	Through/Right	1			129	129
	Right	0	55	0		
	Total Lanes	3				
	Left	1	437		301	
	Left/Through	1			301	
Westbound	Through	0	165			
	Through/Right	0				
	Right	1	668	260	408	408
	Total Lanes	3				
			Sum of Eas	st/West Critic	al Volumes	537
			Total Inters	section Critic	al Volumes	1,365
Number of Cle	earance Intervals	4		Intersection	n Capacity	1,375
					Base CMA	0.993
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.893
				Level of Se	rvice (LOS)	D

East/West Opposed Phasing WB Rt. Turn Overlap with SB Left

NB Rt. Turn Overlap with WB Left

Hirsch/Green Transportation Consulting, Inc. Critical Movement Analysis (CMA) Worksheet

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 17 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	342		342	342
	Left/Through	0				
Northbound	Through	3	2,288		763	
	Through/Right	0				
	Right	1	455	332	123	
	Total Lanes	5				
	Left	1	 154		154	
	Left/Through	0				
Southbound	Through	2	1,666		590	590
	Through/Right	1			590	
	Right	0	105	0		
	Total Lanes	4				
		;	Sum of North	n/South Critica	al Volumes	932
	Left	0	0			
	Left/Through	0				
Eastbound	Through	1	606		398	398
	Through/Right	1			398	
	Right	0	190	0		
	Total Lanes	2				
	Left	2	604		332	332
	Left/Through	0				
Westbound	Through	1	1,189		635	
	Through/Right	1			635	
	Right	0	81	0		
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	730
			Total Inters	section Critica	al Volumes	1,662
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	1.209
Signal Coordi	nation ATSAC +	- ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	1.109
				Level of Ser	vice (LOS)	F

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 18 Date October 7, 2013

Intersection Name North/South: EB Marina Expressway (SR-90)

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	1	31		31	
	Left/Through	0				
Southbound	Through	1	1,089		550	550
	Through/Right	1			550	
	Right	0	11	0		
	Total Lanes	3				
		;	Sum of North	n/South Critica	al Volumes	550
	Left	0	0			
	Left/Through	0				
Eastbound	Through	1	488		397	
	Through/Right	1			397	
	Right	1	703	0	397	
	Total Lanes	3				
	Left	2	527		290	
	Left/Through	0				
Westbound	Through	2	1,843		922	922
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	4				
			Sum of Eas	st/West Critica	al Volumes	922
			Total Inter	section Critica	al Volumes	1,472
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	1.033
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.933
				Level of Ser	rvice (LOS)	E

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 19 Date October 7, 2013

Intersection Name North/South: WB Marina Expressway (SR-90)

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	563		563	
	Left/Through	1			582	
Northbound	Through	1	1,163		582	582
	Through/Right	0				
	Right	1	412	202	210	
	Total Lanes	4				
	Left	0	0			
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
			Sum of North	/South Critica	al Volumes	582
	Left	1	14		14	14
	Left/Through	0				
Eastbound	Through	2	471		236	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	2	1,847		627	627
	Through/Right	1			627	
	Right	0	33	0		
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	641
			Total Inters	section Critica	al Volumes	1,223
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.858
Signal Coordi	nation ATSAC -	+ ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.758
				Level of Ser	rvice (LOS)	С

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 20 Date October 7, 2013

Intersection Name

North/South: Glencoe Avenue

East/West: Mindanao Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	91		91	91
	Left/Through	0				
Northbound	Through	1	206		114	
	Through/Right	1			114	
	Right	0	21	0		
	Total Lanes	3				
	Left	1	137		137	
	Left/Through	0				
Southbound	Through	1	205		205	
	Through/Right	0				
	Right	1	1,206	203	1,003	1,003
	Total Lanes	3				
		;	Sum of North	n/South Critica	al Volumes	1,094
	Left	1	406		406	406
	Left/Through	0				
Eastbound	Through	1	449		252	
	Through/Right	1			252	
	Right	0	56	0		
	Total Lanes	3				
	Left	1	8		8	
	Left/Through	0				
Westbound	Through	1	489		300	300
	Through/Right	1			300	
	Right	0	110	0		
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	706
			Total Inter	section Critica	al Volumes	1,800
Number of Cle	earance Intervals	2		Intersectio	n Capacity	1,500
					Base CMA	1.200
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	1.100
				Level of Ser	vice (LOS)	F

SB Rt. Turn Overlap with EB Left

Hirsch/Green Transportation Consulting, Inc. Critical Movement Analysis (CMA) Worksheet

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 21 Date October 7, 2013

Intersection Name North/South: Admiralty Way

East/West: Fiji Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	2	730		402	402
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	1	153	153	0	
	Total Lanes	3				
		;	Sum of North	n/South Critica	al Volumes	402
	Left	1	158		158	158
	Left/Through	0				
Eastbound	Through	2	381		190	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	1	299		299	299
	Through/Right	0				
	Right	1	697	697	0	
	Total Lanes	2				
			Sum of Eas	st/West Critica	al Volumes	457
			Total Inters	section Critica	al Volumes	859
Number of Cle	earance Intervals	2		Intersectio	n Capacity	1,500
					Base CMA	0.573
Signal Coordi	nation ATSAC	+ ATCS	Signal C	Coordination A	-	-0.100
					Final CMA	0.473
				Level of Ser	vice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 22 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Fiji Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	2	751		413	413
	Left/Through	0				
Northbound	Through	2	2,833		951	
	Through/Right	1			951	
	Right	0	21	0		
	Total Lanes	5				
	Left	1	26		26	
	Left/Through	0				
Southbound	Through	2	2,279		818	818
	Through/Right	1			818	
	Right	0	174	0		
	Total Lanes	4				
		;	Sum of North	n/South Critica	al Volumes	1,231
	Left	1	217		217	217
	Left/Through	0				
Eastbound	Through	1	16		16	
	Through/Right	0				
	Right	1	848	848	0	
	Total Lanes	3				
	Left	0	35			
	Left/Through	1			47	
Westbound	Through	0	20			
	Through/Right	1			47	47
	Right	0	39	0		
	Total Lanes	2				
			Sum of Eas	st/West Critica	al Volumes	264
			Total Inters	section Critica	al Volumes	1,495
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	1.087
Signal Coordi	nation ATSAC -	+ ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.987
				Level of Ser	rvice (LOS)	E

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 23 Date October 7, 2013

Intersection Name North/South: Marina Freeway (SR-90) EB On/Off-Ramps

East/West: Culver Boulevard

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	 1	138		138	138
	Left/Through	0				
Southbound	Through	1	0		0	
	Through/Right	1			56	
	Right	0	56	0		
	Total Lanes	3				
			Sum of North	n/South Critica	al Volumes	138
	Left	0	0			
	Left/Through	0				
Eastbound	Through	3	645		215	
	Through/Right	0				
	Right	2	206	41	82	
	Total Lanes	5				
	Left	1	259		259	
	Left/Through	0				
Westbound	Through	2	1,736		868	868
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
			Sum of Eas	st/West Critic	al Volumes	868
			Total Inter	section Critic	al Volumes	1,006
Number of Cle	earance Intervals	2		Intersection	n Capacity	1,500
					Base CMA	0.671
Signal Coordi	nation ATSAC	+ ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.571
				Level of Se	rvice (LOS)	Α

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 24 Date October 7, 2013

Intersection Name North/South: Marina Freeway (SR-90) WB Off-Ramp

East/West: Culver Boulevard

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	541		270	270
	Left/Through	1			270	
Northbound	Through	0	238			
	Through/Right	1			284	
	Right	0	46	0		
	Total Lanes	3				
	Left	1	 145		145	
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	1	425	97	328	328
	Total Lanes	2				
		;	Sum of North	n/South Critica	al Volumes	598
	Left	1	194		194	194
	Left/Through	0				
Eastbound	Through	2	606		303	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	3				
	Left	0	0			
	Left/Through	0				
Westbound	Through	2	1,043		522	522
	Through/Right	0				
	Right	1	350	157	193	
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	716
			Total Inters	section Critica	al Volumes	1,314
Number of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.922
Signal Coordi	nation ATSAC	+ ATCS	Signal C	Coordination A	Adjustment	-0.100
					Final CMA	0.822
				Level of Ser	rvice (LOS)	D

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 25 Date October 7, 2013

Intersection Name North/South: Lincoln Boulevard

East/West: Jefferson Boulevard

Intersection Control Signalized **Analysis Period** PM Peak Hour

Analysis

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves	
	Left	1	29		29		
	Left/Through	0					
Northbound	Through	4	2,371		593	593	
	Through/Right	0					
	Right	1	638	214	424		
	Total Lanes	6					
	Left	2	696		383	383	
	Left/Through	0					
Southbound	Through	3	2,009		613		
	Through/Right	1			613		
	Right	0	444	0			
	Total Lanes	6					
		;	Sum of North	n/South Critica	al Volumes	976	
	Left	1	43		43		
	Left/Through	0					~
Eastbound	Through	2	165		74	74	sing
	Through/Right	1			74		Pha
	Right	0	58	0			l pa
	Total Lanes	4					sodd
	Left	2	1,150		632	632	East/West Opposed Phasing
	Left/Through	0					Ķ
Westbound	Through	2	304		152		Eas
	Through/Right	0					
	Right	2	1,195	766	214		
	Total Lanes	6					
			Sum of Eas	st/West Critic	al Volumes	706	
			Total Inter	section Critica	al Volumes	1,682	
Number of Cle	earance Intervals	4		Intersection	n Capacity	1,375	
					Base CMA	1.223	
Signal Coordi	nation ATSAC -	+ ATCS	Signal C	Coordination A	Adjustment	-0.100	
					Final CMA	1.123	
				Lovel of Co.	nvice (LOC)		

WB Rt. Turn Overlap with SB Left

Level of Service (LOS) F Future (2016) With Project Plus Project-Specific Mitigation
(Includes Cumulative Development Traffic)
(City of Los Angeles Intersections Only)

No Feasible Mitigation For:

Intersection No. 1, Lincoln Boulevard and Venice Boulevard,
Intersection No. 7, Lincoln Boulevard and Washington Boulevard,
Intersection No. 13, Lincoln Boulevard and Marina Expressway,
Intersection No. 17, Lincoln Boulevard and Mindanao Way,
Intersection No. 18, Lincoln Boulevard and Fiji Way,
Intersection No. 22, Mindanao Way and Eastbound Marina Expressway,

OI

Intersection No. 25, Lincoln Boulevard and Jefferson Boulevard

Future (2016) With Cumulative Development Plus Cumulative Mitigation (Los Angeles County Intersections Only)

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 9 Date October 7, 2013

Intersection Name

North/South: Via Marina

East/West: Admiralty Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Future (2016) With Cumulative Dev. Plus Cumulative Mitigation (LACo Only) - LUP A

Assigned

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	2	695		348	348
	Through/Right	0				
	Right	1	1,010	1,010	0	
	Total Lanes	3				
	Left	2	285		157	157
	Left/Through	0				
Southbound	Through	2	215		108	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	4				
		;	Sum of North	n/South Critica	al Volumes	505
	Left	0	0			
	Left/Through	0				
Eastbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	3	442		162	
	Left/Through	0				
Westbound	Through	0	0			
	Through/Right	0				
	Right	2	681	314	184	184
	Total Lanes	5				
				st/West Critica		184
			Total Inter	section Critica		689
lumber of Clo	earance Intervals	3		Intersectio		1,425
					Base CMA	0.484
ignal Coordi	nation ATSAC +	ATCS	Signal Coordination Adjustment			-0.100
					Final CMA	0.384
				Level of Ser	vice (LOS)	Α

WB Rt. Turn Overlap with SB Left

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 9 Date October 7, 2013

Intersection Name

North/South: Via Marina

East/West: Admiralty Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Future (2016) With Cumulative Dev. Plus Cumulative Mitigation (LACo Only) - LUP B

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	2	 285		157	157
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	1	215	191	24	
	Total Lanes	3				
		:	Sum of North	/South Critica	al Volumes	157
	Left	2	695		382	382
	Left/Through	0				
Eastbound	Through	2	1,010		505	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	4				
	Left	0	0			
	Left/Through	0				
Westbound	Through	2	442		221	
	Through/Right	0				
	Right	1	681	78	603	603
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	985
			Total Inters	section Critica	al Volumes	1,142
Number of Clearance Intervals 3				Intersectio	n Capacity	1,425
			Base CMA			0.801
Signal Coordin	nation ATSAC +	ATCS	Signal Coordination Adjustment			-0.100
					Final CMA	0.701
				Level of Ser	vice (LOS)	С

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 10 Date October 7, 2013

Intersection Name

North/South: Palawan Way

East/West: Admiralty Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Future (2016) With Cumulative Dev. Plus Cumulative Mitigation (LACo Only) - LUP A

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves	
	Left	0	55				
	Left/Through	1			154		D
Northbound	Through	0	159				sin
	Through/Right	1			154	154	Phe
	Right	0	93	0			pəs
	Total Lanes	2					North/South Opposed Phasing
	Left	1	 176		124	124	ttr (
	Left/Through	1			124		Sot
Southbound	Through	0	73				orth
	Through/Right	0					Ž
	Right	1	98	98	0		
	Total Lanes	3					
Sum of North/Sou					al Volumes	278	
	Left	1	93		93		
	Left/Through	0					
Eastbound	Through	1	1,152		582	582	
	Through/Right	1			582		
	Right	0	13	0			
	Total Lanes	3					
	Left	1	78		78	78	
	Left/Through	0					
Westbound	Through	2	997		369		
	Through/Right	1			369		
	Right	0	110	0			
	Total Lanes	4					
			Sum of East/West Critical Volumes			660	
			Total Intersection Critical Volumes			938	
Number of Clearance Intervals 3				Intersection	n Capacity	1,425	
			Base CMA			0.658	
Signal Coordination ATSAC + ATCS			Signal Coordination Adjustment			-0.100	
					Final CMA	0.558	
Level of Service (LOS)							

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 10 Date October 7, 2013

Intersection Name

North/South: Palawan Way

East/West: Admiralty Way

Intersection ControlSignalizedAnalysis PeriodAM Peak Hour

Analysis Scenario Future (2016) With Cumulative Dev. Plus Cumulative Mitigation (LACo Only) - LUP B

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves	
	Left	0	55				
	Left/Through	1			214	214	7
Northbound	Through	0	159				sing
	Through/Right	0					Pha
	Right	1	93	0	93		pəs
	Total Lanes	2					North/South Opposed Phasing
	Left	2	 176		97	97	tth (
	Left/Through	0					Sot
Southbound	Through	1	73		73		orth
	Through/Right	0					ž
	Right	1	98	98	0		
	Total Lanes	4					
		;	Sum of North	/South Critic	al Volumes	311	
	Left	1	93		93		
	Left/Through	0					
Eastbound	Through	1	1,152		582	582	
	Through/Right	1			582		
	Right	0	13	0			
	Total Lanes	3					
	Left	1	 78		78	78	
	Left/Through	0					
Westbound	Through	2	997		369		
	Through/Right	1			369		
	Right	0	110	0			
	Total Lanes	4					
			Sum of East/West Critical Volumes			660	
			Total Intersection Critical Volumes			971	
Number of Cle	earance Intervals	3	Intersection Capacity			1,425	
Base CMA						0.681	
Signal Coordi	nation ATSAC +	ATCS	Signal Coordination Adjustment			-0.100	
					Final CMA	0.581	
Level of Service (LOS)							

Project Name Marina del Rey - Parcel 44 Project


Intersection Number 16 Date October 7, 2013

Intersection Name North/South: Admiralty Way East/West: Mindanao Way

Intersection Control Signalized **Analysis Period** AM Peak Hour

Analysis

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	1	32		32	
	Left/Through	0				
Northbound	Through	1	939		547	547
	Through/Right	1			547	
	Right	0	155	0		
	Total Lanes	3				
	Left	2	424		233	233
	Left/Through	0				
Southbound	Through	1	1,129		580	
	Through/Right	1			580	
	Right	0	32	0		
	Total Lanes	4				
		;	Sum of North	/South Critica	al Volumes	780
	Left	1	54		44	
	Left/Through	1			44	
Eastbound	Through	0	38			
	Through/Right	1			44	44
	Right	0	39	0		
	Total Lanes	3				
	Left	1	162		152	
	Left/Through	0				
Westbound	Left/Through/Right	1	80		152	152
	Through/Right	0				
	Right	1	447	233	152	
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	196
			Total Inter	section Critica	al Volumes	976
umber of Cle	earance Intervals	4		Intersectio	n Capacity	1,375
					Base CMA	0.710
gnal Coordi	nation ATSAC + A	ATCS	Signal C	Coordination A	-	-0.100
					Final CMA	0.610
				Level of Ser		В

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 9 Date October 7, 2013

Intersection Name

North/South: Via Marina

East/West: Admiralty Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Analysis Scenario Future (2016) With Cumulative Dev. Plus Cumulative Mitigation (LACo Only) - LUP A

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	2	489		244	244
	Through/Right	0				
	Right	1	662	662	0	
	Total Lanes	3				
	Left	2	659		362	362
	Left/Through	0				
Southbound	Through	2	467		234	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	4				
		Sum of North/South Critical Volumes				
	Left	0	0			
	Left/Through	0				
Eastbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	3	1,254		460	460
	Left/Through	0				
Westbound	Through	0	0			
	Through/Right	0				
	Right	2	538	538	0	
	Total Lanes	5				
			Sum of Eas	st/West Critica	al Volumes	460
			Total Inters	section Critica	al Volumes	1,066
lumber of Cle	earance Intervals	3		Intersectio	n Capacity	1,425
					Base CMA	0.748
ignal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	-	-0.100
					Final CMA	0.648
				Level of Ser	rvice (LOS)	В

WB Rt. Turn Overlap with SB Left

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 9 Date October 7, 2013

Intersection Name

North/South: Via Marina

East/West: Admiralty Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Analysis Scenario Future (2016) With Cumulative Dev. Plus Cumulative Mitigation (LACo Only) - LUP B

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves
	Left	0	0			
	Left/Through	0				
Northbound	Through	0	0			
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	0				
	Left	2	 659		362	362
	Left/Through	0				
Southbound	Through	0	0			
	Through/Right	0				
	Right	1	467	134	333	
	Total Lanes	3				
		:	Sum of North	/South Critica	al Volumes	362
	Left	2	489		269	269
	Left/Through	0				
Eastbound	Through	2	662		331	
	Through/Right	0				
	Right	0	0	0		
	Total Lanes	4				
	Left	0	0			
	Left/Through	0				
Westbound	Through	2	1,254		627	627
	Through/Right	0				
	Right	1	538	181	357	
	Total Lanes	3				
			Sum of Eas	st/West Critica	al Volumes	896
			Total Intersection Critical Volumes			1,258
Number of Clearance Intervals 3				Intersectio	n Capacity	1,425
					Base CMA	0.883
Signal Coordin	nation ATSAC +	ATCS	Signal Coordination Adjustment			-0.100
					Final CMA	0.783
				Level of Ser	. (1.00)	С

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 10 Date October 7, 2013

Intersection Name

North/South: Palawan Way

East/West: Admiralty Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

Analysis Scenario Future (2016) With Cumulative Dev. Plus Cumulative Mitigation (LACo Only) - LUP A

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves	
	Left	0	36				
	Left/Through	1			106		7
Northbound	Through	0	105				sing
	Through/Right	1			106	106	Phe
	Right	0	71	0			pəs
	Total Lanes	2					North/South Opposed Phasing
	Left	 1	419		286	286	ıth (
	Left/Through	1			286		, So
Southbound	Through	0	153				orth
	Through/Right	0					ž
	Right	1	175	118	57		
	Total Lanes	3					
-		;	Sum of North	n/South Critic	al Volumes	392	
	Left	1	52		52		
	Left/Through	0					
Eastbound	Through	1	1,305		661	661	
	Through/Right	1			661		
	Right	0	18	0			
	Total Lanes	3					
	Left	1	126		126	126	
	Left/Through	0					
Westbound	Through	2	1,544		551		
	Through/Right	1			551		
	Right	0	108	0			
	Total Lanes	4					
			Sum of East/West Critical Volumes			787	
			Total Intersection Critical Volumes			1,179	
Number of Clearance Intervals 3				Intersection	n Capacity	1,425	
			Base CMA			0.827	
Signal Coordination ATSAC + ATCS			Signal Coordination Adjustment			-0.100	
					Final CMA	0.727 C	
Level of Service (LOS)							

Hirsch/Green Transportation Consulting, Inc. Critical Movement Analysis (CMA) Worksheet

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 10 Date October 7, 2013

Intersection Name

North/South: Palawan Way

East/West: Admiralty Way

Intersection ControlSignalizedAnalysis PeriodPM Peak Hour

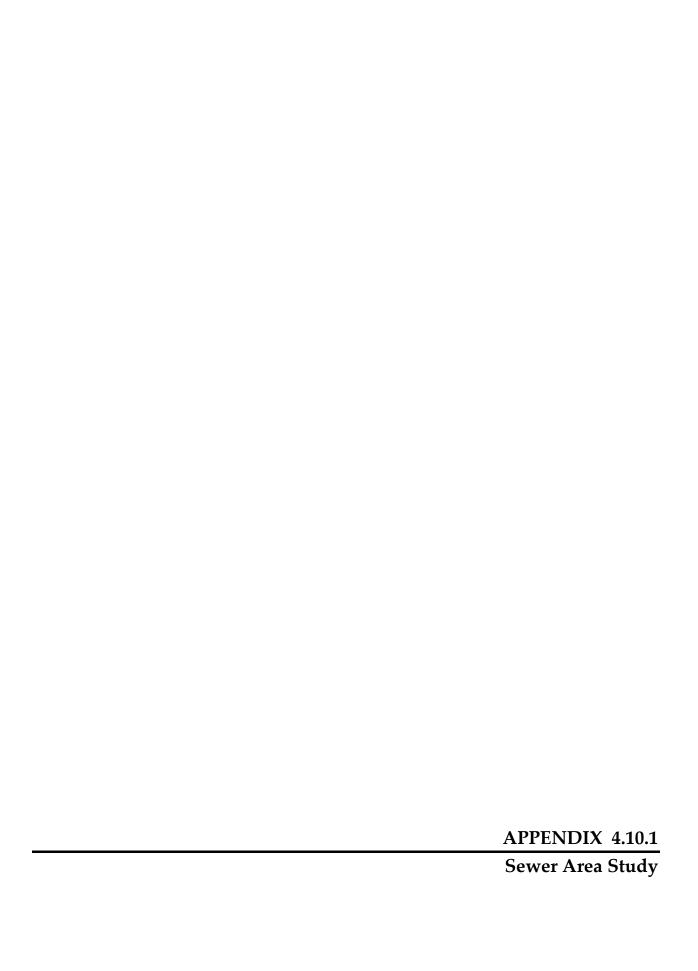
Analysis Scenario Future (2016) With Cumulative Dev. Plus Cumulative Mitigation (LACo Only) - LUP B

Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves	
	Left	0	36				
	Left/Through	1			141	141	~
Northbound	Through	0	105				sing
	Through/Right	0					Pha
	Right	1	71	0	71		pəs
	Total Lanes	2					North/South Opposed Phasing
	Left	2	419		229	229	ıth (
	Left/Through	0					Sot
Southbound	Through	1	153		153		orth
	Through/Right	0					ž
	Right	1	175	118	57		
	Total Lanes	4					
		;	Sum of North	/South Critica	al Volumes	370	
	Left	1	52		52		
	Left/Through	0					
Eastbound	Through	1	1,305		661	661	
	Through/Right	1			661		
	Right	0	18	0			
	Total Lanes	3					
	Left	1	 126		126	126	
	Left/Through	0					
Westbound	Through	2	1,544		551		
	Through/Right	1			551		
	Right	0	108	0			
	Total Lanes	4					
			Sum of Eas	st/West Critic	al Volumes	787	
			Total Inters	section Critica	al Volumes	1,157	
Number of Cle	earance Intervals	3		Intersection	n Capacity	1,425	
					Base CMA	0.812	
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	Adjustment	-0.100	
					Final CMA	0.712	
				Level of Se	rvice (LOS)	С	

Hirsch/Green Transportation Consulting, Inc. Critical Movement Analysis (CMA) Worksheet

Project Name Marina del Rey - Parcel 44 Project

Intersection Number 16 Date October 7, 2013


Intersection Name North/South: Admiralty Way East/West: Mindanao Way

Intersection Control Signalized **Analysis Period** PM Peak Hour

Analysis

is Period is Scenario	Future (2016) W	/ith Cumula	ative Dev. Plu	s Cumulative N	Mitigation (LA	Co Only) -	LUP
Approach Direction	Lane Type	No. of Lanes	Approach Volumes	Right-Turn on Red	Assigned Lane Volumes	Critical Moves	
	Left	1	34		34		
	Left/Through	0					
Northbound	Through	1	925		568	568	
	Through/Right	1			568		
	Right	0	211	0			
	Total Lanes	3					
	Left	2	472		260	260	
	Left/Through	0					
Southbound	Through	1	1,094		574		
	Through/Right	1			574		
	Right	0	55	0			
	Total Lanes	4					
		;	Sum of North	n/South Critica	al Volumes	828	
	Left	1	184		129		
	Left/Through	1			129		, st
Eastbound	Through	0	149				sing B Le
	Through/Right	1			129	129	Pha th S
	Right	0	55	0			sed p wi
	Total Lanes	3					East/West Opposed Phasing WB Rt. Turn Overlap with SB Left
	Left	1	437		337		əst O um O
	Left/Through	0					t/We
Westbound	Left/Through/Right	1	165		337	337	Easi VB F
	Through/Right	0					~ Z
	Right	1	668	260	337		
	Total Lanes	3					
			Sum of Eas	st/West Critica	al Volumes	466	
			Total Inter	section Critica	al Volumes	1,294	
Number of Cle	earance Intervals	4		Intersectio	n Capacity	1,375	
					Base CMA	0.941	
Signal Coordi	nation ATSAC +	ATCS	Signal C	Coordination A	-	-0.100	
					Final CMA	0.841	
				Level of Ser	vice (LOS)	D	

No Further Feasible Cumulative Mitigation For: Intersection No. 14, Admiralty Way and Bali Way

PC 12234 AS

Sewer Area Study for Parcel 44 Marina Del Rey, California

13443 BALI WAY LOS ANGELES 90292 COUNTY OF LOS ANGELES BEI PROJECT #187-07-003C TG 672-B7

Prepared by

Breen Engineering, Inc. 1983 W. 190th Street, Suite 200 Torrance CA 90504

Prepared for

Pacific Marina Ventures

August 4, 2014 Revised August 27, 2014 Revision 2 September 3, 2014

THIS AREA STUDY IS APPROVED FOR PARCELL 44 AND IS VALID FOR TWO (2) YEARS FROM DATE OF APPROVAL.

SEWER AREA STUDY
APPROVED FOR PARCELL 44

APPROVED BY: T. Lallahaba RCE NO. 52443 DATE 9/25/14

CHECKED BY: Abed M, Jeff B, Tony K DATE 9/25/14

COUNTY OF LOS ANGELES DEPARTMENT OF PUBLIC WORKS LAND DEVELOPMENT DIVISION

INDEX

- 1. INTRODUCTION
- 2. SITE DESCRIPTION
- 3. PROJECT DESCRIPTION
- 4. SEWER CAPACITY ANALYSIS
- 5. CONCLUSION

APPENDIX I US³ Report

APPENDIX II Parcel 44 Peak Daily Flow Calculation

APPENDIX III Fisherman's Village Peak Daily Flow Calculation

APPENDIX IV Kutters Formula Spreadsheets

APPENDIX V Sewer As Builts

1. Introduction

The following report was produced to determine the impacts of the proposed Parcel 44 (P44) and Fisherman's Village (FV) combined developments on the downstream, public sewer system. This was deemed necessary to supplement the County's Master Sewer Area Study, and previous Breen Engineering Sewer Area Study, by assessing the impacts to the overflow sewer, should the nearby pump station be taken out of service temporarily for maintenance or otherwise.

2. Site Description

This site is located approximately 1100 ft south of Lincoln Blvd. and the Marina Expressway, along Admiralty Way, between Bali Way and Mindanao Way. The address of the site is 13443 Bali Way, Marina del Rey, CA 90292. Assessor's I.D. No. 4224-008-901, Thomas Guide Page No. 672-B7.

3. Project Description

This project is a developed lot. The re-development will include 73,400 square feet of new buildings with concrete paved parking, driveways and landscape areas, situated on 8.4 acres.

4. Sewer Capacity Analysis

a.) Existing sewer capacity

The tributary sewer flow rates (Q) for the studied sewer lines were provided by the US³ Utility System Science & Software Sewer Flow Monitoring Report, July 2014. The County identified five manholes to be tested. Manholes (MH) 186 and 181 were upstream and downstream, respectively, of the Fisherman's Village site on Fiji Way. Manholes 145 and 134 are upstream of the existing County Pump Station in Bali Way. Manhole 61 is located within the promenade adjacent to Via Marina. See Appendix I for US³ Report.

Metered flow rates for MH 186 and 181 were provided to determine the actual flow from the existing Fisherman's Village site. Metered flow rates for MH 145 and 134 were provided to determine the existing flow tributary to the Pump Station. Metered flow rate at MH 61 was provided to determine the existing flow in the overflow sewer, should the Pump Station ever go out of service.

The following table provides metered flow rates for the five manholes:

Manhole	Pipe Size (in.)	Metered Level (in.)	Metered Flow (cfs)
134	12	4.59	0.405
145	15	3.58	0.360
61	15	8.40	1.159
186	10	6.52	0.612
181	10	7.50	0.719

b.) Additional Flows Resulting From Parcel 44 and Fisherman's Village Redevelopment

In order to determine the existing flows from the Parcel 44 development, the County's table "Estimated Average Daily Sewage Flows for Various Occupancies" (Appendix II) was used. To determine the Peak Daily Flow (PDF), the multiplier of 2.5 was applied to the calculated Average Daily Flow. See Appendix II for this calculation. *Existing P44 PDF = 0.1263 cfs*.

The same table was used to calculate the proposed flows based on the eventual redevelopment of the Parcel 44 site. See Appendix II. *Proposed P44 PDF =0.2059 cfs*.

Therefore, additional flows resulting from the proposed P44 improvement project are the difference: Additional P44 PDF = 0.2059 cfs - 0.1263 cfs = 0.0796 cfs.

In order to determine the existing flows from the Fisherman's Village development, metered flow rates for MH 186 and 181 were subtracted. See Appendix III.

Existing FV PDF = 0.719cfs - 0.612cfs = 0.107 cfs

Proposed flows were provided by LA County DPW: Proposed FV PDF = 0.2815 cfs

Therefore, additional flow resulting from the proposed Fisherman's Village improvement project is the difference: Additional FV PDF = $0.2815 \, cfs - 0.1064 \, cfs = 0.1751 \, cfs$

The total additional flow resulting from the Parcel 44 and Fisherman's Village redevelopment projects is **0.1751 cfs + 0.0796 cfs = 0.2547 cfs, Total Additional PDF**

c.) Impacts to sewer in an overflow condition

If the pump station were to be taken offline, sewerage would overflow to the metering structure at Marquesas Way. Manhole 61 is located within a 15" line, near to that metering structure. Metered flow results indicate that, in a non-overflow condition, the maximum flow rate is 1.159cfs. Using Kutter's Formula with n=0.013, this translates to a depth of 7.8 inches. (See spreadsheet in Appendix IV) In its existing condition, the 15" line is operating at 58.14% capacity.

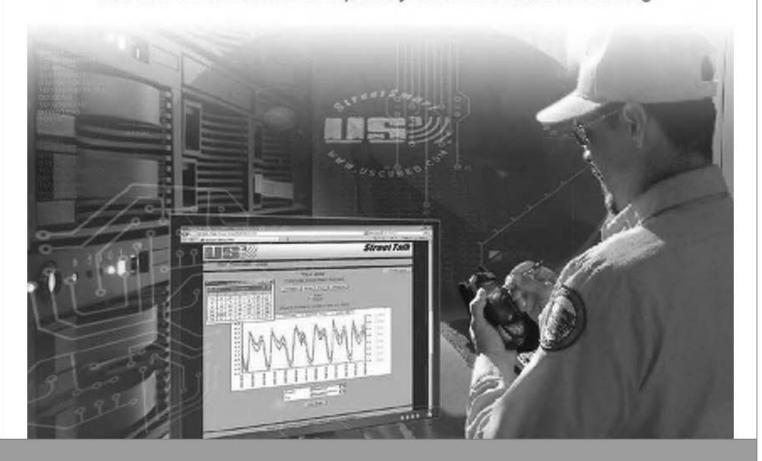
In an overflow situation, flow which is normally pumped from Bali Way, would be diverted to this 15" line. The total additional flow to the 15" line would be the metered flow at Manholes 134 and 135 = 0.405 + 0.360 = 0.77 cfs, for a total flow of 1.159 + .77 cfs = 1.924 cfs. Using Kutter's Formula with n=0.013, this translates to a depth of 11.00inches. (See spreadsheet in Appendix IV.) In its existing, overflow condition, the 15" line is operating at 96.52% capacity.

After the proposed redevelopment of Parcel 44, the total flow to the 15" line in an overflow condition would include the additional 0.0796 $cfs = > 1.924 \ cfs + 0.080 \ cfs = 2.004 \ cfs$ Using Kutter's Formula with n=0.013, this translates to a depth of 11.25 inches. (See spreadsheet in Appendix IV) In a proposed, overflow condition, the 15" line is operating at 100.54% capacity.

After the proposed redevelopment of Parcel 44 and Fisherman's Village, the total flow to the 15" line in an overflow condition would include the additional 0.2547 cfs = > 1.924 cfs + 0.255 cfs = 2.179 cfs Using Kutter's Formula with n=0.013, this translates to a depth of 12.25 inches. (See spreadsheet in Appendix IV) *In a proposed, overflow condition, the 15" line is operating at 109.32% capacity.*

5. Conclusion

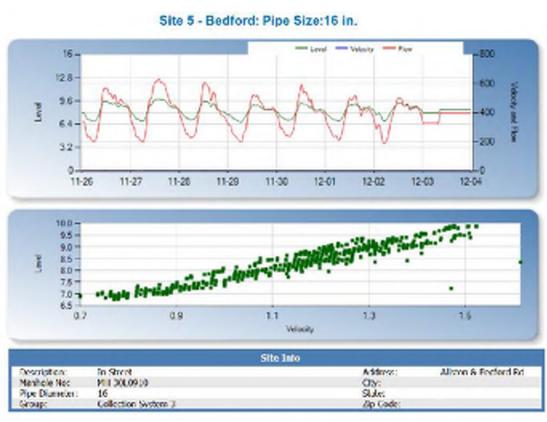
Based on the sewer area study calculations above and attached, in an overflow condition, the existing sewer system which would accept overflow from the Bali Way Pump station to the metering structure at Marquesas Way, can accommodate the calculated flow resulting from the P44 development.


Our firm therefore concludes that the existing sewer has adequate capacity for the proposed development and No further mitigation is required on existing system between the proposed project's connection and the Trunk sewer.

Appendix I – US³ Report

SEWER FLOW MONITORING

Leader in Wireless Temporary Sewer Flow Monitoring


Flow Report 7/2014

Marina Del Rey Breen Engineering

1983 W 190th St Suite 200 Torrance, CA 90504

Contents

- US3 Information and Services
- Project Approach
- Sensor Used and Specifications
- Summary of sites
- Map Location
- Confined Space
- Site 1 #134
 - Site Documentation
 - Site Statistics
 - Site Data and Graphs
- Site 2 #145
 - Site Documentation
 - Site Statistics
 - Site Data and Graphs
- Site 3 #61
 - Site Documentation
 - Site Statistics
 - o Site Data and Graphs
- Site 4 #186
 - Site Documentation
 - Site Statistics
 - Site Data and Graphs
- Site 5 #181
 - Site Documentation
 - Site Statistics
 - Site Data and Graphs

Who we are:

Utility Systems, Science and Software, Inc. (US³), was founded in 2002 as a specialty technical engineering service company with its headquarters located in Santa Ana, California and Service and Engineering Facilities in San Diego, Sacramento.

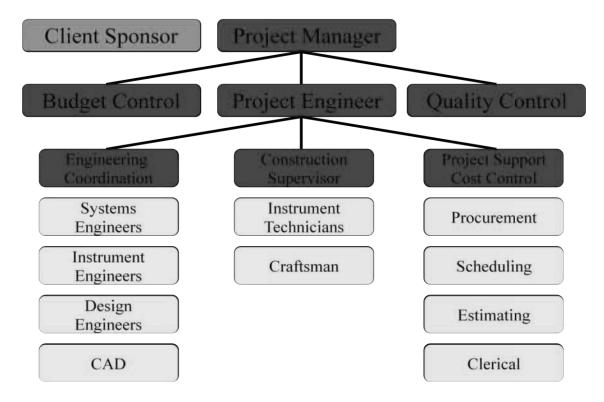
The owners and management team are all professional and degreed engineers and have extensive experience in the application and implementation of Water/Waste Water and associated Process Control Projects. We are currently working in many facilities throughout the USA and are selectively guiding the growth of our business into markets and areas where we can provide the highest quality value of service to our clients.

US³ supports Municipalities, Consulting Engineering firms and other water/waste water systems integrators by providing technical services for engineering, software programming, technical site maintenance and calibration site support work primarily in the Water and Waste Water industries.

Services Include:

- Sewer Monitoring
 - US3 installs and maintains Marsh-McBirney Meters for Sewer Monitoring. US3 will then interface the standard MM Meter for Real-time Web-Based Wireless Flow Monitoring using CDMA, GPRS/GSM, VHF/UHF/Trunk radio networks (including Motorola Networks). US3 provides the following:
 - Detailed Preliminary Investigation.
 - Validate Hydraulic Suitability,
 - Provide Detailed Site Data,
 - Install Meter to Exact Specifications,
- Interface Rain Gauge Instrumentation,
- Provide Communications to all instruments,
- Train Utility Engineers and Technicians how to access Web-Based Data,
- Provide complete Calibration and Maintenance Services.
- SSO Monitoring & Event Notification
- US3 provides simple, cost effective, wireless SSO/CSO Monitoring & Event Notification. This
 information will be sent to your cell phone, pager, work/home phone and/or email.

Flow Meter Maintenance

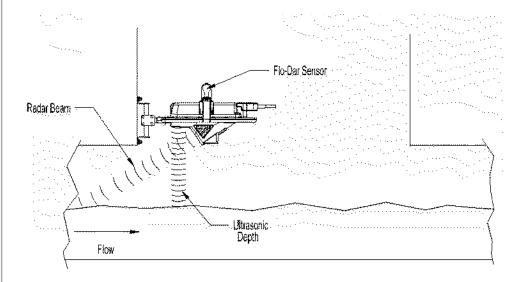

 US3 provides supplemental or dedicated maintenance Marsh-McBirney service for short-term or long-term requirements. Our highly trained and skilled technicians are experts in all phases of waste monitoring system maintenance

Sanitary System Evaluation Services

- US3 has experienced licensed civil engineers who can work with City or County personnel to develop a comprehensive SSES program.
- US3 provides the procedures, equipment, and results of each activity performed during the
 investigation. US3 will develop a report to discuss the existing sanitary sewer collection
 system, identifies the system defects and problem areas, prioritizes and ranks the
 inflow/infiltration sewer segments, and details the recommended improvements. The report
 also includes a preliminary cost estimate associated with the selected rehabilitation methods to
 effectively reduce inflow/infiltration volumes and extend the useful life of the existing piping.

Project Management Approach:

Our Structure for Project Management puts "Checks and Balances" in to ensure the Customer is satisfied with the solutions and product provided.



Flow Meter Used in your Flow Study

Flo-Dar incorporates a Doppler Radar Velocity Sensor and Ultrasonic Depth Transducer for use in Open Channel Applications. It is available with a Permanent Flo-Station. The Flo-Station is available with or without a display and is powered with 120/240 VAC, or 12 VDC. The Flo-Station requires Flo-Ware software, which is included on some models, and a customer supplied PC. Flo-Station with display shows flow rate, total flow, velocity and level. Both Flo-Station's have four outputs one each for level, velocity, flow rate, surcharge level, and a contact closure.

Specifications

Flo-Dar Sensor Information:

Flow Station information:

Enclosure

Material: Polystyrene

Dimensions: 6.9" W x 16.65" L x 11.7" D

(17.5 cm x 42.3 cm x 29.7 cm) Weight: 10.5 lbs. (4.8 kg)

Temperature

Operating Range: 14° F to 122°F

(-10° C to 50° C)

Storage Range: -40° F to 140° F

(-40° C to 60° C)

Velocity Measurement

Method: Radar

Range: 0.75 to 20 ft/s (0.23 m/s to 6.10 m/s) Accuracy: ±0.5%; ±0.1 ft/s (±0.03 m/s)

Level Measurement

Method: Ultrasonic

Standard Operating Range:

0.25 to 60 in. (0.634 to 152.4 cm)

Optional Operating Range: 0 (0 cm) to 240" (6.1

m)

(with 18" dead band)

Temperature Compensated

Accuracy: ±0.1 in. (±0.25 cm)

1% Accuracy

Surcharge Conditions Level/Velocity

Level

Method: Piezo-resistive pressure transducer Maximum Range: 138 inches (3.5 meters)

Velocity

Method: Electromagnetic

Range: -5 to +20 ft/s (-1.5 to +6.1 m/s)

Data Storage

64K (16K cycles of velocity/level data)

Local Terminal

RS232C at 19.2K baud

Timebase Accuracy: 1 second per day

Outputs: Four 4-20 mA outputs; system-isolated,

up to 600Ω load. Each output is selectable between FLOW,

LEVEL, VELOCITY OR SURCHARGE LEVEL.

Power Requirements

AC: 85-264 VAC, 47-63 Hz. 32 watts

DC: 12 VDC for Flo-Station without Display or

Flo-Station with Display (Backlight Off)

180 mA (2.1 watts) with (1) 4-20 mA utilized.

Housing Material: ABS Plastic, NEMA 4

Dimensions: 10.2" W x 9.3" H x 4" D

(25.9 cm W x 23.6 cm H x 10.2 cm D)

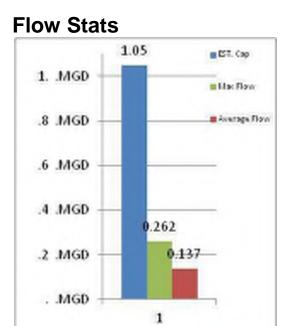
Weight: 5 lbs.

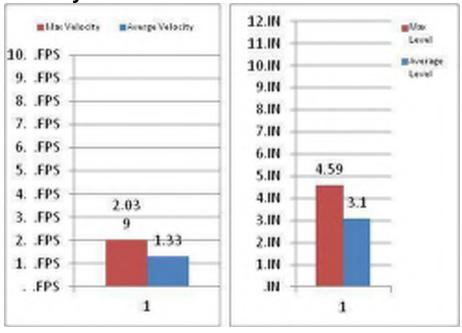
Temperature Operating Range: 14° F to 122° F

(-10° C to 50° C)

Temperature Storage Range:

(without display) -40°F to 140°F (-40°C to 60°C)

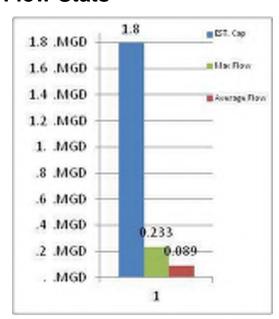

(with display) 4°F to 140°F (-20°C to 60°C) w/Display

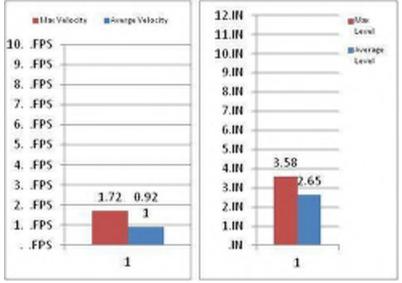

Summary of Sites

Site 1 #134 This is a 12 Inch Pipe Running at or near 25% Capacity. This is located at the entry to a Pump Station. Flows are somewhat slow but consistent. The Level seems to follow a diurnal curve similar to having a combination Residential and commercial flow. On the velocity there seems to be some pulsation from some process flow nearby.

Meter Start D	ate	From	6/30/2014 12:00:00 AM						
Meter Stop D	ate	То	7/14/2014 12:00:00 AM						
Veloci	ity (fps)	Level (in)	Flow (mgd)						
Average	1.330	3.100	0.137						
Maximum	2.039	4.594	0.262						
Minimum	0.580	1.928	0.045						
Pipe Size									
Estimated Ca	apacity (mgd)								
Capacity Use	ed	24.93 %							
Sensor Type		Hach - Flodar							
		Estimated Capacity Usage							
		pacity Used Estimated Capacit	y Available						
% Capacity Used Estimated Capacity Available									

Velocity Stats Level Stats

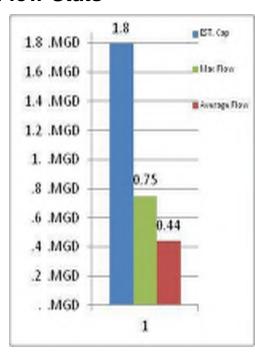


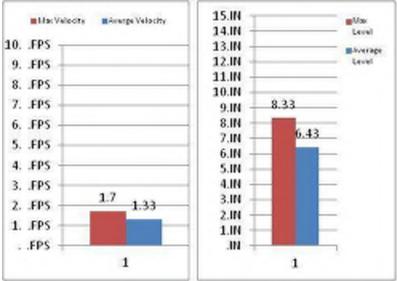

Site 2 #145 This is a 15 Inch Pipe Running at or near 13% Capacity. This is located at the entry to a Pump Station. Flows are somewhat slow but consistent. The Level seems to follow a commercial flow. On the velocity there seems to be some pulsation from some process flow nearby.

Meter Start D	ate	From	6/30/2014 12:00:00 AM					
Meter Stop D	ate	То	7/14/2014 12:00:00 AM					
Veloci	ity (fps)	Level (in)	Flow (mgd)					
Average	0.921	2.651	0.089					
Maximum	1.729	3.580	0.233					
Minimum	0.490	0.206	0.001					
Pipe Size		15.000						
Estimated Ca	apacity (mgd)	1.847						
Capacity Use	ed	12.61 %						
Sensor Type		Hach - Flodar						
		Estimated Capacity Usage						
		pacity Used Estimated Capacit	y Available					

Flow Stats

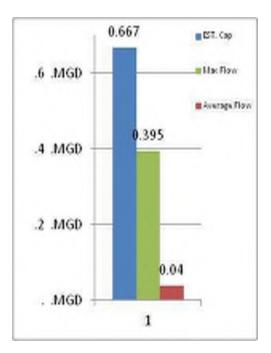
Velocity Stats Level Stats

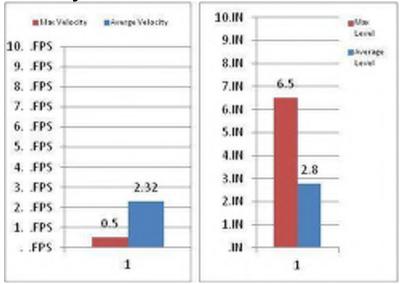



Site 3 #61 This is a 15 Inch Pipe Running at or near 40% Capacity. The Flows seems to follow a Residential flow. Manhole looked good and clean. Good Velocity seems to follow Manning Curve well.

Meter Start Da	ate	From	6/30/2014 12:00:00 AM						
Meter Stop Da	ate	То	7/14/2014 12:00:00 AM						
Veloci	ty (fps)	Level (in)	Flow (mgd)						
Average	1.332	6.431	0.448						
Maximum	1.709	8.399	0.750						
Minimum	0.569	3.206	0.081						
Pipe Size		15.000							
Estimated Ca	apacity (mgd)								
Capacity Use	ed .								
Sensor Type		Hach - Flodar							
		Estimated Capacity Usage							
		pacity Used Estimated Capacit	ty Available						

Flow Stats

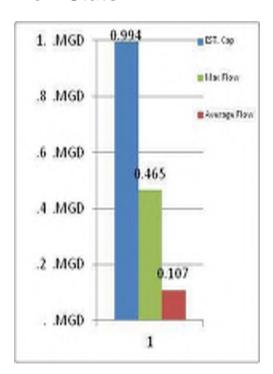


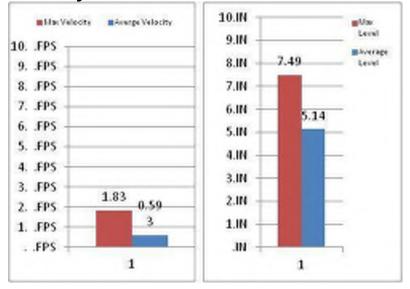

Site 4 #186: Site is a 10 inch pipe with very low Velocities. Velocity is at the low limits of the flow meter. Line looks to have significant silt and debris in the line. When removing the meter we noticed the line is backing up a bit. Because of the backing up in the line the Capacity is at or near 60%. If line were to be cleaned the capacity would be more in the range of 30%.

Meter Start D Meter Stop D		From To	6/30/2014 12:00:00 AM 7/14/2014 12:00:00 AM						
	ity (fps)	Level (in)	Flow (mgd)						
Average	0.506	2.800	0.044						
Maximum	2.320	6.520	0.396						
Minimum	0.000	1.030	0.000						
Pipe Size		10.000							
Estimated Ca	apacity (mgd)	0.667							
Capacity Use	ed								
Sensor Type		Hach - Flodar							
		Estimated Capacity Usage							
		pacity Used Estimated Capac	ity Available						
	% Capacity Used Estimated Capacity Available								

Flow Stats

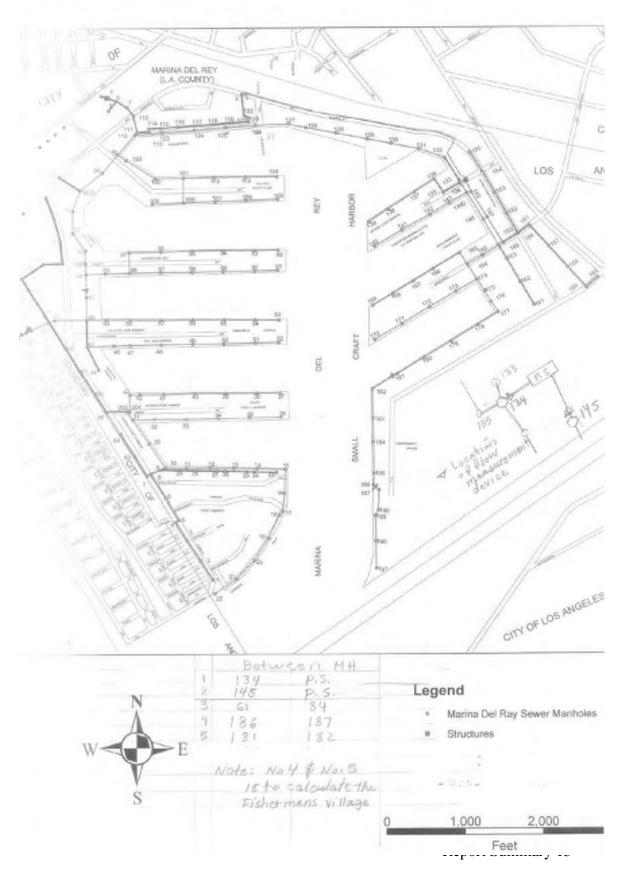
Velocity Stats Level Stats




Site 5 #181 This is a 10 Inch Pipe Running at or near 50% Capacity. Flows are somewhat slow but consistent. The Level seems to follow a diurnal curve similar to having a combination Residential and commercial flow. There is a comment from my Crews that there seems to be significant grease in this line. Also toward the end of the study this site being effected by a possible backup from site #186. If line were to be cleaned out this would significantly improve the capacity of the line. On the velocity there seems to be some pulsation from some process flow nearby.

Meter Start D	ate	From	6/30/2014 12:00:00 AM						
Meter Stop D	ate	То	7/14/2014 12:00:00 AM						
Veloci	ity (fps)	Level (in)	Flow (mgd)						
Average	0.593	5.142	0.107						
Maximum	1.839	7.496	0.465						
Minimum	0.000	3.233	0.000						
Pipe Size		10.000							
Estimated Ca	apacity (mgd)								
Capacity Use	d								
Sensor Type		Hach - Flodar							
		Estimated Capacity Usage							
		pacity Used Estimated Capacit	ty Available						
a Sapacity Osed Estimated Capacity Available									

Flow Stats



Customer Maps

MARINA DEL REY SMD SEWER

Confined Space Installation

US3 Installation Practices does not require Full Confined space entry into the Manhole. We do cross the plane with our hands and arms but never actually enter the Manhole. We do take Gas readings and Fill out the confined space permitting. All of our Technicians have been fully trained in Confined Space and CPR.

Technicians:

Greg Serres Gus Williams

Report Data

Site Report

Confidential Proprietary Information

Breen Engin	eering	marina pump station on Bali way						
site 1 #134				Manho	le No.134			
Access:		System Type	: [
Manhole	Sani	tary X Sto	rm 🗌	Install Date: 6	/30/2014			
Map			I Flow	Meter				
Wap	_/_	Meter Dept	h ":17'					
all the same of th	H	Meter SN "	.*****					
20 121 122 Am	 - -	steady						
LOS	Page	Avg Velocity	Avg Measured	Level	Multiplier			
AD SORAM STATE OF THE STATE OF		1.35	3.25		1			
3 8 9			(Gas				
and the		O2	H2S	СО	LEL			
The state of the s		20.9	0	0	0			
The state of the s	7		N	otes				
Technology								
Velocity	11/10/1	Traffic Safety closed center median, signs cones, lights,						
measured using RADAR								
			Lan	d Use				
		Residential	Commercial	Industrial	Trunk			
			Х					
		Manhole D	epth "	20'	-			
		Pipe Size "		12"				
Traffic Plan		Inner Pipe (In/Out)	Size "	12"/12"				
		Pipe Shape)	Round				
		Pipe Condi	tion	good				
	11	Manhole M	aterial	lined				
3 /	//	Silt (inches)	0				
	/,	Velocity Pro	ofile Data	1.31				
	/	Velocity Pro		2-4-8				
		Sensor Offs		21.91				
		Sensor Dis		9.91				
		Flow Direct		Upstream				
		Flow Headi	ing	East				

Meter Site Document

Breen Engineering

site 1 #134

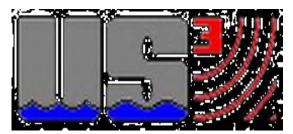
marina pump station on Bali way

Upstream

Downstream

Temporary Flow Study

Breen Engineering


site 1 #134

Meter Start D	ate	From	6/30/2014 12:00:00 AM
Meter Stop D	ate	То	7/14/2014 12:00:00 AM
Veloci	ty (fps)	Level (in)	Flow (mgd)
Average	1.330	3.100	0.137
Maximum	2.039	4.594	0.262
Minimum	0.580	1.928	0.045
Pipe Size		12.000	
Estimated Ca	pacity (mgd)	1.052	
Capacity Use	d	24.93 %	
Sensor Type		Hach - Flodar	
		Estimated Capacity Usag	e
		pacity Used Estimated Capa	city Available

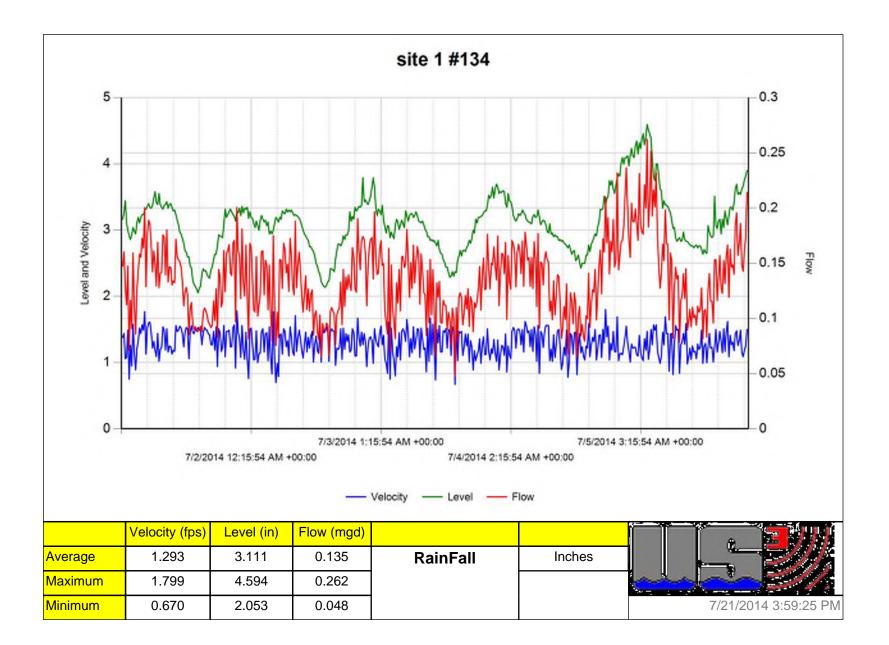
Utility Systems, Science and Software

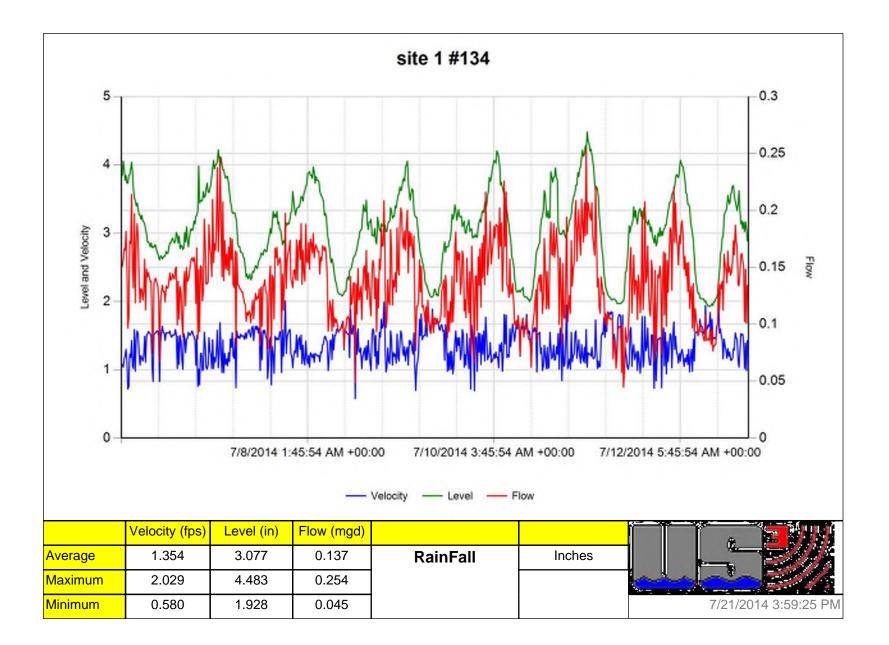
6190 Fairmount Ave. Suite E San Diego, CA 92021

601 N. Parkcenter Drive Suite 209 Santa Ana, CA 92705

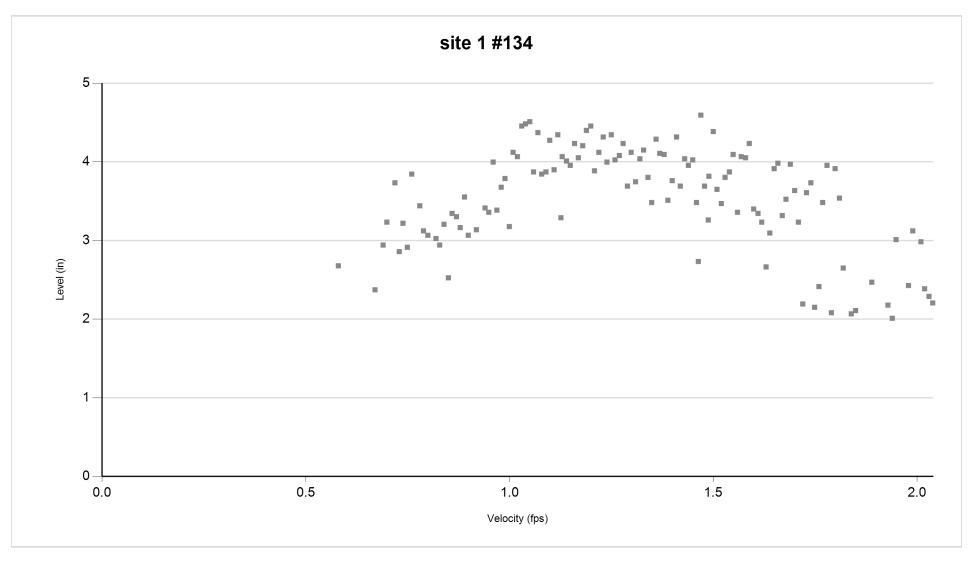
Report Date: 07/21/2014 Customer: Breen Engineering Group: Marina Del Rey SitelD: 370

History for site 1 #134: 06/30/2014 thru 07/14/2014


	Flo	w (GPM)		Flo	ow (MGD)		Ve	locity (FP	PS)	Lev	el (inches	·)		
Date	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Total Gal	Rain
6/30/2014	99.91	139.23	49.46	0.14	0.20	0.07	1.30	1.77	0.75	3.23	3.58	2.86	143,864	
7/1/2014	89.70	139.24	52.44	0.13	0.20	0.08	1.33	1.78	0.70	2.96	3.43	2.05	129,162	
7/2/2014	89.65	136.54	45.17	0.13	0.20	0.07	1.30	1.71	0.75	3.00	3.79	2.14	129,089	
7/3/2014	90.42	123.72	33.00	0.13	0.18	0.05	1.29	1.67	0.67	3.05	3.69	2.29	130,199	
7/4/2014	104.13	182.08	45.18	0.15	0.26	0.07	1.27	1.80	0.78	3.38	4.59	2.43	149,943	
7/5/2014	96.33	148.73	54.66	0.14	0.21	0.08	1.26	1.69	0.72	3.24	4.05	2.64	138,722	
7/6/2014	100.35	171.58	46.74	0.14	0.25	0.07	1.33	1.69	0.74	3.23	4.22	2.61	144,497	
Week:	95.78	182.08	33.00	0.14	0.26	0.05	1.30	1.80	0.67	3.16	4.59	2.05	965,476	
7/7/2014	98.24	137.14	53.56	0.14	0.20	0.08	1.37	2.01	0.78	3.12	3.97	2.32	141,462	
7/8/2014	92.91	144.77	33.96	0.13	0.21	0.05	1.36	1.99	0.58	3.01	4.05	2.08	133,784	
7/9/2014	94.84	156.87	46.14	0.14	0.23	0.07	1.38	1.93	0.69	3.04	4.21	2.07	136,565	
7/10/2014	98.02	176.19	43.18	0.14	0.25	0.06	1.35	1.95	0.84	3.15	4.48	2.00	141,142	
7/11/2014	90.18	153.96	31.07	0.13	0.22	0.04	1.34	1.85	0.73	2.97	4.07	1.97	129,859	
7/12/2014	95.50	179.24	53.15	0.14	0.26	0.08	1.40	2.03	0.88	3.01	4.07	1.93	137,517	
7/13/2014	95.40	179.86	41.18	0.14	0.26	0.06	1.34	2.04	0.70	3.08	4.01	2.09	137,380	
Week:	95.01	179.86	31.07	0.14	0.26	0.04	1.36	2.04	0.58	3.06	4.48	1.93	957,710	



Report Date: 07/21/2014 Customer: Breen Engineering Group: Marina Del Rey SitelD: 370


History for site 1 #134: 06/30/2014 thru 07/14/2014

	Flow (GPM) Flow (MGD)				Ve	elocity (F	PS)	Level (inches)						
Date	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Total Gal	Rain
7/14/2014	80.46	137.30	52.62	0.12	0.20	0.08	1.38	1.71	0.72	2.74	4.04	1.91	115,859	
Week:	80.46	137.30	52.62	0.12	0.20	0.08	1.38	1.71	0.72	2.74	4.04	1.91	115,859	

6/30/2014 thru 7/14/2014


7/21/2014 3:59:25 PM

Site Report

Confidential Proprietary Information

Danie Fasting attention 1 to a distribution of 1997 to						
Breen Engineering in parking lot due south of Marina pump station						
site 2 #145 Manhole No.145						
Site 2 # 140						
Access: System Type:						
manhole	Sanitary X Storm Install Date: 6/30/20			30/2014		
<u> </u>	l	Flow Meter				
Мар						
7	1	Meter Depth ":10' Meter SN ":****				
* 100 To To	//					
- 12 12 Jun 1		steady				
LOS	Page	Avg Velocity	Avg Measured	d Level	Multiplier	
Au Bonnes St.		.86	3.25		1	
3 6 4 1		Gas				
Mary to the		O2	H2S	СО	LEL	
The first has	1	20.9	0	0	0	
12 12 12 12 12 12			Notes			
Technology						
Velocity measured using	000000	Traffic Safety				
		cones Land Use				
RADAR						
		Residential	Commercial	Industrial	Trunk	
				1		
		Manholo De	anth "	12'		
		Manhole Depth " Pipe Size "		15"		
Troffic Dio		Inner Pipe Size "		15"/15"		
Traffic Plan		(In/Out)		10 / 10		
		Pipe Shape		Round		
		Pipe Condition		good		
	11	Manhole Material		lined		
		Silt (inches)		0		
	/,	Velocity Profile Data		.82		
	/	Velocity Profile Taken		2-4-8		
		Sensor Offset		22.67		
		Sensor Dist. to Crown		7.67		
		Flow Direction		Upstream		
		Flow Heading		North		

Meter Site Document

Breen Engineering

site 2 #145

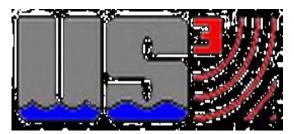
in parking lot due south of Marina pump station

Upstream

Installed

Downstream

Breen Engineering

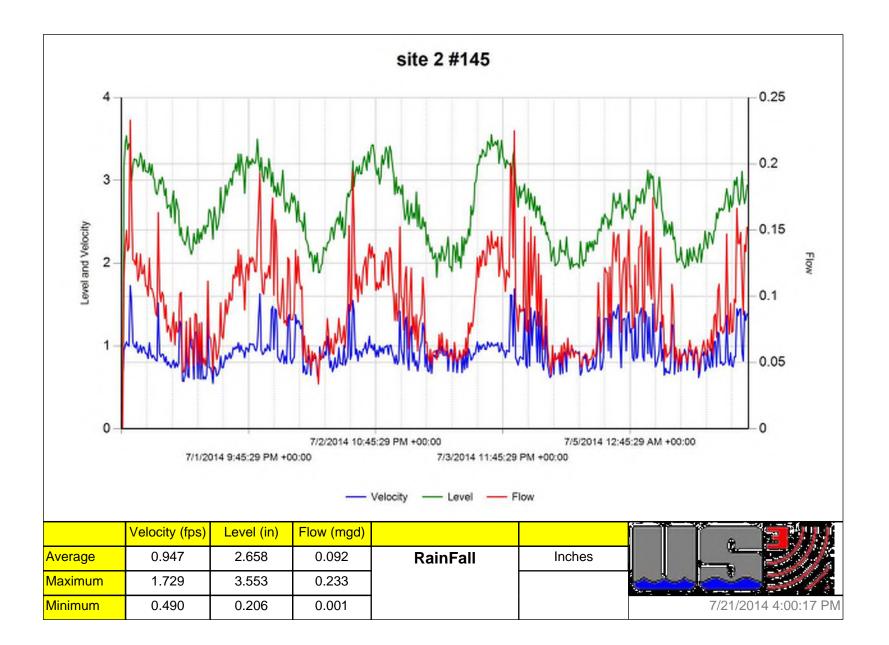

site 2 #145

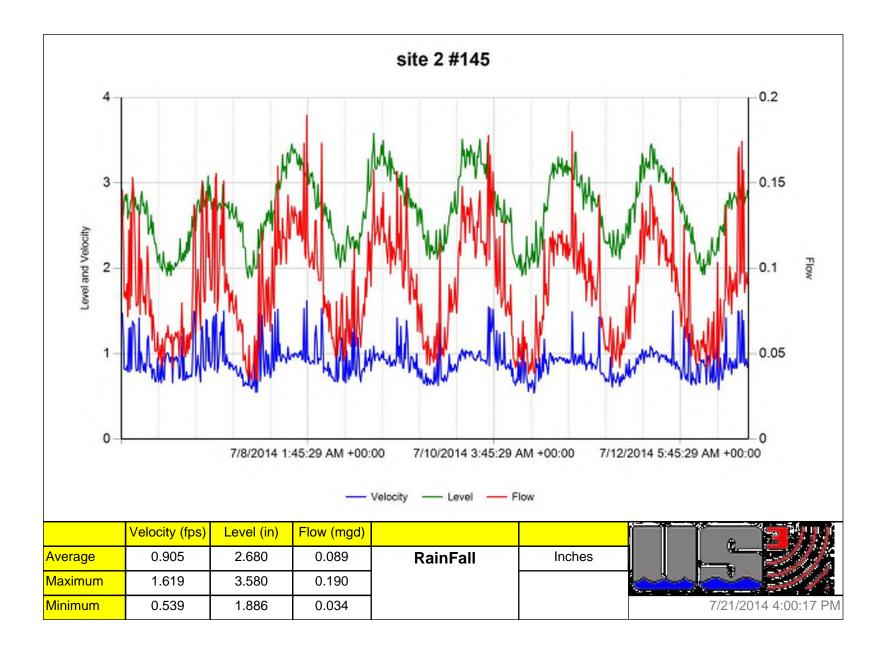
Meter Start D	ate	From	6/30/2014 12:00:00 AM						
Meter Stop D	ate	То	7/14/2014 12:00:00 AM						
Veloci	ty (fps)	Level (in)	Flow (mgd)						
Average	0.921	2.651	0.089						
Maximum	1.729	3.580	0.233						
Minimum	0.490	0.206	0.001						
Pipe Size		15.000							
Estimated Ca	pacity (mgd)	1.847							
Capacity Use	d	12.61 %							
Sensor Type		Hach - Flodar							
Estimated Capacity Usage									
		pacity Used Estimated	Capacity Available						

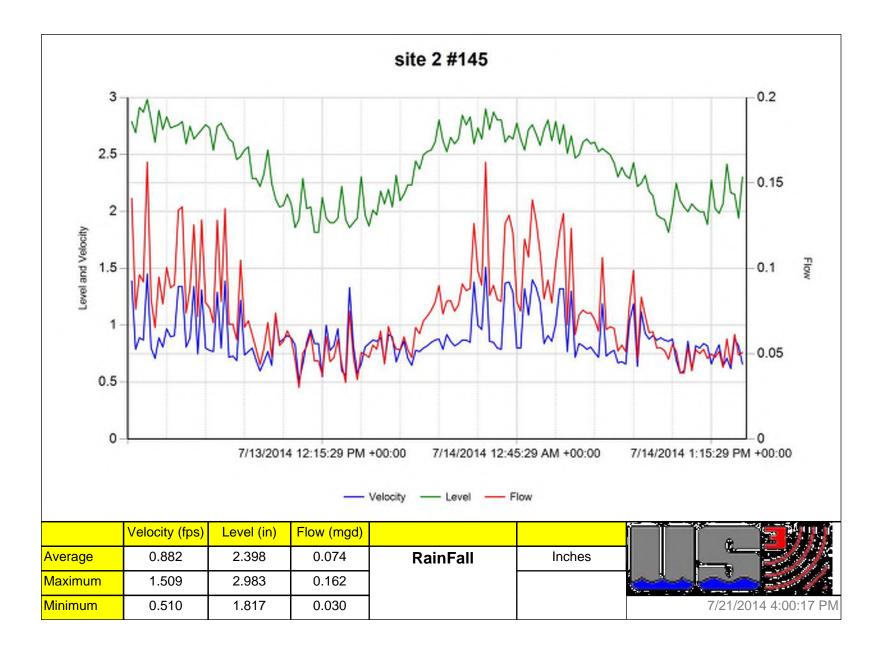
Sestimated Capacity Usage % Capacity Used Estimated Capacity Available

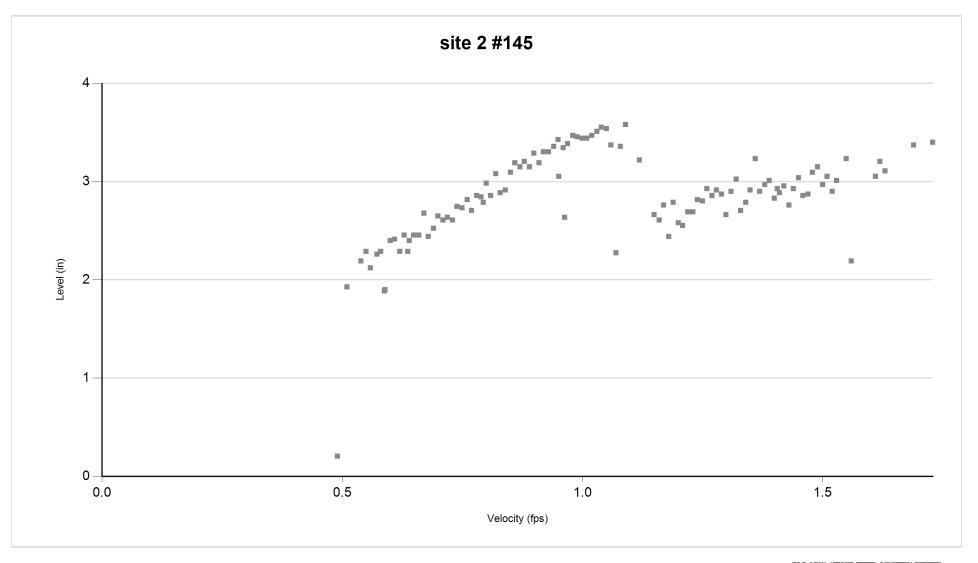
Utility Systems, Science and Software

6190 Fairmount Ave. Suite E San Diego, CA 92021


History for site 2 #145: 06/30/2014 thru 07/14/2014

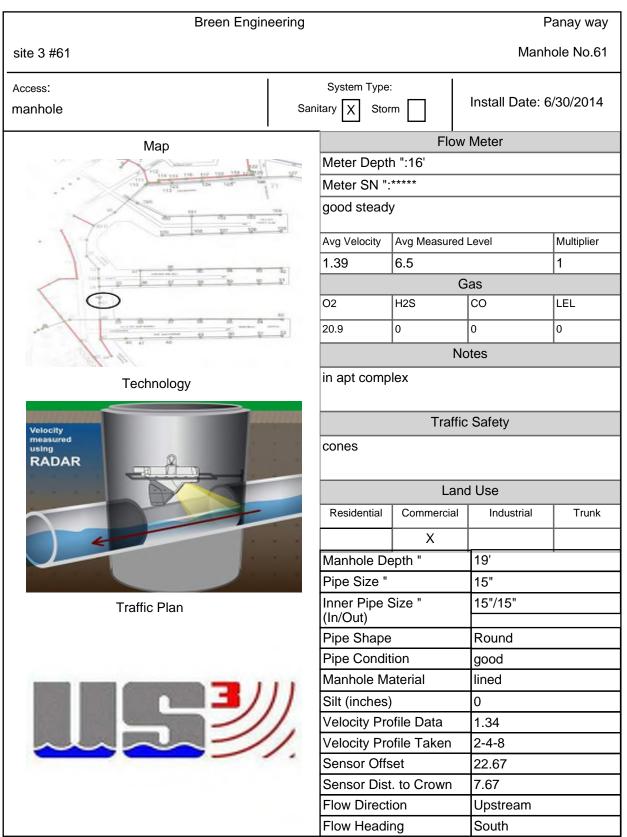

	Flo	w (GPM)		Fle	ow (MGD)		Ve	locity (FP	PS)	Lev	vel (inches	5)		
Date	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Total Gal	Rain
6/30/2014	77.24	161.74	0.73	0.11	0.23	0.00	0.95	1.73	0.49	3.01	3.54	0.21	111,228	
7/1/2014	65.71	134.18	29.12	0.09	0.19	0.04	0.92	1.63	0.55	2.78	3.50	2.11	94,618	
7/2/2014	65.12	134.90	23.51	0.09	0.19	0.03	0.94	1.55	0.59	2.72	3.43	1.89	93,770	
7/3/2014	66.37	156.20	33.35	0.10	0.22	0.05	0.96	1.69	0.67	2.70	3.55	1.83	95,566	
7/4/2014	59.81	121.10	28.37	0.09	0.17	0.04	0.99	1.51	0.62	2.45	3.12	1.93	86,131	
7/5/2014	58.44	115.57	30.27	0.08	0.17	0.04	0.94	1.48	0.62	2.52	3.11	1.94	84,147	
7/6/2014	56.02	108.06	28.67	0.08	0.16	0.04	0.93	1.50	0.66	2.46	3.08	1.91	80,673	
Week:	64.10	161.74	0.73	0.09	0.23	0.00	0.95	1.73	0.49	2.66	3.55	0.21	646,134	
7/7/2014	66.46	131.61	23.82	0.10	0.19	0.03	0.93	1.62	0.55	2.76	3.46	1.89	95,701	
7/8/2014	64.09	109.68	31.95	0.09	0.16	0.05	0.91	1.56	0.66	2.75	3.58	2.01	92,286	
7/9/2014	65.40	123.48	30.08	0.09	0.18	0.04	0.91	1.55	0.63	2.78	3.51	2.11	94,177	
7/10/2014	59.35	124.98	26.53	0.09	0.18	0.04	0.86	1.49	0.54	2.68	3.36	1.91	85,463	
7/11/2014	63.13	110.30	29.15	0.09	0.16	0.04	0.87	1.50	0.61	2.78	3.46	2.11	90,913	
7/12/2014	57.11	121.10	28.65	0.08	0.17	0.04	0.90	1.51	0.58	2.55	3.05	1.93	82,236	
7/13/2014	51.27	112.52	21.05	0.07	0.16	0.03	0.89	1.51	0.51	2.39	2.90	1.82	73,835	
Week:	60.97	131.61	21.05	0.09	0.19	0.03	0.90	1.62	0.51	2.67	3.58	1.82	614,611	




History for site 2 #145: 06/30/2014 thru 07/14/2014

	Flo	ow (GPM))	Fl	ow (MGD)		Velocity (FPS)			Level (inches)			Level (inches)				
Date	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Total Gal	Rain			
7/14/2014	38.17	68.62	26.88	0.05	0.10	0.04	0.80	1.19	0.58	2.14	2.43	1.82	54,960				
Week:	38.17	68.62	26.88	0.05	0.10	0.04	0.80	1.19	0.58	2.14	2.43	1.82	54,960				

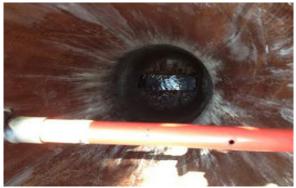
6/30/2014 thru 7/14/2014



7/21/2014 4:00:17 PM

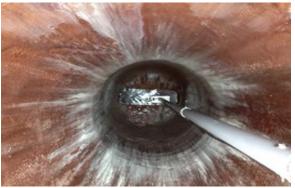
Site Report

Confidential Proprietary Information


Meter Site Document

Breen Engineering

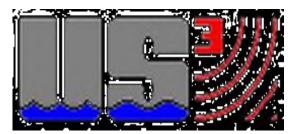
site 3 #61 Panay way



Upstream

Installed

Downstream

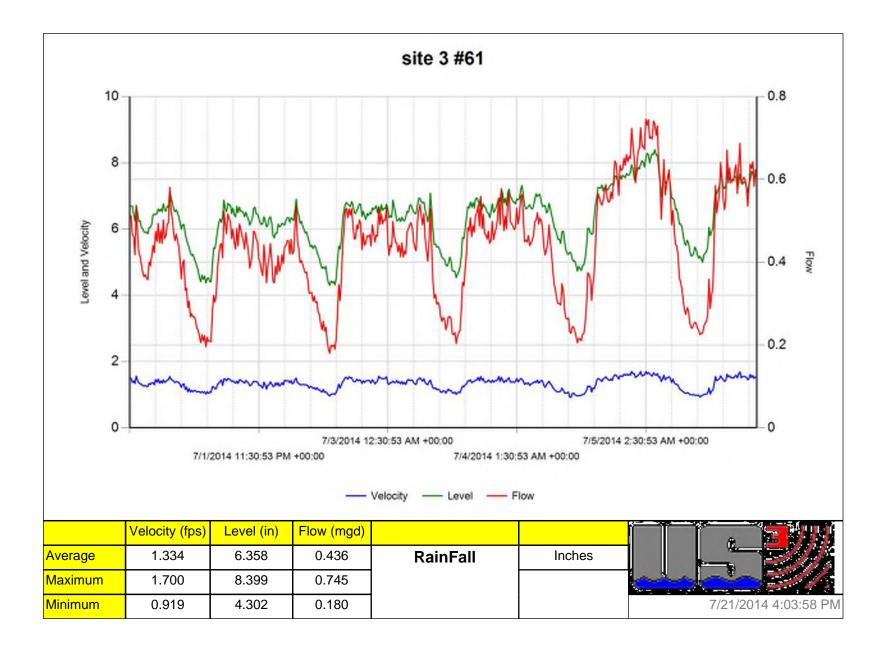

Breen Engineering

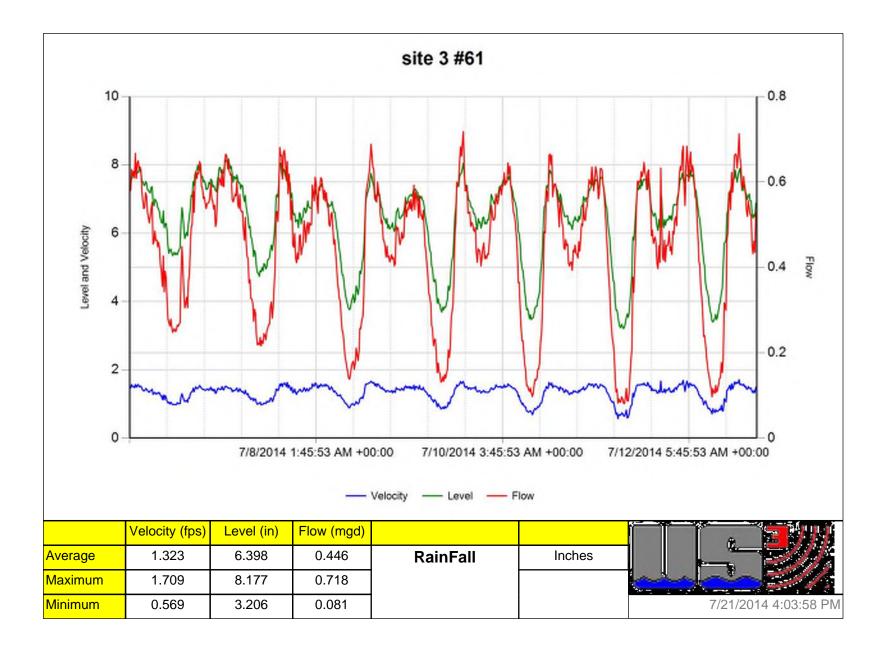
site 3 #61

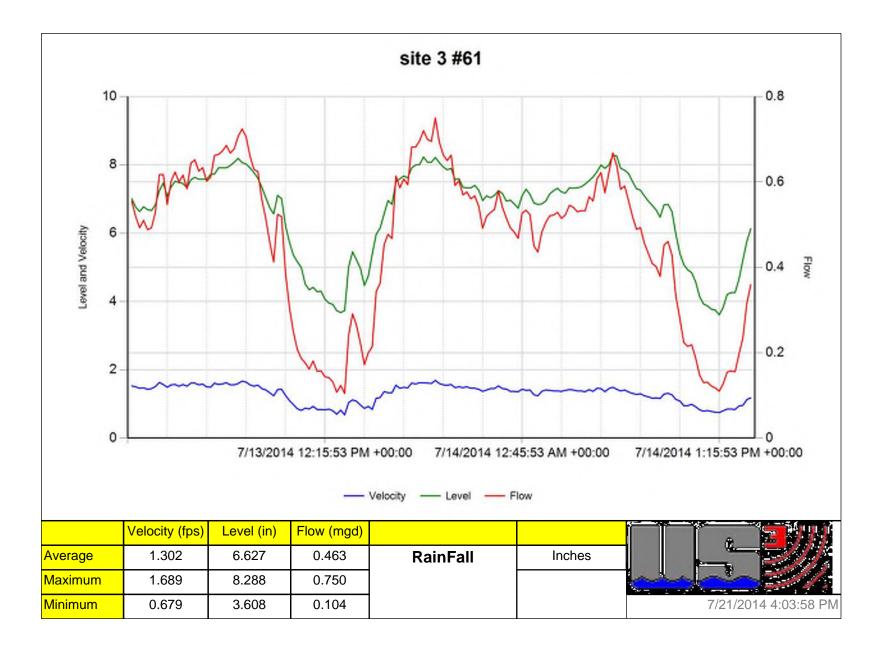
Meter Start D	ate	From	6/30/2014 12:00:00 AM						
Meter Stop D	ate	То	7/14/2014 12:00:00 AM						
Veloci	ty (fps)	Level (in)	Flow (mgd)						
Average	1.332	6.431	0.448						
Maximum	1.709	8.399	0.750						
Minimum	0.569	3.206	0.081						
Pipe Size		15.000							
Estimated Ca	pacity (mgd)	1.847							
Capacity Use	d	40.60 %							
Sensor Type		Hach - Flodar							
	- % Co	Estimated Capacity Usage	Avallable						
% Capacity Used Estimated Capacity Available									

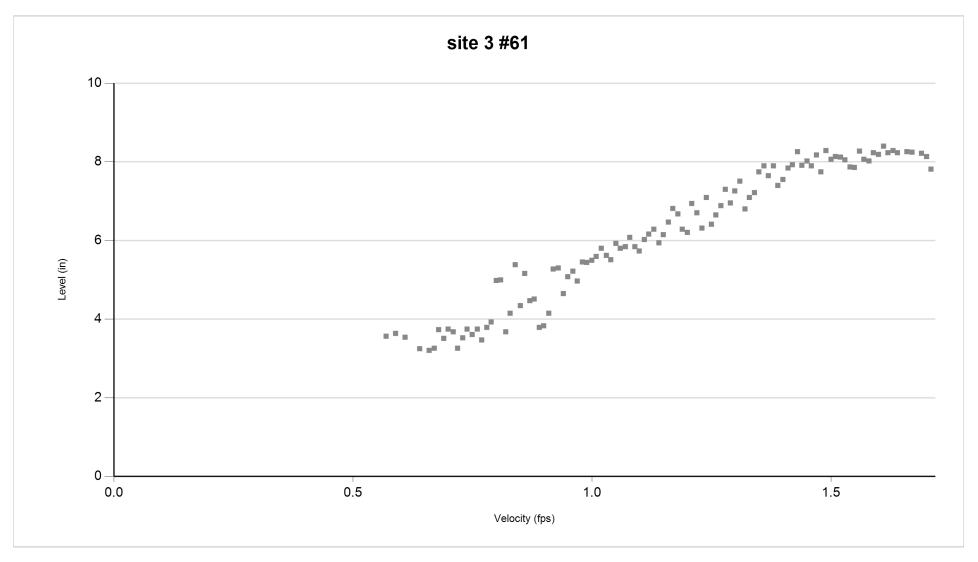
Utility Systems, Science and Software

6190 Fairmount Ave. Suite E San Diego, CA 92021


History for site 3 #61: 06/30/2014 thru 07/14/2014


	Flo	w (GPM))	Fle	ow (MGD)		Ve	elocity (FF	PS)	Le	vel (inches	;)		
Date	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Total Gal	Rain
6/30/2014	311.54	403.36	248.50	0.45	0.58	0.36	1.38	1.56	1.25	6.42	7.19	5.86	448,617	
7/1/2014	269.37	370.27	135.82	0.39	0.53	0.20	1.30	1.50	1.02	5.98	6.90	4.37	387,894	
7/2/2014	283.92	374.48	125.07	0.41	0.54	0.18	1.33	1.56	0.96	6.09	6.93	4.30	408,845	
7/3/2014	299.34	400.18	141.56	0.43	0.58	0.20	1.33	1.55	1.01	6.34	7.32	4.54	431,053	
7/4/2014	346.09	517.53	142.76	0.50	0.75	0.21	1.37	1.70	0.92	6.82	8.40	4.73	498,374	
7/5/2014	339.53	477.13	156.34	0.49	0.69	0.23	1.35	1.69	0.93	6.85	7.94	5.00	488,922	
7/6/2014	335.89	461.73	172.08	0.48	0.66	0.25	1.31	1.54	0.98	6.99	8.18	5.34	483,683	
Week:	312.24	517.53	125.07	0.45	0.75	0.18	1.34	1.70	0.92	6.50	8.40	4.30	3,147,3 90	
7/7/2014	316.83	472.67	149.98	0.46	0.68	0.22	1.35	1.63	0.97	6.51	8.05	4.73	456,239	
7/8/2014	297.58	478.01	96.00	0.43	0.69	0.14	1.35	1.67	0.89	6.14	7.75	3.76	428,513	
7/9/2014	304.75	498.56	91.24	0.44	0.72	0.13	1.34	1.66	0.85	6.26	8.05	3.69	438,842	
7/10/2014	299.77	462.05	67.54	0.43	0.67	0.10	1.30	1.63	0.69	6.25	7.84	3.47	431,669	
7/11/2014	299.53	474.94	56.03	0.43	0.68	0.08	1.30	1.69	0.57	6.19	7.84	3.21	431,318	
7/12/2014	321.16	494.90	67.15	0.46	0.71	0.10	1.34	1.71	0.71	6.43	8.19	3.40	462,467	
7/13/2014	330.79	520.82	72.51	0.48	0.75	0.10	1.32	1.69	0.68	6.74	8.29	3.68	476,334	




History for site 3 #61: 06/30/2014 thru 07/14/2014

	Flo	ow (GPM))	Fl	ow (MGD)		Ve	elocity (FF	PS)	Le	vel (inches	;)		
Date	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Total Gal	Rain
Week:	310.06	520.82	56.03	0.45	0.75	0.08	1.33	1.71	0.57	6.36	8.29	3.21	3,125,3 82	
7/14/2014	215.88	410.12	76.25	0.31	0.59	0.11	1.06	1.41	0.75	5.65	7.90	3.61	310,862	
Week:	215.88	410.12	76.25	0.31	0.59	0.11	1.06	1.41	0.75	5.65	7.90	3.61	310,862	

6/30/2014 thru 7/14/2014

7/21/2014 4:03:58 PM

Site Report

Confidential Proprietary Information

Breen Engin	eering		behind	Whisky Reds r	estaurant
site 4 #186				Manho	le No.186
Access: manhole	Sani	System Type itary X Stor	_	Install Date: 6	5/30/2014
Map			Flow	Meter	
		Meter Depti	h ":4'		
CRAFT		Meter SN ":	****		
The state of the s		good			
100	/	Avg Velocity	Avg Measured	Level	Multiplier
WALL THE PARTY OF		.54	2.50		1
(-5)				Gas	
100 Prato		O2	H2S	со	LEL
		20.9	0	0	0
Maranka Mari			N	otes	
Technology				urant, up strea nowing a back-	
Velocity			Traffic	Safety	
RADAR		cones			
			Lan	d Use	
		Residential	Commercial	Industrial	Trunk
			Х	1	
		Manhole De	epth "	6'	
		Pipe Size "		10"	
Traffic Plan		Inner Pipe (In/Out)	Size "	10"/10"	
		Pipe Shape	1	Round	
		Pipe Condit		good	
		Manhole Ma		concrete	
	"	Silt (inches)		0	
	/	Velocity Pro		.49	
	/	Velocity Pro			
		Sensor Offs	set	17.41	
		Sensor Dist	t. to Crown	7.41	
		Flow Direct	ion	Upstream	
		Flow Headi	na	Fast	

Meter Site Document

Breen Engineering

site 4 #186

behind Whisky Reds restaurant

Breen Engineering

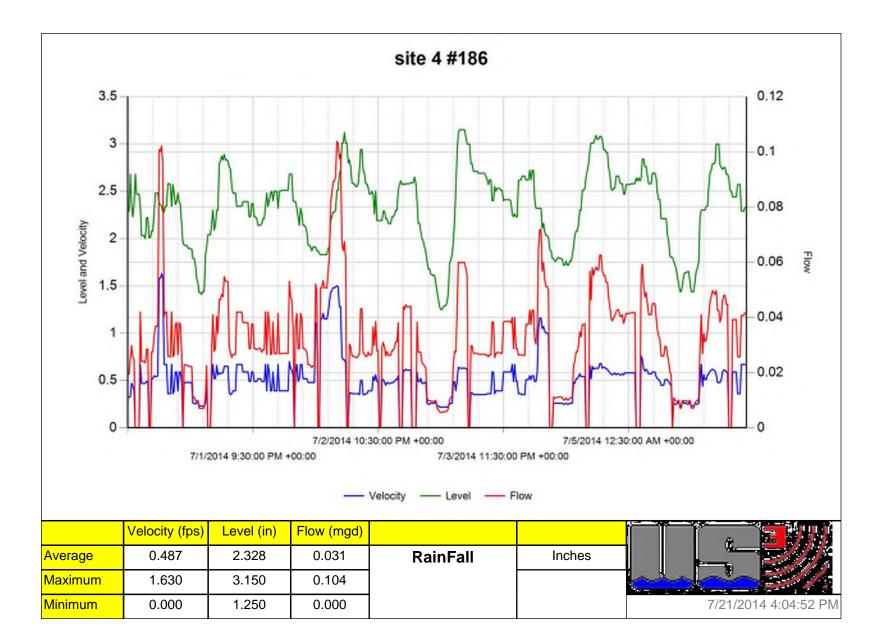

site 4 #186

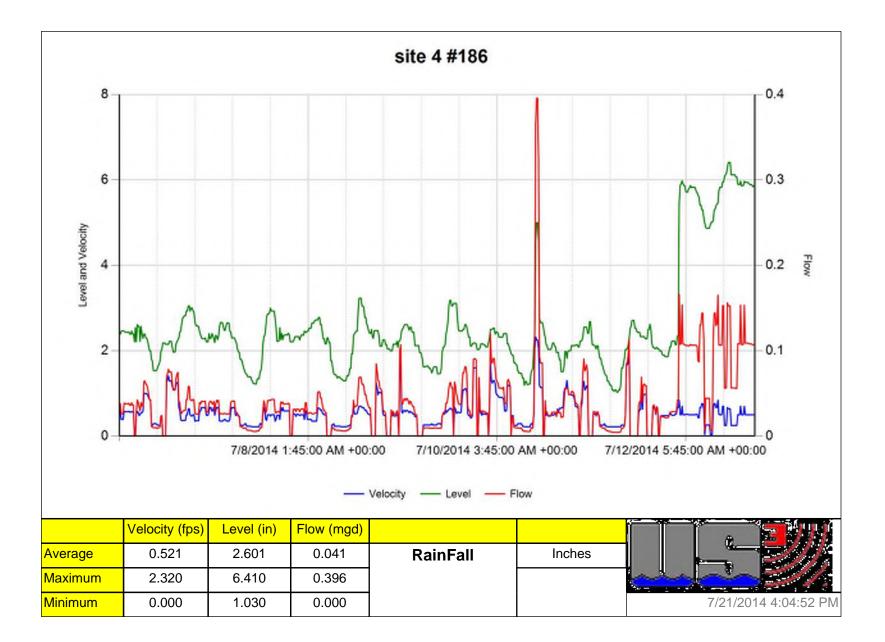
Meter Start Da	ate	From	6/30/2014 12:00:00 AM
Meter Stop Da	ate	То	7/14/2014 12:00:00 AM
Velocity (fps)		Level (in)	Flow (mgd)
Average	0.506	2.800	0.044
Maximum	2.320	6.520	0.396
Minimum	0.000	1.030	0.000
Pipe Size		10.000	
Estimated Ca	pacity (mgd)	0.667	
Capacity Use	d	59.32 %	
Sensor Type		Hach - Flodar	
		Estimated Capacity Usage	

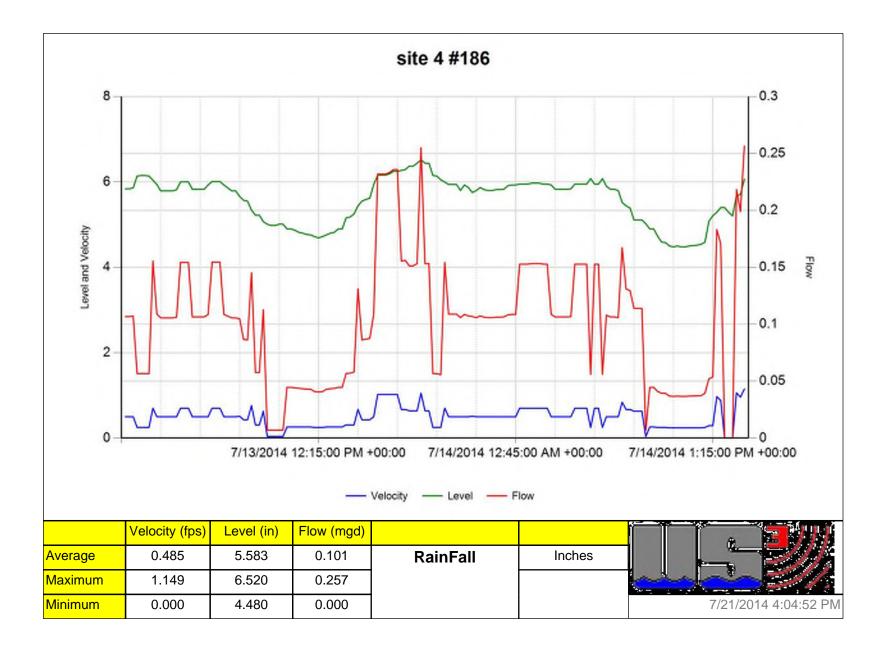
Capacity Used | Estimated Capacity Available

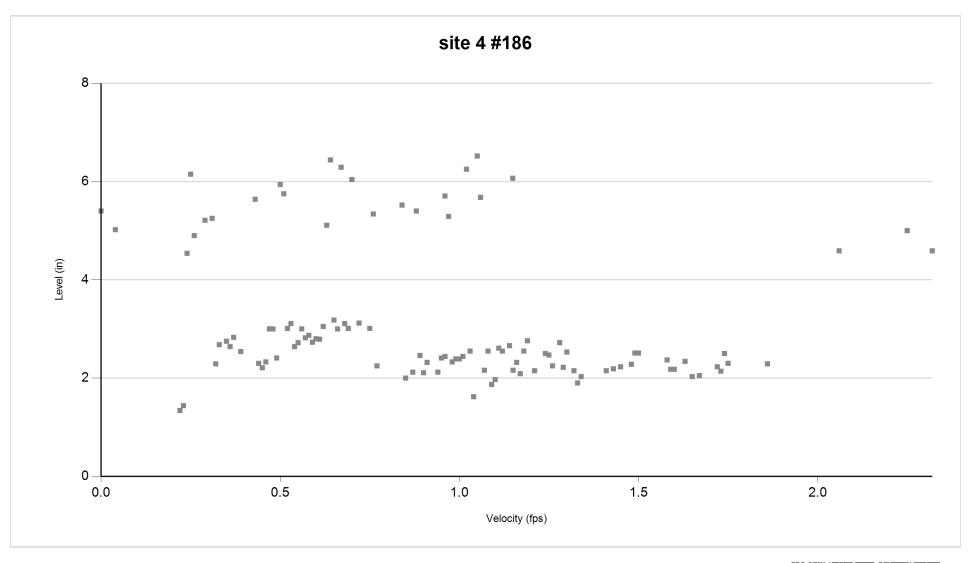
Utility Systems, Science and Software

6190 Fairmount Ave. Suite E San Diego, CA 92021


History for site 4 #186: 06/30/2014 thru 07/14/2014


	Flo	ow (GPM))	Fle	ow (MGD)		Ve	locity (FF	PS)	Le	vel (inches	;)		
Date	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Total Gal	Rain
6/30/2014	22.91	70.91	0.00	0.03	0.10	0.00	0.53	1.63	0.00	2.34	2.68	2.00	32,995	
7/1/2014	20.21	38.04	0.00	0.03	0.05	0.00	0.46	0.70	0.00	2.27	2.89	1.41	29,096	
7/2/2014	25.06	72.05	0.00	0.04	0.10	0.00	0.59	1.50	0.00	2.37	3.12	1.83	36,087	
7/3/2014	19.62	49.85	0.00	0.03	0.07	0.00	0.43	1.16	0.00	2.34	3.15	1.25	28,252	
7/4/2014	24.16	49.85	0.00	0.03	0.07	0.00	0.50	1.16	0.00	2.43	3.09	1.72	34,785	
7/5/2014	20.07	44.82	0.00	0.03	0.06	0.00	0.46	1.00	0.00	2.25	3.00	1.44	28,907	
7/6/2014	24.90	54.38	0.00	0.04	0.08	0.00	0.58	1.41	0.00	2.33	3.05	1.53	35,859	
Week:	22.42	72.05	0.00	0.03	0.10	0.00	0.51	1.63	0.00	2.33	3.15	1.25	225,981	
7/7/2014	17.94	36.04	0.00	0.03	0.05	0.00	0.41	0.67	0.00	2.21	3.00	1.22	25,831	
7/8/2014	19.72	74.29	0.00	0.03	0.11	0.00	0.45	1.75	0.00	2.18	3.23	1.29	28,390	
7/9/2014	27.07	83.11	0.00	0.04	0.12	0.00	0.62	1.74	0.00	2.21	3.18	1.46	38,986	
7/10/2014	31.61	274.86	0.00	0.05	0.40	0.00	0.65	2.32	0.00	2.10	5.00	1.19	45,517	
7/11/2014	22.96	115.14	0.00	0.03	0.17	0.00	0.43	1.86	0.00	2.43	5.98	1.03	33,069	
7/12/2014	71.09	114.62	4.84	0.10	0.17	0.01	0.48	0.84	0.04	5.78	6.41	4.87	102,370	
7/13/2014	73.81	177.14	4.86	0.11	0.26	0.01	0.50	1.05	0.04	5.67	6.52	4.69	106,291	
Week:	37.74	274.86	0.00	0.05	0.40	0.00	0.51	2.32	0.00	3.22	6.52	1.03	380,453	




History for site 4 #186: 06/30/2014 thru 07/14/2014

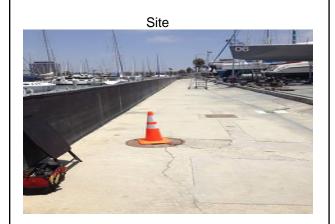
	Flo	ow (GPM)	Fl	ow (MGD))	Ve	elocity (FF	PS)	Le	vel (inches	5)		
Date	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Total Gal	Rain
7/14/2014	55.20	178.17	0.00	0.08	0.26	0.00	0.42	1.15	0.00	5.04	6.07	4.48	79,483	
Week:	55.20	178.17	0.00	0.08	0.26	0.00	0.42	1.15	0.00	5.04	6.07	4.48	79,483	

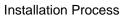
6/30/2014 thru 7/14/2014

7/21/2014 4:04:52 PM

Site Report

Confidential Proprietary Information


Proon Engin	ooring				obin vord
Breen Engin	eening				ship yard
site 5 #181				Manho	le No.181
Access: manhole	San	System Type:		Install Date: 6	5/30/2014
Мар			Flow	Meter	
		Meter Depth	า ":4'10"		
CRAPT CORPORATION OF THE CORPORA		Meter SN ":	****		
		slow,			
100	/	Avg Velocity	Avg Measured	Level	Multiplier
WALL THE PARTY OF		.51	4.75		1
(-5)			G	as	
100		O2	H2S	СО	LEL
		20.9	0	0	0
NO THE PROPERTY OF THE PROPERT			No	otes	
Technology		and down s		to be cleaned, now rest room manhole	
Velocity		-		Safety	
measured using RADAR		cones			
			Lan	d Use	
7	_	Residential	Commercial	Industrial	Trunk
		Manhole De	epth "	7'	
		Pipe Size "		10"	
Traffic Plan		Inner Pipe S (In/Out)	Size "	10"/10"	
		Pipe Shape	<u> </u>	Round	
		Pipe Condit		fair	
		Manhole Ma	aterial	concrete	
	//	Silt (inches)		0	
	1.	Velocity Pro	ofile Data	.48	
	/	Velocity Pro	ofile Taken		
		Sensor Offs	set	17.41	
		Sensor Dist	. to Crown	7.41	
		Flow Directi	ion	Downstream	
		Flow Headi	na	Fast	



Meter Site Document

Breen Engineering

site 5 #181 ship yard

Installed

Downstream

Breen Engineering

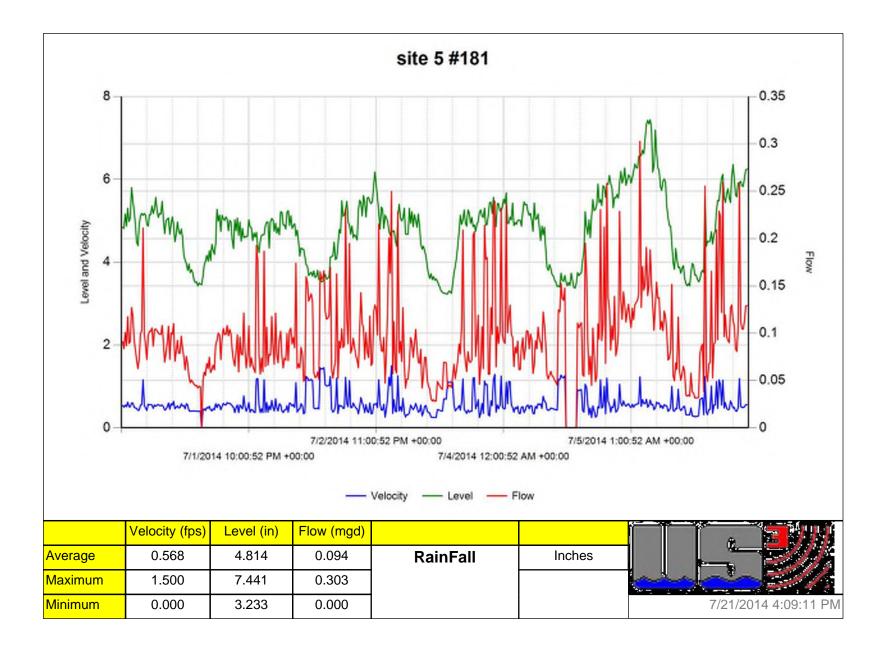
site 5 #181

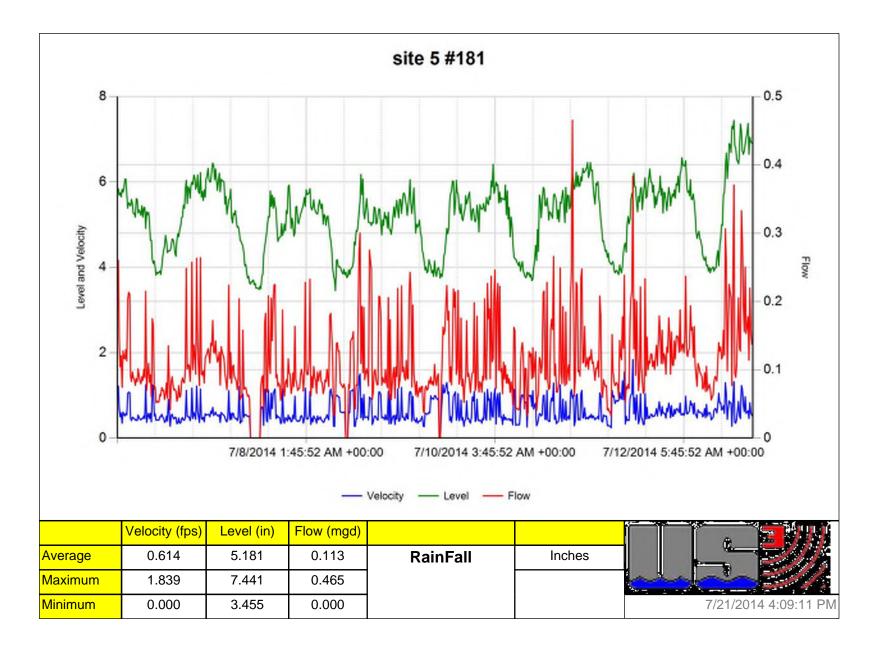
Meter Start D	ate	From	6/30/2014 12:00:00 AM					
Meter Stop D	ate	То	7/14/2014 12:00:00 AM					
Veloci	ty (fps)	Level (in)	Flow (mgd)					
Average	0.593	5.142	0.107					
Maximum	1.839	7.496	0.465					
Minimum	0.000	3.233	0.000					
Pipe Size		10.000						
Estimated Ca	pacity (mgd)	0.944						
Capacity Use	d	49.30 %						
Sensor Type		Hach - Flodar						
		Estimated Capacity Usage						

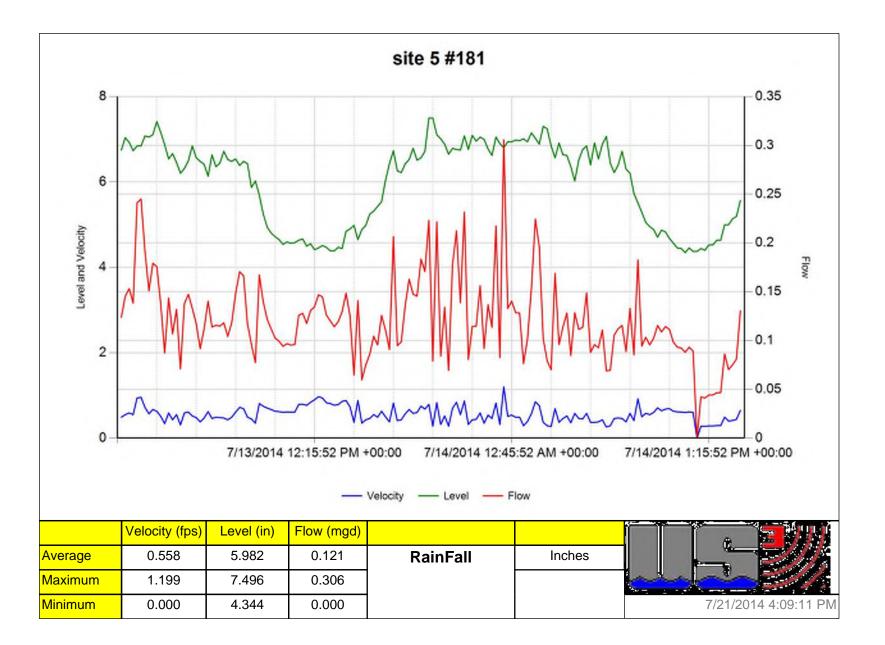
Stimated Capacity Usage % Capacity Used Estimated Capacity Available

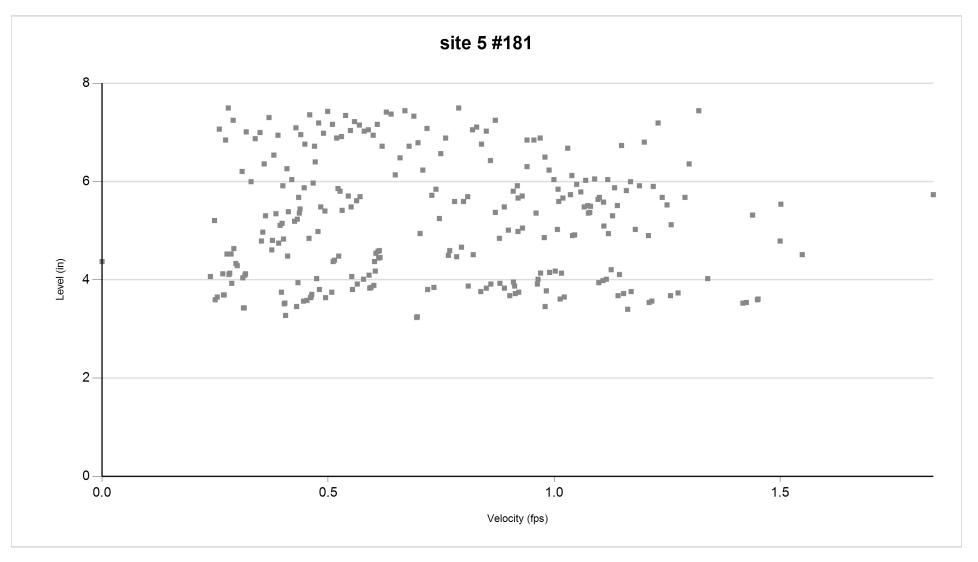
Utility Systems, Science and Software

6190 Fairmount Ave. Suite E San Diego, CA 92021


History for site 5 #181: 06/30/2014 thru 07/14/2014


	Flow (GPM)			Flo	Flow (MGD) Velocity (FPS)			PS)	Level (inches)					
Date	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Total Gal	Rain
6/30/2014	67.30	146.56	43.44	0.10	0.21	0.06	0.54	1.16	0.42	5.08	5.80	4.40	96,908	
7/1/2014	55.61	133.79	0.00	0.08	0.19	0.00	0.50	1.19	0.00	4.58	5.27	3.43	80,078	
7/2/2014	71.02	173.37	29.09	0.10	0.25	0.04	0.66	1.50	0.26	4.69	6.18	3.52	102,262	
7/3/2014	60.81	166.29	19.45	0.09	0.24	0.03	0.57	1.29	0.25	4.67	5.68	3.23	87,569	
7/4/2014	73.70	210.17	0.00	0.11	0.30	0.00	0.57	1.27	0.00	5.19	7.44	3.37	106,131	
7/5/2014	70.47	180.79	22.00	0.10	0.26	0.03	0.55	1.24	0.27	5.05	6.36	3.43	101,476	
7/6/2014	72.57	183.49	28.91	0.10	0.26	0.04	0.55	1.25	0.28	5.28	6.44	3.82	104,499	
Week:	67.35	210.17	0.00	0.10	0.30	0.00	0.56	1.50	0.00	4.93	7.44	3.23	678,922	
7/7/2014	60.84	161.56	0.00	0.09	0.23	0.00	0.49	1.21	0.00	4.87	5.93	3.48	87,615	
7/8/2014	79.09	208.52	0.00	0.11	0.30	0.00	0.65	1.50	0.00	4.92	6.18	3.45	113,893	
7/9/2014	77.54	170.98	0.00	0.11	0.25	0.00	0.66	1.30	0.00	5.08	6.41	3.75	111,654	
7/10/2014	81.89	323.13	22.77	0.12	0.47	0.03	0.64	1.29	0.26	5.22	6.45	3.69	117,920	
7/11/2014	84.98	266.38	22.35	0.12	0.38	0.03	0.66	1.84	0.24	5.33	6.57	3.83	122,367	
7/12/2014	96.71	257.32	38.73	0.14	0.37	0.06	0.64	1.32	0.28	5.92	7.44	3.87	139,259	
7/13/2014	88.22	212.26	41.44	0.13	0.31	0.06	0.58	1.20	0.26	6.09	7.50	4.39	127,042	
Week:	81.32	323.13	0.00	0.12	0.47	0.00	0.62	1.84	0.00	5.35	7.50	3.45	819,750	




History for site 5 #181: 06/30/2014 thru 07/14/2014

	Flow (GPM)			Fl	Flow (MGD)		Velocity (FPS)			Level (inches)				
Date	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Total Gal	Rain
7/14/2014	61.26	126.78	0.00	0.09	0.18	0.00	0.49	0.92	0.00	5.08	6.72	4.34	88,217	
Week:	61.26	126.78	0.00	0.09	0.18	0.00	0.49	0.92	0.00	5.08	6.72	4.34	88,217	

6/30/2014 thru 7/14/2014

7/21/2014 4:09:11 PM

Appendix II – Parcel 44 Peak Daily Flow Calculation

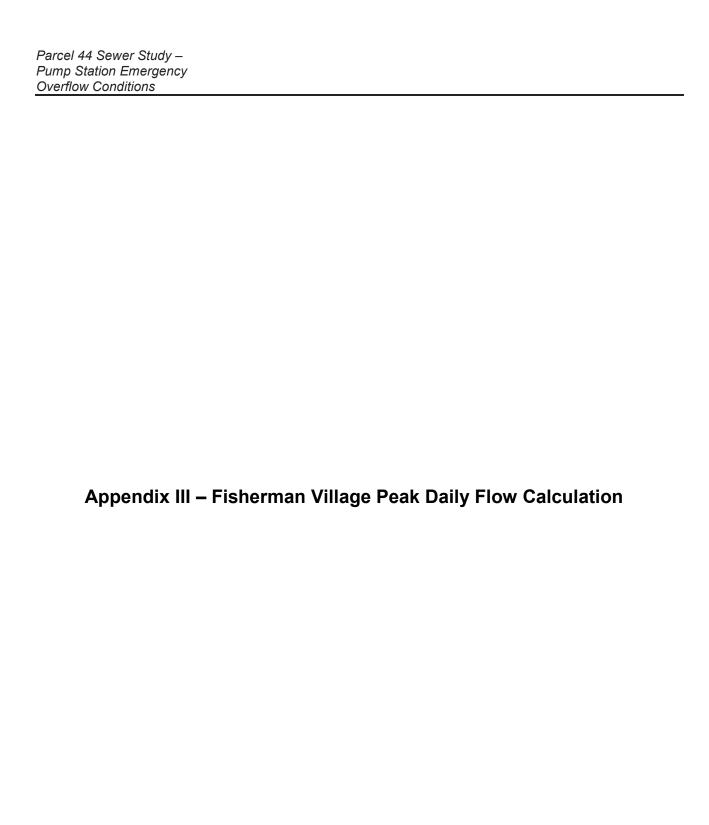
Estimated Average Daily Sewage Flows for Various Occupancies

Occupancy	Abbreviation	*Average daily flow
Apartment Buildings:		
Bachelor or Single dwelling units	Apt	100 gal/D.U> 150
1 bedroom dwelling units	Apt	150 gal/D.U.→ ^{2,00}
2 bedroom dwelling units	Apt	200 nal/D 11 - 250
3 bedroom or more dwelling units	Apt	250 gal/D.U. → USC 300 GPD per 514
Auditoriums, churches, etc.	Aud	5 gal/seat
Automobile parking	P	25 gal/1000 sq ft gross floor area
Bars, cocktails lounges, etc.	Bar	20 gal/seat
Commercial Shops & Stores	CS	100 gal/1000 sq ft gross floor area
Hospitals (surgical)	HS	500 gal/bed
Hospitals (convalescent)	HC	85 gal/bed
Hotels	H	150 gal/room
Medical Buildings	MB	300 gal/1000 sq ft gross floor area
Motels	M	150 gal/unit
Office Buildings	Off	200 gal/1000 sq ft gross floor area
Restaurants, cafeterias, etc.	R	50 gal/seat
Schools:		
Elementary or Jr. High	. s	10 gal/student
High Schools	HS	15 gal/student
Universities or Colleges	U	20 gal/student
College Dormitories	CD	85 gal/student

^{*}Multiply the average daily flow by 2.5 to obtain the peak flow

Zoning Coefficients

Zone	Coefficient (cfs/Acre) 0,001		
Agriculture evaluation and an arrangement of the second of			
Residential [†] :			
Rv1 принярований	0.004		
R-2 ынинимения причина причин	0.008		
Re3 несеренцинания применентине применентини применент В	0.012		
Re4 менерониминациональная принципациональной принципацион	0.016*		
Commercial:	1444		
C-1 through C-4	0.015*		
Heavy Industrial:			
M1 through M-4	0.021*		


"Individual building, commercial or industrial plant capacities shall be the determining factor when they exceed the coefficients shown

⁺ Use 0.001 (cfs/unit) for condominiums only

Existing					
Occupancy Unit	Unit Quantity	Average Daily Flow Factor	Sewage ADF*	Sewage PDF (2.5xADF)**	Sewage PDF
		(gal / 1000 sf)	(gpd)	(gpd)	(cfs)
Offices	6	200	2944.8	7362	0.011391488
Boat Slips	# of Slips	Average Daily Flow (gal/slip)	Sewage ADF*	Sewage PDF (2.5xADF)**	Sewage PDF
			(gpd)	(gpd)	
Boat Slips	198	150	29700	74250	0.114889706
				EXISTING TOTAL	0.126281194
Proposed					
Occupancy Unit	Area (sf)	Average Daily Flow Factor	Sewage ADF*	Sewage PDF (2.5xADF)**	Sewage PDF
		(gal / 1000 sf)	(gpd)	(gpd)	(cfs)
Trader Joe's	13625	100	1362.5	3406.25	0.005270614
Market	500	100	50	125	0.000193417
Offices	9170	200	1834	4585	0.007094536
Retail	13295	100	1329.5	3323.75	0.005142958
Yacht Club	1150	200	230	575	0.000889718
Boat Brokers Offices	5133	200	1026.6	2566.5	0.003971238
West Marine	25000	200	5000	12500	0.019341701
Boaters Lounge	840	200	168	420	0.000649881
Marine Admin. Offices	2285	200	457	1142.5	0.001767832
Boat Repair	700	200	140	350	0.000541568
Boaters Bathrooms	1429	200	285.8	714.5	0.001105572
Boaters Laundry	271	200	54.2	135.5	0.000209664
				SUBTOTAL	0.046178699
Restaurant	# of Seats	Average Daily Flow Factor	Sewage ADF*	Sewage PDF (2.5xADF)**	Sewage PDF
		(gal / seat)	(gpd)	(gpd)	(cfs)
Restaurant	382	50	19100	47750	0.073885299
Boat Slips	# of Slips	Average Daily Flow (gal/slip)	Sewage ADF*	Sewage PDF (2.5xADF)**	
,		, , , , , , , , , , , , , , , , , , , ,	(gpd)	(gpd)	
Boat Slips	148	150	22200	55500	0.085877154
·				PROPOSED TOTAL	0.205941152

^{*} Average Daily Flow

^{**} Peak Daily Flow

LOS ANGELES COUNTY DEPARTMENT OF

Parcel 44

i aic	51 7 7		
<u>Item</u>	<u>Description</u>	<u>cfs</u>	
	Calculate flow from existing (Yacht club+ 14,263 Offic	0.1263	Calculate this based on existing
	Calculate flow from proposed (includes boat slips)	0.2059	Use the one you have already calculated
	Extra flow from propsed at Parcel 44	0.0796	This will calculate by itself
Fishe	erman's Village		
	Proposed (.2815cfs)	0.2815	Provided
	Flow from MH 181	0.8640	Use flow rate from MH measurment
	Flow from MH 186	0.7360	Use flow rate from MH measurment
	Existing flow from Fisherman's Village (MH181-MH18	0.1280	This will calculate by itself
	Extra flow from propsed at Fisherman's Village	0.1535	This will calculate by itself
Extra	flow to be added to the total flow rate measured		
	Extra flow from propsed at Parcel 44	0.0796	
	Extra flow from propsed at Fisherman's Village	0.1535	
	Flow rate measured upstream of PS	0.4870	Use flow measured at the MH U/S PS
	Flow rate measured upstream of PS	0.4330	Use flow measured at the MH U/S PS
	Flow rate measured upstream of PS	0.0000	Use flow measured at the MH U/S PS
	Total future flow to the PS	1.1531	This will calculate by itself

Note: Please plug in the number at the following Cells C3,C4,C10,C11,C18,C19,C20 (All with .9000)

Appendix IV – Kutters Formula Spreadsheets

*Cells that are highlighted can be changed

Qgiven= 1.159 cfs <== Discharge

n= 0.013 <== Roughness coefficient

0.0012 S= <== Slope V:H 0.625 ft r= <== Radius

TRIAL DEPTH:

7.800 in <== Vary this depth to get Q assume = Q given

0.650 ft

CACULATIONS:

92.29 degree beta=

R= 0.320 ft

91.168 C=

1.787 ft/sec V=

0.645 sq. ft. A=

 $Q_{assume} =$ 1.152 cfs

1.08 cfs $\mathbf{Q}_{3/4\text{full}} =$ 1.99 cfs $Q_{halffull} =$

RESULT: (Qgiven-Qassume) / Qgiven %= 1% <===== UK

> Flow Depth (in) = 7.800

Capacity d/r = 104.00%

> Q_{capacity} = 1.993 cfs

Capacity Q_{given}/Q_{capacity} = 58.14%

> 1.99 cfs (Q halffull = 1.08 cfs $(Q_{3/4full} =$ beta _{halffull}= beta _{3/4full}= 90.000 degree 120.00 degree K_{halffull} = 0.313 ft K_{3/4full=} 0.377 ft C halffull = 90.643 ft C _{3/4full=} 94.911 ft A halffull = 0.614 sq. ft. A _{3/4full=} 0.987 sq. ft. V halffull = 1.757 ft/sec) V _{3/4full=} 2.019 ft/sec)

*Cells that are highlighted can be changed

GIVLIN.	G	I۱	/E	N	:
---------	---	----	----	---	---

Qgiven= 1.924 cfs <== Discharge

n= 0.013 <== Roughness coefficient

0.0012 S= <== Slope V:H 0.625 ft r= <== Radius

TRIAL DEPTH:

11.000 in <== Vary this depth to get Q_{assume} = Q_{given}

0.917 ft **CACULATIONS:**

> 117.82 degree beta=

> > R= 0.375 ft

C= 94.796

2.012 ft/sec V=

0.964 sq. ft. A=

 $Q_{assume} =$ 1.940 cfs

1.08 cfs $\mathbf{Q}_{3/4\text{full}} =$ 1.99 cfs $Q_{halffull} =$

RESULT: (Qgiven-Qassume) / Qgiven %= -1% <===== UK

> Flow Depth (in) = 11.000

Capacity d/r = 146.67%

> Q_{capacity} = 1.993 cfs

Capacity Q_{given}/Q_{capacity} = 96.52%

> (Q halffull = 1.08 cfs $(Q_{3/4full} =$ 1.99 cfs beta halffull= beta _{3/4full}= 90.000 degree 120.00 degree $R_{halffull} =$ 0.313 ft K_{3/4full=} 0.377 ft C halffull = 90.643 ft C _{3/4full=} 94.911 ft A halffull = 0.614 sq. ft. A _{3/4full=} 0.987 sq. ft. V halffull = 1.757 ft/sec) V _{3/4full=} 2.019 ft/sec)

*Cells that are highlighted can be changed

|--|

Qgiven= 2.004 cfs <== Discharge

n= 0.013 <== Roughness coefficient

0.0012 S= <== Slope V:H 0.625 ft r= <== Radius

TRIAL DEPTH:

<== Vary this depth to get Q_{assume} = Q_{given} 11.250 in

0.938 ft

CACULATIONS: 120.00 degree beta=

> R= 0.377 ft

C= 94.911

2.019 ft/sec V=

0.987 sq. ft. A=

 $Q_{assume} =$ 1.993 cfs

1.08 cfs $\mathbf{Q}_{3/4\text{full}} =$ 1.99 cfs $Q_{halffull} =$

RESULT: (Qgiven-Qassume) / Qgiven %= 1% <===== UK

> Flow Depth (in) = 11.250

Capacity d/r = 150.00%

> Q_{capacity} = 1.993 cfs

Capacity Q_{given}/Q_{capacity} = 100.54%

> (Q halffull = 1.08 cfs $(Q_{3/4full} =$ 1.99 cfs beta halffull= beta _{3/4full}= 90.000 degree 120.00 degree $R_{halffull} =$ 0.313 ft K_{3/4full=} 0.377 ft C halffull = 90.643 ft C _{3/4full=} 94.911 ft A halffull = 0.614 sq. ft. A _{3/4full=} 0.987 sq. ft. V halffull = 1.757 ft/sec) V _{3/4full=} 2.019 ft/sec)

MH #61 OVEFLOW CONDITION, WITH P44 AND FV REDEVELOPMENT

*Cells that are highlighted can be changed

GIVLIN.	G	I۱	/E	N	:
---------	---	----	----	---	---

Qgiven= 2.179 cfs <== Discharge

n= 0.013 <== Roughness coefficient

S= 0.0012 <== Slope V:H 0.625 ft r= <== Radius

TRIAL DEPTH:

12.250 in <== Vary this depth to get Q assume = Q given

1.021 ft

CACULATIONS:

beta= 129.30 degree

R= 0.380 ft

C= 95.108

2.032 ft/sec V=

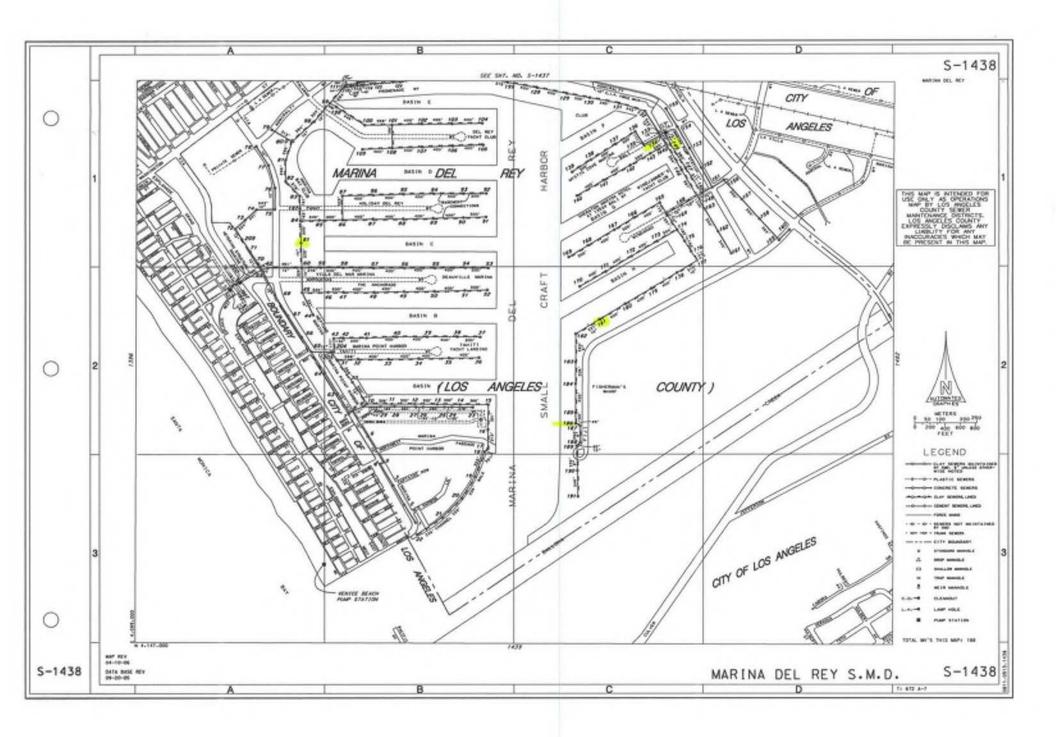
1.073 sq. ft. A=

 $Q_{assume} =$ 2.180 cfs

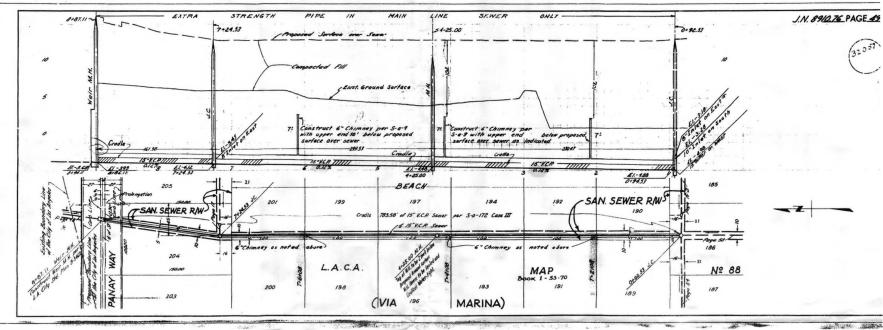
1.08 cfs 1.99 cfs $Q_{halffull} =$ $\mathbf{Q}_{3/4\text{full}} =$

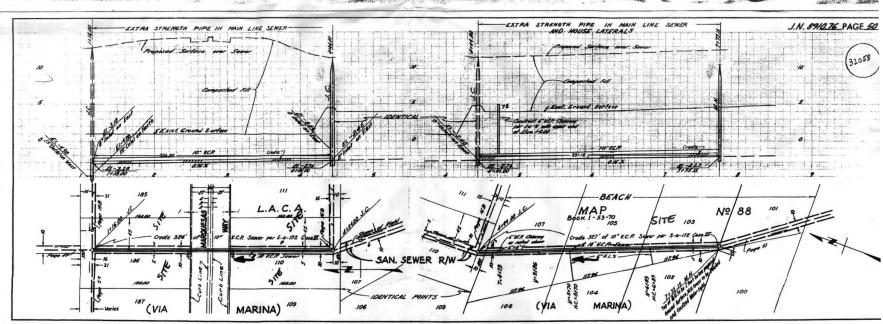
RESULT: (Qgiven-Qassume) / Qgiven %= 0% <===== UK

> Flow Depth (in) = 12.250


Capacity d/r = 163.33%

> $\mathbf{Q}_{\text{capacity}} =$ 1.993 cfs


Capacity Q_{given}/Q_{capacity} = 109.32%


> (Q halffull = 1.08 cfs $(Q_{3/4full} =$ 1.99 cfs beta halffull= beta _{3/4full}= 90.000 degree 120.00 degree $R_{halffull} =$ 0.313 ft $H_{3/4full}=$ 0.377 ft C halffull = 90.643 ft C _{3/4full=} 94.911 ft A halffull = 0.614 sq. ft. A _{3/4full=} 0.987 sq. ft. V _{halffull} = 1.757 ft/sec) V _{3/4full=} 2.019 ft/sec)

Appendix V – Sewer As Builts

1983 West 190th Street, Suite 200 Torrance, Ca. 90504 **Tel:** 310-464-8404 **Fax:** 310-464-8408

www.breeneng.com

WATER AVAILABILITY STUDY

PARCEL 44

MARINA DEL REY COUNTY OF LOS ANGELES

BEI PROJECT #187-07-003C

Date: October 1, 2012 (Revised October 10, 2012)

TABLE OF CONTENTS

1.0	INTE	RODUCTION	Page 1
2.0	EXIS	STING CONDITIONS	Page
	2.1	EXISTING SERVICE	Page 1
	2.2	EXISTING WATER CONSUMPTION AND DEMAND	Page 1
	2.3	EXISTING WATER DEMAND TABLE	Page 2
3.0	PRO	POSED CONDITIONS	Page 2
	3.1	FUTURE SERVICE	Page 2
	3.2	PROPOSED WATER CONSUMPTION AND DEMAND	Page 2
	3.3	PROPOSED WATER DEMAND TABLE	Page 3
4.0	CON	CLUSION	Page 4
	APP	ENDIX	
	i.	MARINA DEL REY WATER SYSTEM	
	ii.	LOS ANGELES COUNTY ESTIMATED AVERAGE DAILY SEWAGE FLOWS FOR VARIOUS OCCUPANCIES	
	iii.	WATERWORKS' FIRE FLOW TEST DATA	

187-07-003C 2 Parcel 44

1. INTRODUCTION

Marina Del Rey Parcel 44 project is an approximately 8.40 acre site and is located in the Marina Del Rey area of Unincorporated Los Angeles County. The project is located on Admiralty Way, between Bali Way and Mindanao Way.

The site is currently developed with a combination of uses including 6 small office structures, and boat slips. The site's water demand is provided by the Los Angeles County Department of Public Works (LACDPW) Waterworks and Sewer Maintenance Division, District 29.

For entitlement purposes, a study is necessary to determine the increase in water demand caused by the project and any impact it may have on the LACDPW distribution system. This report summarizes that study.

2. EXISTING CONDITIONS

2.1 EXISTING SERVICE

According to as-built plans provided by LACDPW, the existing site facilities are served by a 14-in. a.c. (asbestos cement) water main in Admiralty Way, an 8-in. a.c. water main in Bali Way, and a 10-in. a.c. water main in Mindanao Way. See Appendix i for the Marina Del Rey water system maps.

Tests performed by the Waterworks District confirmed a residual pressure of 72 psi in the 8-in. line in Bali Way and static pressure of 92 psi at an observed flow of 2500 gpm. Data also showed the residual pressure of 80 psi on the 10-in. line in Mindanao Way and static pressure of 95 psi at an observed flow of 3350 gpm. See Appendix iii for Waterworks' flow test data.

2.2 EXISTING WATER CONSUMPTION AND DEMAND

The existing water consumption was determined assuming that the sewer generation rate is 90% of the water consumption rate. Sewage generation was determined using the LACDPW Estimated Average Daily Sewage Flows for Various Occupancies chart used for sewer area studies (See Appendix ii). Based on this, consumption for the existing condition is estimated at 90,680 gpd or 63 gpm.

There are 3 existing public hydrants in the street, and no existing hydrants on site.

187-07-003C 1 Parcel 44

2.3 EXISTING WATER DEMAND TABLE

Occupancy	Unit	Average Daily		Sewage PDF			
Unit	Quantity	Flow Factor	Sewage ADF*	(2.5xADF)**	Dail	y Water De	emand
		(gal / 1000 sf)	(gpd)	(gpd)	(gpd)	(gpm)	(Ac-ft/yr)
Offices	6	200	2944.8	7362	8180.0	5.68	9.2
				TOTAL	8180.0	5.68	9.2

	Boat	Average Daily		Sewage PDF			
Existing	Slips	Flow (gal/slip)	Sewage ADF*	(2.5xADF)**	Dail	y Water De	emand
			(gpd)	(gpd)	(gpd)	(gpm)	(Ac-ft/yr)
	198	150	29700	74250	82500.0	57.29	92.4
				TOTAL	82500.0	57.29	92.4

^{*}Average daily flow

3. PROPOSED CONDITIONS

3.1 PROPOSED SERVICE

The Marina Del Rey Water System was originally designed in 1961/62 to accommodate low density, two-story structure land use. Since the land use changed, the County of Los Angeles Department of Beaches and Harbors conducted an adequacy study which determined that the existing system required an upgrade to meet increased demands. According to LA County, a future 18-in. water line is proposed in Admiralty Way.

3.2 PROPOSED WATER CONSUMPTION AND DEMAND

The proposed site will include three retail stores, a 2 story structure building that will accommodate office and retail space, a yacht club, boaters lounge and boat storage and repair area. Based on the same assumption and sewer factors used for the existing condition, the proposed development will result in a domestic water consumption of 107,132 gpd or 74.4 gpm. This results in a 118% net increase of 16,452 gpd, 11.49 gpm.

In order to provide adequate fire protection for the site, a preliminary review by the Los Angeles County Fire Department indicates that eight new fire hydrants will be required on site to accommodate a fire flow demand of 2,000 gpm at 20 psi.

187-07-003C 2 Parcel 44

^{**}Peak daily flow

3.2 PROPOSED WATER DEMAND TABLE

Occupancy	Area	Average Daily		Sewage PDF			
Unit	(sf)	Flow Factor	Sewage ADF*	(2.5xADF)**	Dail	Daily Water Demand	
		(gal / 1000 sf)	(gpd)	(gpd)	(gpd)	(gpm)	(Ac-ft/yr)
Unistack	26300	200	5260	13150	14611.1	10.15	16.4
Trader							
Joe's	13325	100	1332.5	3331.25	3701.4	2.57	4.1
Boat							
Brokers	8900	200	1780	4450	4944.4	3.43	5.5
Yacht Club	1402	200	280.4	701	778.9	0.54	0.9
Boat							
Brokers							
Offices	8395	100	839.5	2098.75	2331.9	1.62	2.6
West							
Marine	25605	200	5121	12802.5	14225.0	9.88	15.9
Community							
Room	938	200	187.6	469	521.1	0.36	0.6
Boaters	0=0	• • •		420	40=0	0.04	
Lounge	878	200	175.6	439	487.8	0.34	0.5
Unistack	2020	200	5.67.6	1.410	15060	1.00	1.0
Offices	2838	200	567.6	1419	1576.7	1.09	1.8
Marine							
Admin. Offices	4222	200	866.4	2166	2406.7	1.67	2.7
	4332	200	800.4	2100	2406.7	1.67	2.7
Boat	2290	200	458	1145	1272.2	0.88	1.4
Repair	2290	200	436	1143	12/2.2	0.00	1.4
Boaters Bathrooms	1048	200	209.6	524	582.2	0.40	0.7
Boaters	1040	200	209.0	324	302.2	0.40	0.7
Laundry	197	200	39.4	98.5	109.4	0.08	0.1
			2711	TOTAL	47548.9	33.02	53.2

Proposed	Boat Slips	Average Daily Flow (gal/slip)	Sewage ADF*	Sewage PDF (2.5xADF)**	Dail	y Water De	emand
			(gpd)	(gpd)	(gpd)	(gpm)	(Ac-ft/yr)
	143	150	21450	53625	59583.3	41.38	66.7
				TOTAL	59583.3	41.38	66.7

^{*}Average daily flow **Peak daily flow

3 Parcel 44 187-07-003C

II. CONCLUSION

The proposed development will result in an increase in both fire protection and domestic water demands. However based on our calculations using the Hazen-Williams method and the confirmed flow and pressures of the existing County system, this system is more than adequate to provide for both onsite and offsite fire flow demands required by the Fire Department (2000 gpm @ 20 psi) for the new development, and the domestic flows as well.

At the appropriate time, an application for new metered water service will be processed with the LACDPW Waterworks District to determine the availability of pressures and flow necessary to serve the site from both a domestic and fire protection standpoint. In recognition of the phased improvements being made by the County, the onsite service will have to be sized based on the most current information provided by the Waterworks District, to ensure adequate fire protection and domestic water pressures are provided.

187-07-003C 4 Parcel 44

Marina Del Rey Water System Appendix i

Los Angeles County Estimated Average Daily Sewage Flows For Various Occupancies Appendix ii

Estimated Average Daily Sewage Flows for Various Occupancies

Occupancy	Abbreviation		*Average daily flow
Apartment Buildings:			,
Bachelor or Single dwelling units	Apt	100	gal/D.U> 150
1 bedroom dwelling units	Apt	150	gal/D.U> 200
2 bedroom dwelling units	Apt	200	gal/D.U> 250
3 bedroom or more dwelling units	Apt	250	gal/D.U> use 300 GPD per 5MJ
Auditoriums, churches, etc.	Aud	5	gal/seat
Automobile parking	Р	25	gal/1000 sq ft gross floor area
Bars, cocktails lounges, etc.	Bar	20	gal/seat
Commercial Shops & Stores	CS	100	gal/1000 sq ft gross floor area
Hospitals (surgical)	HS	500	gal/bed
Hospitals (convalescent)	HC	85	gal/bed
Hotels	Н	150	gal/room
Medical Buildings	MB	300	gal/1000 sq ft gross floor area
Motels	M	150	gal/unit
Office Buildings	Off	200	gal/1000 sq ft gross floor area
Restaurants, cafeterias, etc.	R	50	gal/seat
Schools:			
"ementary or Jr. High	. S	10	gal/student
rлigh Schools	HS	15	gal/student
Universities or Colleges	U	20	gal/student
College Dormitories	CD	85	gal/student

^{*}Multiply the average daily flow by 2.5 to obtain the peak flow

Zoning Coefficients

Zone	Coefficient (cfs/Acre)
Agriculture	0.001
Residential ⁺ :	
R-1	0.004
R-2	0.008
R-3	0.012
R-4	0.016*
Commercial:	
C-1 through C-4	0.015*
Heavy Industrial:	
M1 through M-4	0.021*

^{*}Individual building, commercial or industrial plant capacities shall be the determining factor when they exceed the coefficients shown

⁺ Use 0.001 (cfs/unit) for condominiums only

Waterworks' Fire Flow Test Data Appendix iii

COUNTY OF LOS ANGELES FIRE DEPARTMENT FIRE PREVENTION DIVISION

Fire Prevention Engineering 5823 Rickenbacker Road Commerce, CA 90040 Telephone (323) 890-4125 Fax (323) 890-4129

Information on Fire Flow Availability for Building Permit

For All Bulldings Other Than Single Family Dwellings (R-3)

INSTRUCTIONS:

Complete parts I, II (A) when:

Verifying fire flow, fire hydrant location and fire hydrant size.

Complete parts I, II (A), & II (B) when:

For buildings equipped with fire sprinkler systems, and/or private on-site fire hydrants.

PROJECT INFORMATION (To Be Completed By Applicant)

PART I
Building Address: Parcel 44 - Marina Del Rey
City or Area: Los Angeles County
Nearest Cross Street: Bali Way, Admiralty Way, Mindanao Way
Distance of Nearest Cross Street: ~ ~ A
Applicant: Breen Engineering Telephone: (316) 464-8404
Address: 1983 W. 1907h street
city: Torrance, Colif. 90504
Occupancy (Use of Building): Commercia (Sprinklered: Yes No
Type of Construction: Multiple Bldgs-The one with the most area 15 Type V-1 hour 39,000 sf. Number of Stories: 2
Present Zoning: <u>Specific Plan-Londuse designations are: "Mavine.</u> Commercial, Boat Storage, & Visitor Serving/Convenience Commercial.
Commercial, Boat Storage, & Visitor Serving/Convenience Commercial.
9 M. Ziegler 9/6/12
Applicant(s Signature O / Date

PART II-A


INFORMATION ON FIRE FLOW AVAILABILITY (To be completed by Water Purveyor)

Location Fire hydrant is on Ball Way approximately 650-ft	southwest from centerline of Admiralty Way			
	Hydrant Number			
Distance from Nearest Property Line Size of Hydrant	Size of			
Static PSI 92 Residual PSI 72	Orifice size 2.5-inch Pitot 45psi			
Fire Flow at 20 PSI 2500 gpm Duration 2-hr	Flow Test Date / Time9/5/2012 @12:55pm			
Location Fire hydrant is on Mindanao Way approximately 740-ft southwest from centerline of Admiralty Way				
	Hydrant Number			
Distance from	Size of			
Nearest Property Line Size of Hydrant	6 x 4 x 2.5water main_10-inch			
Static PSI 95 Residual PSI 80	Orifice size 2.5-inch Pitot 58psi			
Fire Flow at 20 PSI 3350 gpm Duration 2-hr	Flow Test Date / Time_ 5/31/2012 @11:00am			
Location				
	Hydrant Number			
Distance from	Size of			
Nearest Property Line Size of Hydrant	Water main			
Static PSI Residual PSI	Orifice size Pitot			
Fire Flow at 20 PSI Duration	Flow Test Date / Time			
PART II-B SPRINKLERED BUILDINGS/PRIVATE FIRE HYDRANTS ONLY				
<u>Detector Location (check one)</u> ★ Above Grade	Below Grade Either			
Backflow Protection Required (Fire Sprinklers/Private Hydrant) (check one) Yes No				
Minimum Type of Protection Required (check one)	Single Check Detector Assembly			
Double Check Detector Assembly Reduce	ed Pressure Principle Detector Assembly			
Los Angeles County Waterworks Districts	Sitt Williams			
Water Purveyor	Signature			
9/6/2012	Associate Civil Engineer (Kirk Allen)			
Date	Title			

This Information is Considered Valid for Twelve Months

Fire Department approval of building plans shall be required prior to the issuance of a <u>Building Permit</u> by the jurisdictional Building Department. Any deficiencies in water systems will need to be resolved by the Fire Prevention Division <u>only</u> prior to this department's approval of building plans.

5261 W. Imperial Highway, Los Angeles, CA 90045 Toll Free: (888) 705-6300 Tel: (310) 854-6300 Fax: (310) 854-0199

Pre-Demolition Asbestos Assessment Report

PERFORMED AT

PIER 44 4601, 4625-4637 & 4695 Admiralty Way 13441 & 13445 Mindanao Way 13444 & 13446 Bali Way Marina Del Rey, CA 90292

Project No.: 1207-784

PREPARED FOR

Pacific Marina Ventures, LLC 13737 Fiji Way, C-10 Marina Del Rey, CA 90292

August 24, 2012

EXECUTIVE SUMMARY	3
METHODOLOGY	
DEFINITIONS	
PROJECT DETAIL	
LIMITATIONS	10
SIGNATURES	
APPENDICES	
Appendix I - HOMOGENEOUS MATERIALS LOCATION LIST	13
Appendix II – LABORATORY ANALYSIS RESULTS & CHAIN-OF-CUSTODY	15

EXECUTIVE SUMMARY

Mr. Michael Pashaie of Pacific Marina Ventures, LLC (referred to hereunder as the client) retained Andersen Environmental to perform a pre-demolition assessment and sampling of suspect asbestos containing materials (ACM) that are to be disturbed during demolition activities of the seven structures located at 4601, 4625-4637 & 4695 Admiralty Way; 13441 & 13445 Mindanao Way and 13444 & 13446 Bali Way including a restroom building (otherwise known as Pier 44) in Marina del Rey, CA 90292 (referred to hereunder as subject property). The purpose of this assessment was to conduct bulk sampling in order to determine the presence or absence of ACM within each structure on the subject property. This report is a record of activities, observations, analytical results and recommendations performed to date.

Findings

The following materials were found to contain asbestos and are considered ACM:

4601 Admiralty Way

None Detected

4625-4637 Admiralty Way

• Beige 12x12 Vinyl Floor Tile (Throughout)

4695 Admiralty Way

None Detected

13441 Mindanao Way

• Beige 12x12 Vinyl Floor Tile and Black Mastic (Janitors Closet)

13445 Mindanao Wav

- Beige 12x12 Vinyl Floor Tile and Black Mastic (Restrooms)
- Silver Duct Wrap (HVAC Room)
- White Duct Tape (HVAC Room)

13444 -13446 Bali Way & Restroom Outbuilding

• Roof Mastic (Restroom Outbuilding)

The following materials were presumed to contain asbestos and are considered ACM:

13444 -13446 Bali Way & Restroom Outbuilding

• Two Transite Pipes (Restroom Outbuilding)

The following materials were found to contain trace concentrations of asbestos and are considered ACCM:

13445 Mindanao Way

- Joint Compound (Throughout)
- Black Floor Tile Mastic (Laundry Room)

All of the above materials were found to be in good condition at the time of the assessment.

All other materials sampled in this assessment tested negative for asbestos.

Please refer to the attached table for a list of ACM / ACCM Homogeneous Materials, their locations and approximate quantities.

Recommendations

If materials found to contain asbestos and/or presumed to contain asbestos are going to be disturbed or removed; by law, they must first be abated and properly disposed of by a licensed and Cal/OSHA registered asbestos abatement contractor prior to any renovation or demolition activities.

It is highly recommended that abatement monitoring be performed by the asbestos consultant (Andersen Environmental) if asbestos abatement is to be performed while non-abatement persons (employees, tenants, other building occupants, or general public) are present in adjacent areas. Abatement monitoring included the collection of air samples in adjacent areas to demonstrate that asbestos fibers are not migrating out of the regulated areas. In addition to air sampling, the monitoring includes oversight of the abatement contractor to ensure that the work is being conducted in compliance with all applicable regulations and in accordance with the scope of work and abatement specifications. Such abatement monitoring serves to limit the legal liabilities of the building owner.

METHODOLOGY

All samples were collected using a clean knife, chisel or the appropriate tools. Each sample was extracted carefully so as not to disturb adjacent materials while still penetrating through all layers of the material sampled. Each sample was sealed in the appropriate sized plastic zip lock bag and the bag then labeled with a unique identification number. The sample number, description and location was then recorded on a log and plotted on a floor plan of the structure or area. Sampling tools were cleaned after collecting each sample. Any excess dust or debris from the sample location was cleaned using a moistened cloth. Whenever possible, samples were collected from previously damaged portions of the material in order to minimize damage to the material.

A total of one hundred fifty nine (159) samples were submitted to LA Testing in Garden Grove, California. LA Testing is accredited under the NIST/NVLAP program for asbestos in bulk material by polarized light microscopy and the State of California for asbestos analysis. NIST/NVLAP lab code 101384-0.

The analyses of the samples in this report were performed using polarized light microscopy using the EPA method 600/R-93/116. The phase abundances provided are visually estimated and expressed as percent area. Total percentage of sample constituents may total greater than 100 due to trace amounts. The limit of detection for this analytical method is less than one percent. In multilayer samples, unless otherwise specified, the asbestos concentration is reported for the layer where asbestos is found. These results lie within the statistical limits of variability calculated for standard reference samples routinely analyzed in the laboratory. On a per sample basis, the accuracy and precision of the results depend on the type of sample and its asbestos content.

At the Client's discretion, four of the samples in this report were further analyzed using the 1,000 point count method. These analyses were performed using gravimetric matrix reduction and polarized light microscopy (PLM) in accordance with the EPA method 600/R-93/116 July 1993. The asbestos concentration was determined using the semi-quantitative point count method. On a per sample basis, the accuracy and precision of point count results are not known. The result should lie within the statistical limits of variability calculated for standard reference samples routinely analyzed in the laboratory using the point count method. The limit of detection for this analytical method is 0.25 percent using 400 points and 0.10 percent using 1000 points (visual area estimates).

DEFINITIONS

Asbestos – includes Chrysotile (CH), Amosite (AM), Crocidolite (CR), Tremolite (TR), Anthophyllite (AN), Actinolite (AC) and any of these minerals that have been chemically treated and/or altered.

Asbestos Containing Material (ACM) – any material containing greater than one percent (>1%) asbestos. These materials are subject to all federal, state and local asbestos regulation.

Asbestos Containing Construction Material (ACCM) – any manufactured construction material containing greater than one tenth of one percent (>0.1%) asbestos (as defined by California's Department of Occupational Safety and Health). These materials are subject to all Cal-OSHA standards.

Bulk sample – a chunk of material which is sent to a laboratory to be tested for asbestos.

Damaged – a material that exhibits less than ten percent (10%) distributed damage or twenty five percent (25%) localized damage.

Demolition – wrecking or taking out of any load-supporting structural member and any related removing or stripping of asbestos material.

Disturbance – activities that disrupt the matrix of ACM, crumble or pulverize ACM or generate visible debris from ACM.

EPA – Environmental Protection Agency

Friable – a friable material is any material that can be crushed, crumbled or pulverized by hand pressure when dry.

Good condition – a material with no visible damage or deterioration, or exhibiting only very limited damage or deterioration.

High – Potential for contact – service workers work in the vicinity of the material more than once per week or the material is in a public area and accessible to building occupants.

High – Influence of vibration – loud motors or engines present, intrusive noises or easily sensed vibrations.

High – (air) Erosion potential – high velocity air movement such as in a fan room or elevator shaft.

Homogeneous area – an area of material that is uniform in color and texture.

Linear Feet – (LF) the length of a given material. Usually used to define a quantity of pipe insulation.

Low – Potential for contact – service workers work in the vicinity of the material less than once per month or the material is visible but not within reach of building occupants.

Low – Influence of vibration – no loud motors, engines, intrusive noises or sensed vibrations.

Low – (air) Erosion potential – no noticeable movement of air.

Moderate – Potential for contact – service workers work in the vicinity of the material once per month to once per week or the materials are in a room or office and accessible to the occupants.

Moderate – Influence of vibration – motors or engines present but not obtrusive or occasional loud sounds.

Moderate – (air) Erosion potential – noticeable movement of air such as an airshaft or ventilator air stream.

Non-friable – a non-friable material cannot be crushed, crumbled or pulverized by hand pressure.

OSHA – Occupational Safety and Health Administration

Polarized Light Microscopy (PLM) – the analysis used to determine the asbestos content of a material.

Presumed Asbestos Containing Material (PACM) – a material that is not analyzed but is presumed to contain asbestos, such as transite.

Procedure 5 – an approved alternative combination of techniques and/or engineering controls. Written approval from the Air Quality Management District (AQMD) must be obtained prior to the use of procedure 5 ACM removal activities. These procedures are usually implemented in instances where more than 100 square feet of friable asbestos material has been disturbed and emergency clean up activities are recommended.

Significantly damaged – a material exhibiting over ten percent (10%) distributed damage or twenty five percent (25%) localized damage.

Square feet - (SF) Used to quantify building materials.

PROJECT DETAIL

Introduction

Mr. Michael Pashaie of Pacific Marina Ventures, LLC (referred to hereunder as the client) retained Andersen Environmental to perform a pre-demolition assessment and sampling of suspect asbestos containing materials (ACM) that are to be disturbed during demolition activities of the seven structures located at 4601, 4625-4637 & 4695 Admiralty Way; 13441 & 13445 Mindanao Way and 13444 & 13446 Bali Way including a restroom building (otherwise known as Pier 44) in Marina del Rey, CA 90292 (referred to hereunder as subject property). The assessment was performed on August 1, 2 and 9, 2012, by Benjamin Curry a Certified Asbestos Consultant (Cert. No. 09-4549) and Freddy Torres, a Certified Asbestos Consultant (Cert. No. 10-4593).

Scope of Work

The purpose of this assessment was to conduct bulk sampling in order to determine the presence or absence of ACM within the above referenced structures at the subject property. The scope of this assessment included reviewing any provided building records and/or previous investigation records, visually identifying homogeneous areas and functional spaces, collecting bulk samples of suspect ACM, interpreting the laboratory results and producing a written report of our findings and recommendations.

The sampling was performed in accordance with requirements of the following regulations:

- Asbestos Hazard Emergency Response Act (AHERA); 40 CFR 763 Subpart E
- Asbestos School Hazard Abatement Reauthorization Act (ASHARA); Section 206 of the Toxic Substance Control Act
- National Emissions Standards for Hazardous Air Pollutants (NESHAPS); 40 CFR 61 Subpart M.
- South Coast Air Quality Management District (SCAQMD) Rule 1403

This report is a record of activities, observations, analytical results and recommendations performed to date.

Site Description

The subject property consists of four single story buildings and three two-story buildings. The buildings are of wood-framed construction with pitched and sit on concrete slab foundations. The exterior finishes include either wood siding or concrete masonry unit exterior walls. The interior finishes consist of drywall or plaster walls and ceilings, drop ceilings with acoustic ceiling tiles, and either vinyl composite tile, carpet or ceramic tile floors.

Findings

The following materials were found to contain asbestos and are considered ACM:

4601 Admiralty Way

None Detected

4625-4637 Admiralty Way

• Beige 12x12 Vinyl Floor Tile (Throughout)

4695 Admiralty Way

None Detected

13441 Mindanao Way

• Beige 12x12 Vinyl Floor Tile and Black Mastic (Janitors Closet)

13445 Mindanao Way

- Beige 12x12 Vinyl Floor Tile and Black Mastic (Restrooms)
- Silver Duct Wrap (HVAC Room)
- White Duct Tape (HVAC Room)

13444 -13446 Bali Way & Restroom Outbuilding

• Roof Mastic (Restroom Outbuilding)

The following materials were presumed to contain asbestos and are considered ACM:

13444 -13446 Bali Way & Restroom Outbuilding

• Two Transite Pipes (Restroom Outbuilding)

The following materials were found to contain trace concentrations of asbestos and are considered ACCM:

13445 Mindanao Way

- Joint Compound (Throughout)
- Black Floor Tile Mastic (Laundry Room)

All of the above materials were found to be in good condition at the time of the assessment.

All other materials sampled in this assessment tested negative for asbestos.

Please refer to the attached table for a list of ACM / ACCM Homogeneous Materials, their locations and approximate quantities.

Recommendations

If materials found to contain asbestos and/or presumed to contain asbestos are going to be disturbed or removed; by law, they must first be abated and properly disposed of by a licensed and Cal/OSHA registered asbestos abatement contractor prior to any renovation or demolition activities.

It is highly recommended that abatement monitoring be performed by the asbestos consultant (Andersen Environmental) if asbestos abatement is to be performed while non-abatement persons (employees, tenants, other building occupants, or general public) are present in adjacent areas. Abatement monitoring included the collection of air samples in adjacent areas to demonstrate that asbestos fibers are not migrating out of the regulated areas. In addition to air sampling, the monitoring includes oversight of the abatement contractor to ensure that the work is being conducted in compliance with all applicable regulations and in accordance with the scope of work and abatement specifications. Such abatement monitoring serves to limit the legal liabilities of the building owner.

LIMITATIONS

Andersen Environmental is committed to providing quality consulting services. However, asbestos survey work is not an exact science. The possibility of field and general conditions, beyond Andersen Environmental's control, that affect our work or that present a concern for the safety of our employees, our consultants, building occupants and the public at the site, and insurance constraints, requires that we qualify the services we provide with the following limitations:

The findings of this survey, opinions rendered, recommendations and conclusions provided in this survey report are only valid for a period of up to one year from the date of this survey report.

Reasonable effort is made by Andersen Environmental personnel to locate and sample all suspect materials. However, for any facility the existence of unique or concealed asbestos-containing materials and debris is a possibility. In addition, sampling and laboratory analysis constraints typically hinder the investigation. Andersen Environmental does not warrant, guarantee or profess to have the ability to locate or identify all asbestos-containing materials in a facility.

Confined spaces, and areas determined by Andersen Environmental's personnel as unsafe to access, are excluded from the scope of work.

Andersen Environmental does not employ professional cost estimators. Statements of probable construction cost or cost estimates prepared by Andersen Environmental represent Andersen Environmental's professional opinion of probable costs based upon current industry information. Actual costs may fluctuate due to several variables including, but not limited to, the time the work is performed, phasing, labor availability, quantity of work performed, product availability, specification requirements, and unforeseeable changes in the economy and asbestos regulations.

Andersen Environmental is not, and has no responsibility as, a generator, operator, treater, storer, transporter or disposer of hazardous materials or waste found or identified as a result of Andersen' work.

Andersen Environmental does not guarantee or warrant that the facility or workplace is safe, nor does Andersen Environmental's involvement in this property relieve the Client, building owner/operator or tenant of any continuing responsibility of providing a safe facility or workplace.

This report was based on those conditions observed on the day(s) the field evaluation was accomplished. In the event that changes in the nature of the property have occurred, or additional relevant information about the property is subsequently discovered, the findings and recommendations contained in this report may not be valid unless these changes and additional relevant information are reviewed and the conclusion of this report is modified and verified in writing.

In as such that no destructive investigation has been performed during the survey, the report may not reveal concealed asbestos-containing materials. Subsequently, additional investigation including construction documents review and/or destructive investigation is recommended as a precaution to prevent accidental exposure when construction or demolition is planned for this facility.

SIGNATURES

Please do not hesitate to contact us should there be any questions or if additional services are necessary.

Reviewed by:

Ben Cu

Benjamin Curry DOSH Certified Asbestos Consultant No. 09-4549

Senior Project Manager Andersen Environmental

APPENDICES

Appendix I - HOMOGENEOUS MATERIALS LOCATION LIST

Homogeneous Material No	Material Description	Material Location (Functional Space)	Total Quantity*
1	Beige 12x12 Vinyl Floor Tiles (Beneath carpet) 3% Chrysotile	Building 4625 – 4637 Admiralty Way Throughout 1 st & 2 nd Floors	7,200 SF
2	Beige 12x12 Vinyl Floor Tiles & Black Mastic 2-5% Chrysotile	Building 13441, Janitors Closet	140 SF
3	Beige 12x12 Vinyl Floor Tiles & Black Mastic 3-6% Chrysotile	Building 13445, Restrooms	1,000 SF
4	Silver Duct Wrap Insulation 40-45% Chrysotile	Building 13445, HVAC Room	300 SF
5	White Duct Tape	Building 13445, HVAC Room	100 LF
6	Black Floor Tile Mastic 0.3% Chrysotile	Building 13445, Laundry Room	120 SF
7	Drywall & Joint Compound 0.5% Chrysotile	Building 13445, Throughout	7,400 SF

Homogeneous Material No	Material Description	Material Description Material Location (Functional Space)	
8	Roof Mastic 8% Chrysotile	Bali Way Restroom Building, Roof	10 SF
	Transite Pipe Presumed	Bali Way Restroom Building, Roof	6 LF

^{*} These quantities are only approximations. The exact quantities should be measured by the abatement contractor during the bidding process.

Appendix II – LABORATORY ANALYSIS RESULTS & CHAIN-OF-CUSTODY

11652 Knott Street Unit F5, Garden Grove, CA 92841

Phone/Fax: (714) 828-4999 / (714) 828-4944

losalamitoslab@latesting.com

LA Testing Order: 331211344 CustomerID: 32ANDE85

CustomerPO: ProjectID:

Attn: Scott Myers

Andersen Environmental 5261 West Imperial Highway Los Angeles, CA 90045 Phone: (310) 854-6300

Fax:

Received: 08/06/12 8:00 AM

Analysis Date: 8/8/2012

Collected:

Project: 1207-784 / 4601 Admiralty Way

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 and/or EPA 600/M4-82-020 Method(s) using Polarized Light Microscopy

				Non-Ask	<u>oestos</u>	<u>Asbestos</u>
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
8112-1A	JC / Office 1 - N	White			100% Non-fibrous (other)	None Detected
331211344-0001		Non-Fibrous Homogeneous				
8112-1B	JC / Entry Room -	White			100% Non-fibrous (other)	None Detected
331211344-0002	W	Non-Fibrous Homogeneous				
8112-1C	JC / Office 2 - S	White			100% Non-fibrous (other)	None Detected
331211344-0003		Non-Fibrous Homogeneous				
8112-2A	DW / Storage	Tan	4%	Cellulose	96% Non-fibrous (other)	None Detected
331211344-0004	Room 1	Fibrous Homogeneous				
8112-2B	DW / Storage	White	4%	Cellulose	96% Non-fibrous (other)	None Detected
331211344-0005	Room 2	Fibrous Homogeneous				
8112-2C	DW / Restroom -	White	3%	Cellulose	97% Non-fibrous (other)	None Detected
331211344-0006	N	Fibrous Homogeneous				
8112-3A	12x12 AC Tile /	Tan/White	95%	Cellulose	5% Non-fibrous (other)	None Detected
331211344-0007	Entry Room	Fibrous Heterogeneous				
8112-3B	12x12 AC Tile /	Tan/White	95%	Cellulose	5% Non-fibrous (other)	None Detected
331211344-0008	Office 1	Fibrous Heterogeneous				

Analyst(s)

Rebecca Luu (19)

Derrick Tanner, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1% Samples analyzed by EMSL Analytical, Inc. San Diego, CA

EMSL Analytical, Inc.

7916 Convoy Court, Building 4, Suite A, San Diego, CA 92111

858-499-1303 / (858) 499-1304

http://www.emsl.com sandiegolab@emsl.com EMSL Order: 431201623 CustomerID: 32ANDE85

CustomerPO: ProjectID:

Ben Curry Andersen Environmental 5261 West Imperial Highway

Los Angeles, CA 90045

Phone: Fax:

(310) 854-6300

Received:

08/17/12 11:32 AM

Analysis Date:

8/21/2012

Collected:

Project: REFERENCE PROJECT WITH ORDER ID 331211342 (1207-784/13445 MINDANAO WAY)

Test Report: Asbestos Analysis of Bulk Material via EPA 600/R-93/116. Quantitation using the 1,000 Point Count Procedure

					-Asbestos	<u>Asbestos</u>
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
1A		Beige			99.50% Non-fibrous (other)	0.50% Chrysotile
431201623-0001		Non-Fibrous Homogeneous				
1B		Beige			99.60% Non-fibrous (other)	0.40% Chrysotile
431201623-0002		Non-Fibrous Homogeneous				
6A MASTIC		Black/Beige			99.70% Non-fibrous (other)	0.30% Chrysotile
431201623-0003		Non-Fibrous Heterogeneous			, ,	·
6B MASTIC		Black/Beige			99.80% Non-fibrous (other)	0.20% Chrysotile
431201623-0004		Non-Fibrous Heterogeneous				-

Analyst(s)	
Rebecca Luu (4)	

Michelle LaVallee, Laboratory Manager or other approved signatory

Some samples may contain asbestos fibers present in dimensions below PLM resolution limits. The limit of detection as stated in the method is 0.1%. EMSL Analytical Inc suggests that samples reported as <0.1% or none detected undergo additional analysis via TEM. The above test report relates only to the items tested. This report may not be reproduced, except in full, without written approval EMSL Analytical Inc. This test report must not be used by the client to claim product endorsement by NVLAP or any agency of the United States Government. EMSL Analytical Inc. bears no responsibility for sample collection activities, analytical method limitations, or the accuracy of results when requested to separate layered samples. EMSL Analytical Inc liability is limited to the cost of sample analysis. The test results contained within this report meet the requirements of NELAC unless otherwise noted. Samples received in good condition unless otherwise noted. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample.

Samples analyzed by EMSL Analytical, Inc. San Diego, CA

Initial report from 08/21/2012 13:19:44

11652 Knott Street Unit F5, Garden Grove, CA 92841

Phone/Fax: (714) 828-4999 / (714) 828-4944

losalamitoslab@latesting.com

LA Testing Order: 331211344 CustomerID: 32ANDE85

CustomerPO: ProjectID:

Attn: Scott Myers

Andersen Environmental 5261 West Imperial Highway Los Angeles, CA 90045 Phone: (310) 854-6300

Fax:

Received: 08/06/12 8:00 AM

Analysis Date: 8/8/2012

Collected:

Project: 1207-784 / 4601 Admiralty Way

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 and/or EPA 600/M4-82-020 Method(s) using Polarized Light Microscopy

		Non-Asbestos				<u>Asbestos</u>	
Sample	Description	Appearance	%	Fibrous	% Non-F	ibrous	% Type
8112-3C	12x12 AC Tile /	Tan/White	95%	Cellulose	5% No	on-fibrous (other)	None Detected
331211344-0009	Office 3	Fibrous Heterogeneous					
8112-4A	2x4 AC Panel /	Tan/White	40%	Cellulose	30% No	on-fibrous (other)	None Detected
331211344-0010	Restroom - N	Fibrous Heterogeneous	20%	Min. Wool	10% Pe	erlite	
8112-4B	2x4 AC Panel /	Tan/White	40%	Cellulose	30% No	on-fibrous (other)	None Detected
331211344-0011	Restroom - S	Fibrous Heterogeneous	20%	Min. Wool	10% Pe	erlite	
8112-5A	Beige 12x12 VFT	Gray			100% No	on-fibrous (other)	None Detected
331211344-0012	/ Restroom - N	Non-Fibrous Homogeneous					
8112-5B	Beige 12x12 VFT / Restroom - E	Gray			100% No	on-fibrous (other)	None Detected
331211344-0013		Non-Fibrous Homogeneous					
8112-6A	Blk Vinyl Cove	Black			100% No	on-fibrous (other)	None Detected
331211344-0014	Base / Office 1 - S	Non-Fibrous Homogeneous					
8112-6B-Cove	Blk Vinyl Cove	Black			100% No	on-fibrous (other)	None Detected
Base	Base / Office 2 - N	Non-Fibrous					
331211344-0015		Homogeneous					
8112-6B-Mastic	Blk Vinyl Cove	Beige			100% No	on-fibrous (other)	None Detected
331211344-0015A	Base / Office 2 - N	Non-Fibrous Homogeneous					

Analyst(s)

Rebecca Luu (19)

Derrick Tanner, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1% Samples analyzed by EMSL Analytical, Inc. San Diego, CA

11652 Knott Street Unit F5, Garden Grove, CA 92841

Phone/Fax: (714) 828-4999 / (714) 828-4944

losalamitoslab@latesting.com

LA Testing Order: 331211344 CustomerID: 32ANDE85

CustomerPO: ProjectID:

Attn: Scott Myers
Andersen Environmental

5261 West Imperial Highway Los Angeles, CA 90045 Phone:

(310) 854-6300

Received:

Fax:

08/06/12 8:00 AM

Analysis Date: 8/8/2012

Collected:

Project: 1207-784 / 4601 Admiralty Way

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 and/or EPA 600/M4-82-020 Method(s) using Polarized Light Microscopy

			Non-As	<u>bestos</u>	<u>Asbestos</u>
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type
8112-7A 331211344-0016	Brn Asphault Roof Shingles / Roof - E	Brown/Black Fibrous Heterogeneous	10% Glass	90% Non-fibrous (other)	None Detected
8112-7B 331211344-0017	Brn Asphault Roof Shingles / Roof - S	Brown/Black Fibrous Heterogeneous	10% Glass	90% Non-fibrous (other)	None Detected
8112-7C 331211344-0018	Brn Asphault Roof Shingles / Roof - W	Fibrous Heterogeneous	10% Glass	90% Non-fibrous (other)	None Detected

Analyst(s)	
Rebecca Luu	⁽ 19)

Derrick Tanner, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1% Samples analyzed by EMSL Analytical, Inc. San Diego, CA

11652 Knott Street Unit F5, Garden Grove, CA 92841

Phone/Fax: (714) 828-4999 / (714) 828-4944

losalamitoslab@latesting.com

LA Testing Order: 331211345 CustomerID: 32ANDE85

CustomerPO: ProjectID:

Attn: Scott Myers

Andersen Environmental 5261 West Imperial Highway Los Angeles, CA 90045 Phone: (310) 854-6300

Fax:

Received: 08/06/12 8:00 AM

Analysis Date: 8/8/2012

Collected:

Project: 1207-784 / 4625 Admiralty Way

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 and/or EPA 600/M4-82-020 Method(s) using Polarized Light Microscopy

			Non-As	bestos	<u>Asbestos</u>	
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type	
3112-1A	JC / 4625 Main	White		100% Non-fibrous (other)	None Detected	
331211345-0001	Floor - N	Non-Fibrous Homogeneous				
3112-1B	JC / 4625 A Main	White		100% Non-fibrous (other)	None Detected	
331211345-0002	Floor - S	Non-Fibrous Homogeneous				
3112-1C	JC / 4633 Main	White		100% Non-fibrous (other)	None Detected	
331211345-0003	Floor - W	Non-Fibrous Homogeneous				
3112-1D	JC / 4637 Main	White		100% Non-fibrous (other)	None Detected	
331211345-0004	Floor - N	Non-Fibrous Homogeneous				
3112-1E	JC / 4635 Main	White		100% Non-fibrous (other)	None Detected	
331211345-0005	Floor - E	Non-Fibrous Homogeneous				
3112-1F	JC / Men's	White		100% Non-fibrous (other)	None Detected	
331211345-0006	Restroom - N	Non-Fibrous Homogeneous				
3112-1G	JC / Women's	White		100% Non-fibrous (other)	None Detected	
331211345-0007	Restroom - S	Non-Fibrous Homogeneous				
3112-2A	DW / 4627	Tan	3% Cellulose	97% Non-fibrous (other)	None Detected	
331211345-0008	Restroom - N	Fibrous Homogeneous				

Analyst(s)	
Rebecca Luu (3	31)

Derrick Tanner, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1% Samples analyzed by EMSL Analytical, Inc. San Diego, CA

11652 Knott Street Unit F5, Garden Grove, CA 92841

Phone/Fax: (714) 828-4999 / (714) 828-4944

losalamitoslab@latesting.com

LA Testing Order: 331211345 CustomerID: 32ANDE85

CustomerPO: ProjectID:

Attn: Scott Myers

Andersen Environmental 5261 West Imperial Highway Los Angeles, CA 90045 Phone: (310) 854-6300

Fax:

Received: 08/06/12 8:00 AM

Analysis Date: 8/8/2012

Collected:

Project: 1207-784 / 4625 Admiralty Way

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 and/or EPA 600/M4-82-020 Method(s) using Polarized Light Microscopy

				Non-Ask	<u>pestos</u>	<u>Asbestos</u>	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type	
3112-2B	DW / 4637	White	4%	Cellulose	96% Non-fibrous (other)	None Detected	
331211345-0009	Closet - N	Fibrous Homogeneous					
3112-2C	DW / 4625 A - N	White	5%	Cellulose	95% Non-fibrous (other)	None Detected	
331211345-0010		Fibrous Homogeneous					
3112-3A	12x12 AC Tile /	Brown/White	95%	Cellulose	5% Non-fibrous (other)	None Detected	
331211345-0011	4637 Admin Main Room	Fibrous Heterogeneous					
3112-3B	12x12 AC Tile /	Brown/White	95%	Cellulose	5% Non-fibrous (other)	None Detected	
331211345-0012	4625 Admin Main Room	Fibrous Heterogeneous					
3112-3C	12x12 AC Tile /	Brown/White	95%	Cellulose	5% Non-fibrous (other)	None Detected	
331211345-0013	4629 Admin Main Room	Fibrous Heterogeneous					
3112-4A-Floor Tile	_ 9-,	Green			100% Non-fibrous (other)	None Detected	
331211345-0014	/ 4627 Admin Bathroom	Non-Fibrous Homogeneous					
3112-4A-Mastic	Bge/Bl 12x12 VFT	Yellow			100% Non-fibrous (other)	None Detected	
331211345-0014A	/ 4627 Admin Bathroom	Non-Fibrous Homogeneous					
3112-4B-Floor Tile	_ 9-,	Brown			100% Non-fibrous (other)	None Detected	
331211345-0015	/ 4627 Admin Bathroom	Non-Fibrous Homogeneous					

Analyst(s)	

Rebecca Luu (31)

Derrick Tanner, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1% Samples analyzed by EMSL Analytical, Inc. San Diego, CA

11652 Knott Street Unit F5, Garden Grove, CA 92841

(714) 828-4999 / (714) 828-4944

losalamitoslab@latesting.com

LA Testing Order: 331211345 CustomerID: 32ANDE85

CustomerPO: ProjectID:

Attn: Scott Myers

Andersen Environmental 5261 West Imperial Highway Los Angeles, CA 90045

(310) 854-6300 Phone:

Fax:

08/06/12 8:00 AM Received:

Analysis Date: 8/8/2012

Collected:

Project: 1207-784 / 4625 Admiralty Way

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 and/or EPA 600/M4-82-020 Method(s) using Polarized Light Microscopy

Non-Asbestos **Asbestos** Sample Description **Appearance Fibrous** % Non-Fibrous % Type 3112-4B-Mastic Bge/BI 12x12 VFT 100% Non-fibrous (other) Yellow **None Detected** / 4627 Admin Non-Fibrous 331211345-0015A Bathroom Homogeneous 3112-5A-Floor Tile Bge 12x12 VFT / Beige 97% Non-fibrous (other) 3% Chrysotile 4625 Admin Non-Fibrous 331211345-0016 Beneath Closet Homogeneous Bae 12x12 VFT / None Detected 3112-5A-Mastic 100% Non-fibrous (other) Black 4625 Admin Non-Fibrous 331211345-0016A Beneath Closet Homogeneous Bge 12x12 VFT / 3% Chrysotile 3112-5B-Floor Tile 97% Non-fibrous (other) Beige 4625 Admin Non-Fibrous 331211345-0017 Beneath Closet Homogeneous 3112-5B-Mastic Bge 12x12 VFT / Black 100% Non-fibrous (other) **None Detected** 4625 Admin Non-Fibrous 331211345-0017A Beneath Closet Homogeneous 3112-6A Carpet Glue / Black/Yellow **None Detected** 100% Non-fibrous (other) 4625 Admin Non-Fibrous 331211345-0018 Beneath Carpet -Heterogeneous 3112-6B Carpet Glue / Yellow 100% Non-fibrous (other) **None Detected** 4625 Admin Non-Fibrous 331211345-0019 Beneath Carpet -Homogeneous 15% Cellulose 3112-7A Roof Mastic / Gray/Black 85% Non-fibrous (other) **None Detected** Roof - N Non-Fibrous 331211345-0020 Homogeneous Analyst(s) Rebecca Luu (31) Derrick Tanner, Laboratory Manager

or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1% Samples analyzed by EMSL Analytical, Inc. San Diego, CA

11652 Knott Street Unit F5, Garden Grove, CA 92841

Phone/Fax: (714) 828-4999 / (714) 828-4944

losalamitoslab@latesting.com

LA Testing Order: 331211345 CustomerID: 32ANDE85

CustomerPO: ProjectID:

Attn: Scott Myers

Andersen Environmental 5261 West Imperial Highway Los Angeles, CA 90045 Phone: (310) 854-6300

Fax:

Received: 08/06/12 8:00 AM

Analysis Date: 8/8/2012

Collected:

Project: 1207-784 / 4625 Admiralty Way

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 and/or EPA 600/M4-82-020 Method(s) using Polarized Light Microscopy

				Non-Asl	<u>pestos</u>	<u>Asbestos</u>
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
3112-7B 331211345-0021	Roof Mastic / Roof - Center	Gray/Black Fibrous Homogeneous	15%	Cellulose	85% Non-fibrous (other)	None Detected
3112-7C 331211345-0022	Roof Mastic / Roof - S	Gray/Black Fibrous Homogeneous	15%	Cellulose	85% Non-fibrous (other)	None Detected
3112-8A 331211345-0023	Gravel Roof / Roof - N	Black Fibrous Homogeneous	10%	Glass	90% Non-fibrous (other)	None Detected
3112-8B 331211345-0024	Gravel Roof / Roof - W	Black Fibrous Homogeneous	10%	Glass	90% Non-fibrous (other)	None Detected
3112-8C 331211345-0025	Gravel Roof / Roof - E	Black Fibrous Homogeneous	10%	Glass	90% Non-fibrous (other)	None Detected
3112-9A 331211345-0026	Grey Rolled On Roofing / Storage Roof - E	Gray/Black Fibrous Heterogeneous	15%	Cellulose	85% Non-fibrous (other)	None Detected
3112-9B 331211345-0027	Grey Rolled On Roofing / Storage Roof - E	Gray/Black Fibrous Heterogeneous	15%	Cellulose	85% Non-fibrous (other)	None Detected

Analyst(s)	
Rebecca Luu (31)	

Derrick Tanner, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1% Samples analyzed by EMSL Analytical, Inc. San Diego, CA

11652 Knott Street Unit F5, Garden Grove, CA 92841

Phone/Fax: (714) 828-4999 / (714) 828-4944

losalamitoslab@latesting.com

LA Testing Order: 331211316 CustomerID: 32ANDE85

CustomerPO: ProjectID:

Attn: Scott Myers

Andersen Environmental 5261 West Imperial Highway Los Angeles, CA 90045 Phone: (310) 854-6300

Fax:

Received: 08/06/12 8:00 AM

Analysis Date: 8/8/2012

Collected:

Project: 1207-784 / 4695 Admiralty Way

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 and/or EPA 600/M4-82-020 Method(s) using Polarized Light Microscopy

				Non-Asb	on-Asbestos Asbestos		
Sample	Description	Appearance	%	Fibrous	%	Non-Fibrous	% Type
8112-1A	Wall Board / Main	Brown/White	95%	Cellulose		5% Non-fibrous (other)	None Detected
331211316-0001	Floor - N	Fibrous Heterogeneous					
8112-1B	Wall Board / Main	Brown/White	95%	Cellulose		5% Non-fibrous (other)	None Detected
331211316-0002	Floor - S	Fibrous Heterogeneous					
8112-1C	Wall Board / Main	Brown/White	95%	Cellulose		5% Non-fibrous (other)	None Detected
331211316-0003	Floor - E	Fibrous Heterogeneous					
8112-2A	12x12 AC Tile /	Brown/White	98%	Cellulose		2% Non-fibrous (other)	None Detected
331211316-0004	Main Floor	Fibrous Homogeneous					
8112-2B	12x12 AC Tile /	Tan/White	95%	Cellulose		5% Non-fibrous (other)	None Detected
331211316-0005	Main Floor	Fibrous Heterogeneous					
8112-2C	12x12 AC Tile /	Tan/White	95%	Cellulose		5% Non-fibrous (other)	None Detected
331211316-0006	Storage Room	Fibrous Heterogeneous					
8112-3A-Cove	Beige Vinyl Cove	White			10	00% Non-fibrous (other)	None Detected
Base	Base / Main Floor - E	Non-Fibrous					
331211316-0007		Homogeneous					
8112-3A-Mastic	Beige Vinyl Cove	Beige			10	00% Non-fibrous (other)	None Detected
331211316-0007A	Base / Main Floor - E	Non-Fibrous Homogeneous					

Analyst(s)
-----------	---

Rebecca Luu (15)

Derrick Tanner, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1% Samples analyzed by EMSL Analytical, Inc. San Diego, CA

11652 Knott Street Unit F5, Garden Grove, CA 92841

Phone/Fax: (714) 828-4999 / (714) 828-4944

losalamitoslab@latesting.com

LA Testing Order: 331211316 CustomerID: 32ANDE85

CustomerPO: ProjectID:

Attn: Scott Myers
Andersen Environmental

5261 West Imperial Highway Los Angeles, CA 90045 Phone: (310) 854-6300

Fax:

Received: 08/06/12 8:00 AM

Analysis Date: 8/8/2012

Collected:

Project: 1207-784 / 4695 Admiralty Way

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 and/or EPA 600/M4-82-020 Method(s) using Polarized Light Microscopy

Non-Asbestos **Asbestos** Sample Description **Appearance Fibrous** % Non-Fibrous % Type 8112-3B-Cove Beige Vinyl Cove 100% Non-fibrous (other) **None Detected** White Base Base / RR - S Non-Fibrous 331211316-0008 Homogeneous 8112-3B-Mastic Beige Vinyl Cove **None Detected** Beige 100% Non-fibrous (other) Base / RR - S Non-Fibrous 331211316-0008A Homogeneous 8112-4A Roof Mastic / Gray/Black 15% Cellulose 85% Non-fibrous (other) **None Detected** Roof - N **Fibrous** 331211316-0009 Homogeneous 8112-4B Roof Mastic / Gray/Black 15% Cellulose 85% Non-fibrous (other) None Detected Roof - S **Fibrous** 331211316-0010 Homogeneous Brn Asphault 8112-5A Brown/Black 25% Cellulose 75% Non-fibrous (other) **None Detected** Roof Shingles / Fibrous 331211316-0011 Roof - E Heterogeneous 25% Cellulose 8112-5B Brn Asphault Brown/Black 75% Non-fibrous (other) **None Detected** Roof Shingles / **Fibrous** 331211316-0012 Roof - S Heterogeneous 8112-5C Brn Asphault Brown/Black 20% Cellulose 80% Non-fibrous (other) **None Detected** Roof Shingles / **Fibrous** 331211316-0013 Roof - W Heterogeneous

Analyst(s)	
Rebecca Luu (15)	

Derrick Tanner, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1% Samples analyzed by EMSL Analytical, Inc. San Diego, CA

11652 Knott Street Unit F5, Garden Grove, CA 92841

Phone/Fax: (714) 828-4999 / (714) 828-4944

losalamitoslab@latesting.com

LA Testing Order: 331211343 CustomerID: 32ANDE85

CustomerPO: ProjectID:

Attn: Scott Myers
Andersen Environmental

5261 West Imperial Highway Los Angeles, CA 90045 Phone: (310) 854-6300

Fax:

Received: 08/06/12 8:00 AM

Analysis Date: 8/8/2012

Collected:

Project: 1207-784 / 13441 Mindanao Way

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 and/or EPA 600/M4-82-020 Method(s) using Polarized Light Microscopy

Non-Asbestos <u>Asbestos</u> Sample Description Appearance Fibrous % Non-Fibrous % Type JC / Seamark **None Detected** 8112-1A White 100% Non-fibrous (other) Office 1 - N Non-Fibrous 331211343-0001 Homogeneous 8112-1B JC / Seamark White 100% Non-fibrous (other) None Detected Storage Closet - E Non-Fibrous 331211343-0002 Homogeneous JC / Janitor's White **None Detected** 100% Non-fibrous (other) 8112-1C Storage - N Non-Fibrous 331211343-0003 Homogeneous DW / Seamark **None Detected** 8112-2A White 3% Cellulose 97% Non-fibrous (other) Storage Closet - E **Fibrous** <1% Glass 331211343-0004 Homogeneous 8112-2B DW / Seamark White 3% Cellulose 97% Non-fibrous (other) None Detected Office 2 - W **Fibrous** <1% Glass 331211343-0005 Homogeneous 8112-2C DW / Janitor's White 3% Cellulose 97% Non-fibrous (other) **None Detected** Storage - N **Fibrous** <1% Glass 331211343-0006 Homogeneous 8112-3A-Floor Tile BI 12x12 VFT / Blue 100% Non-fibrous (other) None Detected Seamark Storage Non-Fibrous 331211343-0007 Closet - E Homogeneous 8112-3A-Mastic BI 12x12 VFT / Yellow 100% Non-fibrous (other) None Detected Seamark Storage Non-Fibrous 331211343-0007A Closet - E Homogeneous Analyst(s) Rebecca Luu (24) Derrick Tanner, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-fraible organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1% Samples analyzed by EMSL Analytical, Inc. San Diego, CA

11652 Knott Street Unit F5, Garden Grove, CA 92841

Phone/Fax: (714) 828-4999 / (714) 828-4944

losalamitoslab@latesting.com

LA Testing Order: 331211343 CustomerID: 32ANDE85

CustomerPO: ProjectID:

Attn: Scott Myers
Andersen Environmental
5261 West Imperial Highway

Los Angeles, CA 90045

Phone: Fax: (310) 854-6300

Received:

08/06/12 8:00 AM

Analysis Date: 8/8/2012

Collected:

Project: 1207-784 / 13441 Mindanao Way

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 and/or EPA 600/M4-82-020 Method(s) using Polarized Light Microscopy

Non-Asbestos **Asbestos** Sample Description Appearance Fibrous % Non-Fibrous % Type **None Detected** 8112-3B-Floor Tile BI 12x12 VFT / Blue 100% Non-fibrous (other) Seamark Storage Non-Fibrous 331211343-0008 Closet - S Homogeneous BI 12x12 VFT / 8112-3B-Mastic Yellow 100% Non-fibrous (other) None Detected Seamark Storage Non-Fibrous 331211343-0008A Closet - S Homogeneous 8112-4A-Floor Tile Bge 12x12 VFT / 98% Non-fibrous (other) 2% Chrysotile Tan Janitor's Storage Non-Fibrous 331211343-0009 Closet - N Homogeneous Bge 12x12 VFT / 5% Chrysotile 8112-4A-Mastic Black 95% Non-fibrous (other) Janitor's Storage Non-Fibrous 331211343-0009A Closet - N Homogeneous 8112-4B-Floor Tile Bge 12x12 VFT / 98% Non-fibrous (other) 2% Chrysotile Janitor's Storage Non-Fibrous 331211343-0010 Closet - S Homogeneous 8112-4B-Mastic Bge 12x12 VFT / 96% Non-fibrous (other) 4% Chrysotile Janitor's Storage Non-Fibrous 331211343-0010A Closet - S Homogeneous 8112-5A BI Vinyl Cove Base 100% Non-fibrous (other) None Detected / Seamark Storage Non-Fibrous 331211343-0011 Closet - S Homogeneous 8112-6A-Finish Coat Stucco / Ext. - W 100% Non-fibrous (other) None Detected Cream Non-Fibrous 331211343-0012 Homogeneous Analyst(s) Rebecca Luu (24) Derrick Tanner, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1% Samples analyzed by EMSL Analytical, Inc. San Diego, CA

11652 Knott Street Unit F5, Garden Grove, CA 92841

(714) 828-4999 / (714) 828-4944

losalamitoslab@latesting.com

LA Testing Order: 331211343 CustomerID: 32ANDE85

CustomerPO: ProjectID:

Attn: Scott Myers **Andersen Environmental**

5261 West Imperial Highway Los Angeles, CA 90045

Phone: Fax:

(310) 854-6300

Received:

08/06/12 8:00 AM

Analysis Date: 8/8/2012

Collected:

Project: 1207-784 / 13441 Mindanao Way

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 and/or EPA 600/M4-82-020 Method(s) using Polarized Light Microscopy

				Non-Ask	<u>pestos</u>	<u>Asbestos</u>	
ample D	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type	
8112-6A-Base Coat 331211343-0012A	Stucco / Ext W	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
8112-6B-Finish Coat 331211343-0013	Stucco / Ext S	Cream Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
8112-6B-Base Coat 331211343-0013A	Stucco / Ext S	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
8112-6C-Finish Coat 331211343-0014	Stucco / Ext E	Cream Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
8112-6C-Base Coat 331211343-0014A	Stucco / Ext E	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
8112-7A 331211343-0015	Grey Rolled On Roofing / Roof - N	Gray/Black Fibrous Heterogeneous	8%	6 Synthetic	92% Non-fibrous (other)	None Detected	
8112-7B 331211343-0016	Grey Rolled On Roofing / Roof - S	Gray/Black Fibrous Heterogeneous	8%	6 Synthetic	92% Non-fibrous (other)	None Detected	
8112-7C 331211343-0017	Grey Rolled On Roofing / Roof - E	Gray/Black Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected	
331211343-0016 8112-7C	Roofing / Roof - S Grey Rolled On	Fibrous Heterogeneous Gray/Black Fibrous			100% Non-fibrous (other)		

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1%

Samples analyzed by EMSL Analytical, Inc. San Diego, CA

11652 Knott Street Unit F5, Garden Grove, CA 92841

Phone/Fax: (714) 828-4999 / (714) 828-4944

losalamitoslab@latesting.com

LA Testing Order: 331211342 CustomerID: 32ANDE85

CustomerPO: ProjectID:

Attn: Scott Myers

Andersen Environmental 5261 West Imperial Highway Los Angeles, CA 90045 Phone: (310) 854-6300

Fax:

Received: 08/06/12 8:00 AM

Analysis Date: 8/8/2012

Collected:

Project: 1207-784 / 13445 Mindanao Way

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 and/or EPA 600/M4-82-020 Method(s) using Polarized Light Microscopy

				Non-As	<u>oestos</u>	<u>A</u> :	sbestos
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	%	Type
8112-1A	JC / 2nd Floor	Beige			100% Non-fibrous (other)	<1%	Chrysotile
331211342-0001	Bar - W	Non-Fibrous Homogeneous					
8112-1B	JC / 2nd Floor	Beige			100% Non-fibrous (other)	<1%	Chrysotile
331211342-0002	Storage Room - N	Non-Fibrous Homogeneous					
8112-1C	JC / 2nd Floor	White			100% Non-fibrous (other)		None Detected
331211342-0003	Kitchen - E	Non-Fibrous Homogeneous					
8112-1D	JC / 2nd Floor	White			100% Non-fibrous (other)	None Detected	
331211342-0004	Kitchen - W	Non-Fibrous Homogeneous					
8112-1E	JC / 1st Floor	White			100% Non-fibrous (other)	None Detected	None Detected
331211342-0005	Laundry - W	Non-Fibrous Homogeneous					
8112-2A	DW / 1st Floor	Beige	5%	Cellulose	95% Non-fibrous (other)	None Detected	
331211342-0006	HVAC Room - W	Fibrous Homogeneous					
8112-2B	DW / 1st Floor	White	4%	Cellulose	96% Non-fibrous (other)		None Detected
331211342-0007	Laundry - E	Fibrous Homogeneous					
8112-2C	DW / 2nd Floor	Tan	3%	Cellulose	97% Non-fibrous (other)		None Detected
331211342-0008	Kitchen - W	Fibrous Homogeneous	<1%	Glass			

Analyst(s)

Rebecca Luu (27)

Derrick Tanner, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1% Samples analyzed by EMSL Analytical, Inc. San Diego, CA

11652 Knott Street Unit F5, Garden Grove, CA 92841

Phone/Fax: (714) 828-4999 / (714) 828-4944

losalamitoslab@latesting.com

LA Testing Order: 331211342 CustomerID: 32ANDE85

CustomerPO: ProjectID:

Attn: Scott Myers

Andersen Environmental 5261 West Imperial Highway Los Angeles, CA 90045

Phone: (310) 854-6300

Fax:

Received: 08/06/12 8:00 AM

Analysis Date: 8/8/2012

Collected:

Project: 1207-784 / 13445 Mindanao Way

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 and/or EPA 600/M4-82-020 Method(s) using Polarized Light Microscopy

				Non-A	sbestos	<u>A</u> :	sbestos
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	%	Туре
8112-3A	Corr Heating Duct	Gray/Silver			60% Non-fibrous (other)	40%	Chrysotile
331211342-0009	Insulation / 1st Floor HVAC	Fibrous Homogeneous					
8112-3B	Corr Heating Duct	Gray/Silver			55% Non-fibrous (other)	45%	Chrysotile
331211342-0010	Insulation / 1st Floor HVAC	Fibrous Heterogeneous					
8112-4A	Corr Heating Duct	Gray			60% Non-fibrous (other)	40%	Chrysotile
331211342-0011	Insulation Tape / 1st Floor HVAC	Fibrous Homogeneous					
8112-4B	Corr Heating Duct	Gray			55% Non-fibrous (other)	45% Chrysotile	
331211342-0012	Insulation Tape / 1st Floor HVAC	Fibrous Homogeneous					
8112-5A-Floor Tile	9	Gray			97% Non-fibrous (other)	3%	Chrysotile
331211342-0013	12x12 VFT / Men's RR - N	Non-Fibrous Homogeneous					
8112-5A-Mastic	Bge Pebble	Black			94% Non-fibrous (other)	6%	Chrysotile
331211342-0013A	12x12 VFT / Men's RR - N	Non-Fibrous Homogeneous					
8112-6A-Floor Tile	- 3	Beige			100% Non-fibrous (other)		None Detected
331211342-0014	VFT / Laundry - N	Non-Fibrous Homogeneous					
8112-6A-Mastic	Bge Speck 12x12	Black/Beige			100% Non-fibrous (other)	<1%	Chrysotile
331211342-0014A	VFT / Laundry - N	Non-Fibrous Heterogeneous					

Analyst(s)

Rebecca Luu (27)

Derrick Tanner, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1% Samples analyzed by EMSL Analytical, Inc. San Diego, CA

11652 Knott Street Unit F5, Garden Grove, CA 92841

Phone/Fax: (714) 828-4999 / (714) 828-4944

losalamitoslab@latesting.com

LA Testing Order: 331211342 CustomerID: 32ANDE85

CustomerPO: ProjectID:

Attn: Scott Myers

Andersen Environmental 5261 West Imperial Highway Los Angeles, CA 90045 Phone: (310) 854-6300

Fax:

Received: 08/06/12 8:00 AM

Analysis Date: 8/8/2012

Collected:

Project: 1207-784 / 13445 Mindanao Way

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 and/or EPA 600/M4-82-020 Method(s) using Polarized Light Microscopy

			<u>pestos</u>	<u>Asbestos</u>		
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
8112-6B-Floor Tile 331211342-0015	Bge Speck 12x12 VFT / Laundry - S	Beige Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
8112-6B-Mastic 331211342-0015A	Bge Speck 12x12 VFT / Laundry - S	Black/Beige Non-Fibrous Heterogeneous			100% Non-fibrous (other)	<1% Chrysotile
8112-7A 331211342-0016	Bge Square SVF / 2nd Floor Kitchen - N	Gray/Beige Fibrous Heterogeneous	15% <1%	Cellulose Glass	85% Non-fibrous (other)	None Detected
8112-7B 331211342-0017	Bge Square SVF / 2nd Floor Kitchen - S	Gray/Beige Fibrous Heterogeneous	15%	Cellulose	85% Non-fibrous (other)	None Detected
8112-8A-Cove Base 331211342-0018	Grey Vinyle Cove Base / 2nd Floor Kitchen - N	Black Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
8112-8A-Mastic 331211342-0018A	Grey Vinyle Cove Base / 2nd Floor Kitchen - N	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
8112-8B-Cove Base 331211342-0019	Grey Vinyle Cove Base / 2nd Floor Kitchen - S	Black Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected

Analyst(s)	
Rebecca Luu (27)	

Derrick Tanner, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1% Samples analyzed by EMSL Analytical, Inc. San Diego, CA

11652 Knott Street Unit F5, Garden Grove, CA 92841

Phone/Fax: (714) 828-4999 / (714) 828-4944

losalamitoslab@latesting.com

LA Testing Order: 331211342 CustomerID: 32ANDE85

CustomerPO: ProjectID:

Attn: Scott Myers

Andersen Environmental 5261 West Imperial Highway Los Angeles, CA 90045 Phone: (310) 854-6300

Fax:

Received: 08/06/12 8:00 AM

Analysis Date: 8/8/2012

Collected:

Project: 1207-784 / 13445 Mindanao Way

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 and/or EPA 600/M4-82-020 Method(s) using Polarized Light Microscopy

		<u>Non-Asbestos</u>					<u>Asbestos</u>	
Sample	Description	Appearance	%	Fibrous	%	Non-Fibrous	% Type	
8112-9A-Cove Base 331211342-0020	Blk Vinyl Cove Base / 2nd Floor Bar - E	Black Non-Fibrous			1	00% Non-fibrous (other)	None Detected	
8112-9A-Mastic	Blk Vinyl Cove Base / 2nd Floor	Yellow Non-Fibrous			1	00% Non-fibrous (other)	None Detected	
331211342-0020A	Bar - E	Homogeneous						
8112-10A-Cove Base	Blk Vinyl Cove Base / 2nd Floor	Beige Non-Fibrous			1	00% Non-fibrous (other)	None Detected	
331211342-0021	Laundry - W	Homogeneous						
8112-10A-Mastic	,	Yellow			1	00% Non-fibrous (other)	None Detected	
331211342-0021A	Base / 2nd Floor Laundry - W	Non-Fibrous Homogeneous						

Analyst(s)	
------------	--

Rebecca Luu (27)

Derrick Tanner, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1% Samples analyzed by EMSL Analytical, Inc. San Diego, CA

520 Mission Street, South Pasadena, CA 91030

Phone/Fax: (323) 254-9960 / (323) 254-9982

pasadenalab@latesting.com http://www.latesting.com

LA Testing Order: 321213377 CustomerID: 32ANDE85

CustomerPO: ProjectID:

Attn: Ben Curry **Andersen Environmental 5261 West Imperial Highway** Los Angeles, CA 90045

Phone: Fax:

(310) 854-6300

Received:

08/08/12 2:15 PM Analysis Date: 8/11/2012

Collected: 8/8/2012

Project: 1207-784 Pier 44

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 and/or EPA 600/M4-82-020 Method(s) using Polarized Light Microscopy

			Non-Asl	<u>pestos</u>	<u>Asbestos</u>	
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type	
101 321213377-0001	Roof core build 13445	Gray/Black Fibrous	10% Cellulose 5% Glass	85% Non-fibrous (other)	None Detected	
102	Roof core build	Heterogeneous Gray/Black	10% Synthetic	90% Non-fibrous (other)	None Detected	
321213377-0002	13445	Fibrous Heterogeneous	·			
103	Roof core build	Gray/Black	10% Synthetic	85% Non-fibrous (other)	None Detected	
321213377-0003	13445	Fibrous Heterogeneous	5% Glass			
104	Roof mastic build	Black	10% Cellulose	90% Non-fibrous (other)	None Detected	
321213377-0004	13445	Fibrous Heterogeneous				
105	Roof mastic build	Gray/Black	10% Cellulose	90% Non-fibrous (other)	None Detected	
321213377-0005	13445	Fibrous Heterogeneous				
106	Roof mastic build	Gray/Black	10% Cellulose	90% Non-fibrous (other)	None Detected	
321213377-0006	13445	Fibrous Heterogeneous				

Olivia Santiago (6)

Jerry Drapala Ph.D, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1% Samples analyzed by LA Testing South Pasadena, CA NVLAP Lab Code 200232-0, CA ELAP 2283

Initial report from 08/11/2012 14:31:29

11652 Knott Street Unit F5, Garden Grove, CA 92841

Phone/Fax: (714) 828-4999 / (714) 828-4944

losalamitoslab@latesting.com

LA Testing Order: 331211347 CustomerID: 32ANDE85

CustomerPO: ProjectID:

Attn: Scott Myers

Andersen Environmental 5261 West Imperial Highway Los Angeles, CA 90045

Phone: (310) 854-6300

Fax:

Received: 08/06/12 8:00 AM

Analysis Date: 8/8/2012 Collected: 8/1/2012

Project: 1207-784 / 13444 Bali Way

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 and/or EPA 600/M4-82-020 Method(s) using Polarized Light Microscopy

				Non-Asi	<u>Asbestos</u>	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
8112-1A	Joint Compound	White			100% Non-fibrous (other)	None Detected
331211347-0001	1st Floor Mens RR	Non-Fibrous Homogeneous				
8112-1B	Joint Compound	White			100% Non-fibrous (other)	None Detected
331211347-0002	1st Floor Storage	Non-Fibrous Homogeneous				
8112-1C	Joint Compound	White			100% Non-fibrous (other)	None Detected
331211347-0003	1st Floor Entry	Non-Fibrous Homogeneous				
8112-1D	Joint Compound	White			100% Non-fibrous (other)	None Detected
331211347-0004	2nd Floor North	Non-Fibrous Homogeneous				
8112-1E	Joint Compound	White			100% Non-fibrous (other)	None Detected
331211347-0005	2nd Floor Kitchen East	Non-Fibrous Homogeneous				
8112-1F	Joint Compound	White			100% Non-fibrous (other)	None Detected
331211347-0006	2nd Floor South	Non-Fibrous Homogeneous				
8112-1G	Joint Compound	White			100% Non-fibrous (other)	None Detected
331211347-0007	1st Floor South Hallway	Non-Fibrous Homogeneous				
8112-2A	Drywall 1st Floor	White	5%	Cellulose	95% Non-fibrous (other)	None Detected
331211347-0008	Storage Storage	Fibrous Homogeneous				

Ana	iyst(s)	

Rebecca Luu (37)

Derrick Tanner, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1% Samples analyzed by EMSL Analytical, Inc. San Diego, CA

11652 Knott Street Unit F5, Garden Grove, CA 92841

Phone/Fax: (714) 828-4999 / (714) 828-4944

losalamitoslab@latesting.com

LA Testing Order: 331211347 CustomerID: 32ANDE85

CustomerPO: ProjectID:

Attn: Scott Myers

Andersen Environmental 5261 West Imperial Highway Los Angeles, CA 90045 Phone: (310) 854-6300

Fax:

Received: 08/06/12 8:00 AM

Analysis Date: 8/8/2012 Collected: 8/1/2012

Project: 1207-784 / 13444 Bali Way

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 and/or EPA 600/M4-82-020 Method(s) using Polarized Light Microscopy

				Non-Asi	<u>pestos</u>	<u>Asbestos</u>	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type	
8112-2B	Drywall 1st Floor	White	5%	Cellulose	95% Non-fibrous (other)	None Detected	
331211347-0009	Mens RR	Fibrous Homogeneous					
8112-2C	Drywall 2nd Floor	White	4%	Cellulose	96% Non-fibrous (other)	None Detected	
331211347-0010	North	Fibrous Homogeneous					
8112-3A-Finish Plaster 2nd Floor Coat Kitchen	White Non-Fibrous			100% Non-fibrous (other)	None Detected		
331211347-0011		Homogeneous					
8112-3A-Base Coa		Beige			100% Non-fibrous (other)	None Detected	
331211347-0011A	Kitchen	Non-Fibrous Homogeneous					
8112-3B-Finish	Plaster 2nd Floor	White			100% Non-fibrous (other)	None Detected	
Coat	Kitchen	Non-Fibrous					
331211347-0012		Homogeneous					
8112-3B-Base Coa		Beige			100% Non-fibrous (other)	None Detected	
331211347-0012A	Kitchen	Non-Fibrous Homogeneous					
8112-3C-Finish Coat	Plaster HVAC Closet	Beige Non-Fibrous			100% Non-fibrous (other)	None Detected	
331211347-0013		Homogeneous					

Analyst(s)	
Rebecca Luu (37)	

Derrick Tanner, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1% Samples analyzed by EMSL Analytical, Inc. San Diego, CA

11652 Knott Street Unit F5, Garden Grove, CA 92841

Phone/Fax: (714) 828-4999 / (714) 828-4944

losalamitoslab@latesting.com

LA Testing Order: 331211347 CustomerID: 32ANDE85

CustomerPO: ProjectID:

Attn: Scott Myers

Andersen Environmental 5261 West Imperial Highway Los Angeles, CA 90045

Phone: (310) 854-6300

Fax:

Received: 08/06/12 8:00 AM

Analysis Date: 8/8/2012 Collected: 8/1/2012

Project: 1207-784 / 13444 Bali Way

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 and/or EPA 600/M4-82-020 Method(s) using Polarized Light Microscopy

				Non-Ask	<u>Asbestos</u>	
Sample I	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
8112-3C-Base Coat 331211347-0013A	Plaster HVAC Closet	Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
8112-3D-Finish Coat 331211347-0014	Plaster HVAC Closet	Beige Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
8112-3D-Base Coat 331211347-0014A	Plaster HVAC Closet	Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
8112-3E-Finish Coat 331211347-0015	Plaster HVAC Closet	Beige Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
8112-3E-Base Coat 331211347-0015A	Plaster HVAC Closet	Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
8112-4A 331211347-0016	Beige VSF 1st Floor Mens Restroom	Gray/Tan Fibrous Heterogeneous	15% <1%	Cellulose Glass	85% Non-fibrous (other)	None Detected
8112-4B 331211347-0017	Beige VSF 1st Floor Storage	Gray/Tan Fibrous Heterogeneous		Cellulose Glass	85% Non-fibrous (other)	None Detected
8112-5A 331211347-0018	Brown VCB 1st Floor South Hallway	Brown Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected

or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1% Samples analyzed by EMSL Analytical, Inc. San Diego, CA

11652 Knott Street Unit F5, Garden Grove, CA 92841

Phone/Fax: (714) 828-4999 / (714) 828-4944

losalamitoslab@latesting.com

LA Testing Order: 331211347 CustomerID: 32ANDE85

CustomerPO: ProjectID:

Attn: Scott Myers

Andersen Environmental 5261 West Imperial Highway Los Angeles, CA 90045 Phone: (310) 854-6300

Fax:

Received: 08/06/12 8:00 AM

Analysis Date: 8/8/2012 Collected: 8/1/2012

Project: 1207-784 / 13444 Bali Way

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 and/or EPA 600/M4-82-020 Method(s) using Polarized Light Microscopy

			<u>bestos</u>	<u>Asbestos</u>	
Sample Description	Description	Appearance	% Fibrous	% Non-Fibrous	% Type
8112-5B	Brown VCB 2nd	Brown		100% Non-fibrous (other)	None Detected
331211347-0019	Floor North	Non-Fibrous Homogeneous			
8112-6A	Stucco Ext South	Beige		100% Non-fibrous (other)	None Detected
331211347-0020		Non-Fibrous Homogeneous			
8112-6B	Stucco Ext East	Beige		100% Non-fibrous (other)	None Detected
331211347-0021		Non-Fibrous Homogeneous			
8112-6C	Stucco Ext West	Beige		100% Non-fibrous (other)	None Detected
331211347-0022		Non-Fibrous Homogeneous			
8112-7A	Roof Mastic Main	Gray/Black	25% Cellulose	75% Non-fibrous (other)	None Detected
331211347-0023	Bldg Roof North	Fibrous Homogeneous			
8112-7B	Roof Mastic Main	Gray/Black	25% Cellulose	75% Non-fibrous (other)	None Detected
331211347-0024	Bldg Roof South	Fibrous Homogeneous			
8112-7C	Roof Mastic	Gray/Black		92% Non-fibrous (other)	8% Chrysotile
331211347-0025	Restroom Bldg Roof East	Fibrous Homogeneous			
8112-7D	Roof Mastic	Gray/Black		92% Non-fibrous (other)	8% Chrysotile
331211347-0026	Restroom Bldg Roof Wesr	Fibrous Homogeneous			

Analyst(s))
------------	---

Rebecca Luu (37)

Derrick Tanner, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1% Samples analyzed by EMSL Analytical, Inc. San Diego, CA

11652 Knott Street Unit F5, Garden Grove, CA 92841

Phone/Fax: (714) 828-4999 / (714) 828-4944

losalamitoslab@latesting.com

LA Testing Order: 331211347 CustomerID: 32ANDE85

CustomerPO: ProjectID:

Attn: Scott Myers

Andersen Environmental 5261 West Imperial Highway Los Angeles, CA 90045 Phone: (310) 854-6300

Fax:

Received: 08/06/12 8:00 AM

Analysis Date: 8/8/2012 Collected: 8/1/2012

Project: 1207-784 / 13444 Bali Way

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 and/or EPA 600/M4-82-020 Method(s) using Polarized Light Microscopy

				Non-A	sbestos	<u>Asbestos</u>
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
8112-8A 331211347-0027	Asphalt Roof Shingles Main Bldg Roof South	Gray/Black Fibrous Heterogeneous	8%	Glass	92% Non-fibrous (other)	None Detected
8112-8B 331211347-0028	Asphalt Roof Shingles Main Bldg Roof East	Brown/Black Fibrous Heterogeneous	8%	Glass	92% Non-fibrous (other)	None Detected
8112-8C 331211347-0029	Asphalt Roof Shingles Main Bldg Roof Center	Brown/Black Fibrous Heterogeneous	10%	Glass	90% Non-fibrous (other)	None Detected
8112-9A 331211347-0030	Asphalt Roof Shingles Restroom Bldg Roof East	Gray/Black Fibrous Heterogeneous	10%	Glass	90% Non-fibrous (other)	None Detected
8112-9B 331211347-0031	Asphalt Roof Shingles Restroom Bldg Roof Center	Gray/Black Fibrous Heterogeneous	8%	Glass	92% Non-fibrous (other)	None Detected
8112-9C 331211347-0032	Asphalt Roof Shingles Restroom Bldg Roof West	Gray/Black Fibrous Heterogeneous	10%	Glass	90% Non-fibrous (other)	None Detected

Analyst(s)	
Rebecca Luu (37)	_

Derrick Tanner, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1% Samples analyzed by EMSL Analytical, Inc. San Diego, CA

Turn Around Time - (Circle)
*Please select based on
laboratory being used

3hr 6hr 24hr 48hr 72hr

Andersen Environmental Project No.:	Project Name:	Sampling By:	Number of Samples:	Date(s) Collected:	Page No.:		Total Pages
1207 - 784	4601 Admiralty Way	Freddy Torres	18	8-1-2012	1	Of	2

Sample No.:	Sample Location & Comments	Start Flow Rate End Flow Rate	Start Time Stop Time	Total Volume Area/SQFT	Type of Analysis Sample Serial Number
8112 - IA	Joint Compound Office 1 North				Analysis Type: PLM Bulk Serial No.:
18	Entry Room West %RH: Temp:				Analysis Type: Serial No.:
10	Office Z South				Analysis Type: Serial No.:
2A	Drywall Storage Room 1 %RH: Temp:				Analysis Type: Serial No.:
28	Storage Room 2 %RH: Temp:	******************			Analysis Type: Serial No.:
2C	Qestroom North %RH: Temp:				Analysis Type: Serial No.:
3A	Ceiling Rent Tile "RH: Temp:				Analysis Type: Serial No.:
3B	Office \ %RH: Temp:				Analysis Type: Serial No.:
J 3C	Office 3 %RH: Temp:				Analysis Type: Serial No.:
7	trackly Topics 8-2-12 ut & Sign) (Date & Time)	Received By (Print of Received By (Print of	MDP	8/10/12	800AY

Special Instructions:	Stop Positive:	E-mail to Additional Party:
	Yes No	Ben Con

Turn Around Time - (Circle)
*Please select based on
laboratory being used

				/
3hr	6hr	24hr	48hr	(72hr

Andersen Enviro Project No.:	nmental	Project Name:	Sampling By:		Number of Samples:	Date(s) Collected:	Page No.:	1	Total Pages
1207-78	4	4001 Admiralty W	ay Freddy Tor	res	18	8-1-2012	2	Of	2
Sample No.:	Sample	Location & Comments		Start Flo	*******	Time Total Volume Time Area/SQFT	Type Sample S	of Anal Serial N	
8112 4A	Ceilio	Acoustic Restr	Temp:				Analysis Type: Serial No.:	PLN	A BUIK
	1	%RH:	South Temp:				Analysis Type: Serial No.:		

8112 4	Ceiling Panel	%RH:	Temp:		Serial No.:
1 110			South		Analysis Type:
	D. J.	%RH: 💄	Temp:		Serial No.:
=	A Beige 12x12	Restroom	n North		Analysis Type:
	Vinyl Floor Tile	%RH:	Temp:		Serial No.:
T =	O,		East		Analysis Type:
0	iB 1	%RH:	Temp:		Serial No.:
	A Black Vinyl	Office	1 South		Analysis Type:
4	Care Base	%RH:	Temp:		Serial No.:
1		Office	2 North		Analysis Type:
1 6	8 1	%RH:	Temp:		Serial No.:
7	A Brown Asphault	Roof	East		Analysis Type:
1	A Brown Asphault Roof Shingles	%RH: 1	Temp:		Serial No.:
11			South		Analysis Type:
	9	%RH:	Temp:		Serial No.:
1			west		Analysis Type:
4 (%RH:	Temp:		Serial No.:
Relinquished By	(Print & Sign)(Date & Time)			Received By (Print & Sign) (Date & Time)	

4		*	%KH	: Temp:	Seriai No.:
Relinquish	ed By (Pring	& Sign)(Date & Time)			Received By (Print & Sign) (Date & Time)
A	7	Frakk	Tones	8-2-17	Sec. 5
Relinquish	ed By (Print	& Sign) (Date & Time)			Received By (Print & Sign) (Date & Time)

Special Instructions:	Stop Positive:	E-mail to Additional Party:
	Yes No	Ben Cory

Turn Around Time - (Circle)
*Please select based on
laboratory being used

3hr 6hr 24hr 48hr 2hr

Andersen Environmental Project No.:	Project Name:	Sampling By:	Number of Samples:	Date(s) Collected:	Page No.:		Total Pages	
1207-784	4625 Admiralty Way	Freddy Torres	27	8-1-2012	1	Of	3	

Sample No.:	F H T F	Sample Location & Comments			Start Time Stop Time	Total Volume Area/SQFT	Type of Analys Sample Serial Nu	nber
81+2 - 1 A	. Joint	Joint Compound 4625 Main Floor North				-	Analysis Type: PLM Serial No.:	Bulk
118		4625 A %RH:	South Temp:				Analysis Type: Serial No.:	
16		Ч¢3.3 %RH:	West Temp:				Analysis Type: Serial No.:	
		4637 %RH:	North Temp:				Analysis Type: Serial No.:	
1E		4635 %RH: •	East Temp:				Analysis Type: Serial No.:	
······1F		Men's Rest %RH:	Temp:				Analysis Type: Serial No.:	
10	,	Women's (Zestroom South Temp:				Analysis Type: Serial No.:	
2A	Dry	wall 4027 Res	traam Temp: North		*******		Analysis Type: Serial No.:	
1 25	3	4637 CL05	Temp: North				Analysis Type: Serial No.:	
Relinquished By (F	7	Frechy Torres 8	.2-/2	Received By (Print)	MA	3 86/12	800Am	

Special Instructions:	Stop Positive:	E-mail to Additional Party:
	Yes No	Ben Curry

A EANDERSEN ENVIRONMENTAL

Laboratory Chain of Custody

Turn Around Time - (Circle)
*Please select based on
laboratory being used

3hr 6hr 24hr 48hr (72hr)

Andersen Environmental Project No.:	Project Name:	Sampling By:	Number of Samples:	Date(s) Collected:	Page No.:		Total Pages
1207 - 784	4625 Admiralty way	Freddy Torres	27	8-1-2012	2	Of	3

Sample No.:	Sample Location & Comments	Start Flow Rate End Flow Rate	Start Time Stop Time	Total Volume Area/SQFT	Type of Analysis Sample Serial Number
8112-2C	Drywall 4625 A North				Analysis Type: PLM BUIK Serial No.:
3A	12x12 Acoustic 4637 Alm. Main Room Ceiling Tile %RH: Temp:				Analysis Type: Serial No.:
3B	4625 Adm, Main Rom %RH: Temp:				Analysis Type: Serial No.:
30	4029 Adm. Main Room %RH: Temp:				Analysis Type: Serial No.:
	Beige / Blue 4627 Alm. Bathroom				Analysis Type: Serial No.:
4B	%RH: Temp:				Analysis Type: Serial No.:
5A	Beige 12x12 4625 Adm Beneath Carpet Vinyl Floor Tile %RH: Temp:				Analysis Type: Serial No.:
5B	4625 Adm.				Analysis Type: Serial No.:
6A	Carpet Glue 4625 Adm, West Temp:				Analysis Type: Serial No.:
Relinquished By (Prin	t & Sign)(Date & Time)	Received By (Print &	Sign) (Date & Time)	U-2000年在2000年上上的1900年
Relinquished By (Prin	t & Sign) (Date & Time)	Received By (Print &	Sign) (Date & Time		

Special Instructions:	Stop Positive:	E-mail to Additional Party:
	Yes No	

Turn Around Time - (Circle) *Please select based on laboratory being used

3hr 24hr

Andersen Environmental Project No.:	Project Name:	Sampling By:	Number of Samples:	Date(s) Collected:	Page No.:		Total Pages
1207-784	4625 Admiraltyway	Freddy Torres	27	8-1-2012	3	Of	3

Sample No.:	Sample Location & Comments	Start Flow Rate Start Time Total Volume Type of And End Flow Rate Stop Time Area/SQFT Sample Serial				
8112 B	Carpet Glve 4025 Adm. East %RH: Temp: Roof Mastic Roof North : %RH: Temp:				Analysis Type: PIM BUIK Serial No.:	
7A	Roof Mastic Roof North		***************************************		Analysis Type: Serial No.:	
78	Center %RH: Temp:				Analysis Type: Serial No.:	
70	South %RH: Temp:				Analysis Type: Serial No.:	
8A	Gravel Roof North				Analysis Type: Serial No.:	
8·B	%RH: Temp:				Analysis Type: Serial No.:	
8C	Fast Temp:				Analysis Type: Serial No.:	
9A-	Grey Rolled Storage Roof on Roofing "RH: Temp: Fost				Analysis Type: Serial No.:	
1 9B	%RH: Temp: West				Analysis Type: Serial No.:	
Relinquished By (Prin	t & Sign)(Date & Time)	Received By (Print &	Sign) (Date & Time	2		
Relinquished By (Prin	t & Sign) (Date & Time)	Received By (Print &	Sign) (Date & Time			

Relinquished By (Print & Sign)(Date & Time)	Received By (Print & Sign) (Date & Time)	
Relinquished By (Print & Sign) (Date & Time)	Received By (Print & Sign) (Date & Time)	

Special Instructions:	Stop Positive:	E-mail to Additional Party:
	Yes No	

Turn Around Time - (Circle)
*Please select based on
laboratory being used

3hr 6hr 24hr 48hr (72hr

Andersen Environ	nmental	Project Name:	Sampling By:		mber of mples:	Date(s) Collected:	Page No.:		Total Pages
1207-184		4695 Admiralty Way	Freddy Torra	25	13	8-	1-2012	1	Of	2
Sample No.:	Sample	Location & Comments		Start Flow R	****	t Time Time	Total Volume Area/SQFT	Type Sample	of Ana Serial N	
81+2-1A	Wall	Board Main Fl	oor North					Analysis Type: Serial No.:		
18		%RH:	South Temp:					Analysis Type: Serial No.:		
+C	······································	%RH: >	Temp:					Analysis Type: Serial No.;		
2A	12×12 Ceilina	Acoustic %RH:	Temp:					Analysis Type: Serial No.:		
2B		%RH:	Temp:					Analysis Type: Serial No.:		
2C		Storage (2com Temp:					Analysis Type: Serial No.:		
3A	Beize Core F	Vinyl Main F						Analysis Type: Serial No.:		
38	1	Restrace						Analysis Type: Serial No.:		
	Roof	Mastic Roof	North					Analysis Type:		

Relinquished By (Print & Sign)(Date & Time)	Received by (Print & Sign) (Date & Time)
The Fredly Tare, 8.2-12	Received By (Print & Sign) (Date & Time) Received By (Print & Sign) (Date & Time)
Relinquished By (Print & Sign) (Date & Time)	Received by (Fran & Sign) (Date & Time)

Special Instructions:	Stop Positive:	E-mail to Additional Party:
	Yes No	Ben Curry

Turn Around Time - (Circle)
*Please select based on
laboratory being used

3hr 6hr 24hr 48hr 72hr

Andersen Enviro Project No.:	onmental	Project Name:	Sampling By:		mber of	Date((s) Collected:	Page No.:		Total Pages
1207- 78	4	4695 Admiralty Way	Freddy torra	es	13	8-	1-2012	2	Of	2
Sample No.:	Sample	Location & Comments		Start Flow Ra	***	rt Time	Total Volume Area/SQFT	Type Sample	e of Anal Serial N	
8112 4B	Roof	Mastic Re	oof South Temp:					Analysis Type: Serial No.:		
5A	Braun Roof &	Asphault Re Shingles %RH:	oof East Temp:			***********		Analysis Type: Serial No.:		
5B		%RH:	South.					Analysis Type: Serial No.:		
5C		%RH:	West Temp:					Analysis Type: Serial No.:		
		%RH:	Temp:					Analysis Type: Serial No.:		
		%RH:	Temp:					Analysis Type: Serial No.:		
		%RH:	Temp:	***********				Analysis Type: Serial No.:		*********
		%RH:	Temp:	*********				Analysis Type: Serial No.:		
***********		%RH:	Temp:					Analysis Type: Serial No.:		
Relinquished By (Prin	nt & Sign)(De	ate & Time)		Received By (P.	rint & Sign)	(Date & Tim	9			
Relinquished By (Prin	nt & Sign) (D	late & Time)		Received By (P	rint & Sign)	(Date & Tim	e)			
Special Instruction	ions:			Stop Positiv	e:		E-mail to Addition:	al Party:		
				Yes	No			•		

Andersen Environmental

Project No.:

Laboratory Chain of Custody

Turn Around Time - (Circle)
*Please select based on
laboratory being used

3hr 6hr 24hr 48hr 72hr

	Chain	of Custody		Standard			
A Property of the last	Project Name:	Sampling By:	Number of Samples:	Date(s) Collected:	Page No.:		Total Pages
	13441 Mindanao Way	Freddy Torres	17	8-1-2012	1	Of	2

Sample No.:	Sample Location & Comments	Start Flow Rate End Flow Rate	Start Time Stop Time	Total Volume Area/SQFT	Type of Analysis Sample Serial Number
8112 1A	Joint Compaind Seamark Office 1 N	orth			Analysis Type: PLM BULK Serial No.:
1 1B	Seamark Storage Closet %RH: Temp:	East			Analysis Type: Serial No.:
	Janitor's Storage No %RH: Temp:	orth			Analysis Type: Serial No.:
2A	Drywall Semark Storage Closet	.E45.			Analysis Type: Serial No.:
2B	Seamark Office 2 W %RH: Temp:	lest.			Analysis Type: Serial No.:
2C	Janitor's Storage No.	rth			Analysis Type: Serial No.:
3A	Bive 12×12 Seamark Storage Close Vinyl Floor Tile %RH: Temp:	t 65t			Analysis Type: Serial No.:
3B		wtb.			Analysis Type: Serial No.:
4 YA	Beige 12x12 Initor's Storage Closet. Vinyl Floor Tile %RH: Temp:	North			Analysis Type: Serial No.:
the 7	Sign) (Date & Time) 8-2-12 Felly Jones at & Sign) (Date & Time)	Received By (Print &	WDB	3/6/12	800AM

Special Instructions:	Stop Positive:	E-mail to Additional Party:
	Yes No	Ben Cury

Andersen Environmental | Project Name:

Laboratory Chain of Custody

Sampling By:

Temp:

%RH:

Turn Around Time - (Circle)
*Please select based on
laboratory being used

Number of

#3 3 1 2 1 1 3 4 3 hr 6hr 24hr 48hr 72hr

Page No.:

Analysis Type:

Serial No .:

Total

Standard

Date(s) Collected:

Project No.:				基础/到3000000000000000000000000000000000000		Sample	s:				Pages
1207-78	4	13441 Mindanas	Way	Freddy Tor	res	1	1 8	-1-2012	2	Of	2
Sample No.:		Location & Comments			Start Flo		Start Time Stop Time		Type Sample S	of Ana Serial N	通风风水水水流流流流水水流流流
8+12 4B	Beige 1	ZXIZ Jan Floor Tile	Hors.	Storage Closet South Temp:					Analysis Type: Serial No.:	F	LM BULK
-\ 5A	Blue	Vinyl Seam	RH:	Horage Claset South					Analysis Type: Serial No.:		
6A		CO EXT		West Temp:					Analysis Type: Serial No.:	*****	
68		Ex-	₩	South Temp:					Analysis Type: Serial No.:		
60	1	. Ext	6RH:	East Temp:	*******				Analysis Type: Serial No.:		
78	Grey	ROPLED "	ROOF	North Temp:					Analysis Type: Serial No.:		
78			6RH:	South Temp:					Analysis Type: Serial No.:		
70			RH:	East Temp:					Analysis Type:		

Relinquished By (Print & Sign) (Date & Time)

Received By (Print & Sign) (Date & Time)

Relinquished By (Print & Sign) (Date & Time)

Received By (Print & Sign) (Date & Time)

Special Instructions:	Stop Positive:	E-mail to Additional Party:
	Yes No	

Turn Around Time - (Circle) *Please select based on laboratory being used

3hr 24hr

Andersen Enviro Project No.:	nmental	Project Name:	Sampling By:		Numbe Sample		Date(s)	Collected:	Page No.:		Total Pages
1207 - 18	34	13445 Mindanao Way	Freddy Tor	res	2	1	8-	1-2012	l	Of	3
Sample No.:	Sample	Location & Comments		Start Flo		Start Stop		Total Volume Area/SQFT	Type Sample	of Anal Serial N	MMX *** ** * * * * * * * * * * * * * * *
8112 IA	Joint	Compaind 2nd Floor	Bur West Temp:						Analysis Type: Serial No.:		
18		20d Fl. Storage F	Room North Temp:						Analysis Type: Serial No.:		
10		Kitchen %RH:	East Temp:						Analysis Type: Serial No.:		
10		Yitchen %RH:	West Temp:		******				Analysis Type: Serial No.:		
······································		1st Floor Laun	dry West						Analysis Type: Serial No.:		
2A	Dryw	Joh Floor HV	K Room West Temp:						Analysis Type: Serial No.:		
28		Laundr %RH:	y East						Analysis Type: Serial No.:		
2C		2nd Floor Kitch	hen West Temp:						Analysis Type: Serial No.:		
- 3A	Corr	Heating 1st Floor Insulation %RH:	HVAC Room Temp:						Analysis Type: Serial No.:		
Relinguished By (Prin	u & Signoto	Frethly Torres	8-2-12		By (Print &	PVU	DF	3 eduliz	800Am	1	
Special Instruction	ons:			Stop Po			E	-mail to Additions	al Party:		学技术也多点
					Yes	No		Benla	my		

Turn Around Time - (Circle)
*Please select based on
laboratory being used

3 3 1 2 1 1 3 4 2 or 6hr 24hr 48hr 72hr

Andersen Environmental Project No.:	Project Name:	Sampling By:	Number of Samples:	Date(s) Collected:	Page No.:		Total Pages
1207- 784	13445 Mindanno Way	Freddy Torres	21	8-1-2012	2	Of	3

Sample No.:	Sample Location & Comments	Start Flow Rate End Flow Rate	Start Time Stop Time	Total Volume Area/SQFT	Type of Analysis Sample Serial Number
8112 -3B	Corr. Heating 1st Floor HVAC Room Duct Insulation "RH: Temp:	************			Analysis Type: PLM BUIK Serial No.:
1 HA	Heating Duct Insulation Tape %RH: Temp:				Analysis Type: Serial No.:
48	%RH: Temp:				Analysis Type: Serial No.:
5A	Beige Pebble Men's Restroom North				Analysis Type: Serial No.:
6A					Analysis Type: Serial No.:
	%RH: Temp:				Analysis Type: Serial No.:
7A	Beige Square Sheet 2nd Floor Kitchen North Vings Plooring %RH: Temp:				Analysis Type: Serial No.:
18	%RH: Temp:	*************			Analysis Type: Serial No.:
4 8A	Grey Viny 1 2nd Floor Kitchen North Cove Base "RH: Temp:	******	***********		Analysis Type: Serial No.:
Relinquished By (Prin	ıt & Sign)(Date & Time)	Received By (Print &	Sign) (Date & Time	9	
Relinquished By (Prin	at & Sign) (Date & Time)	Received By (Print &	Sign) (Date & Time)	

Special Instructions:	Stop Positive:	E-mail to Additional Party:
	Yes No	

Turn Around Time - (Circle) *Please select based on laboratory being used

3hr 6hr 24h

48hr (72

Standard

Chain of Custody

Sampling By: Date(s) Collected: **Project Name:** Page No.: Andersen Environmental Number of Total Project No.: Samples: Pages Of 3 3 1207 - 784 Torres 8-1-2012 13445 Mindanas Way Freddy Sample Location & Comments Start Flow Rate Start Time **Total Volume** Type of Analysis Sample No.: Sample Serial Number **End Flow Rate Stop Time** Area/SQFT Analysis Type: PLM BUIK 2nd Floor Kitchen South Grey Vinyl 81-12-%RH: Temp: Serial No.: Analysis Type: 2nd Floor East %RH: Temp: Serial No .: Analysis Type: Laundry West 1st Floor %RH: Serial No.: Analysis Type: Serial No.: %RH: Temp: Analysis Type: %RH: Serial No .: Temp: Analysis Type: %RH: Serial No.: Temp: Analysis Type: %RH: Serial No .: Temp: Analysis Type: %RH: Serial No.: Temp: Analysis Type: Serial No.: %RH: Temp:

Relinquished By (Print & Sign)(Date & Time)	Received By (Print & Sign) (Date & Time)
Relinquished By (Print & Sign) (Date & Time)	Received By (Print & Sign) (Date & Time)

Special Instructions:	Stop Positive:	E-mail to Additional Party:
	Yes No	

	A			
1				
1	LAN	DEDGE	N	
	1	VIRON	SATINT	TAT
	LEN	VIKON	MEN	IAL

Turn Around Time - (Circle)

*Please select based on
laboratory being used

3hr 6hr 24hr 48hr 72hr

Andersen Environ Project No.:	mental	Project Name:	Sampling By:		Numbe Sample		Date(s) Collected:	Page No.:		Total Pages
1207-784	+	Pier. 44	Ben Corr	1	6	,	81	8/12	- (Of	l
Sample No.:	Sample 1	Location & Comments		Start Flo		Start 7		Total Volume Area/SQFT	Type Sample S	of Ana Serial N	
181	Ro	of Cora Build	. 13445 Temp:						Analysis Type: Serial No.:	PL	
102	*******	%RH	: Temp:						Analysis Type: Serial No.:		
103	********	%RH	: Temp:						Analysis Type: Serial No.:		
104	R	sof Mastic Bo							Analysis Type: Serial No.:		
105		%RH	: Temp:						Analysis Type: Serial No.:		
106	********	%RH	: Temp:						Analysis Type: Serial No.:		
		%RH	: Temp:						Analysis Type: Serial No.:		
		%RH	: Temp:						Analysis Type: Serial No.:		
		%RH	: Temp:						Analysis Type: Serial No.:		
Relinquished By (Print	& Sign)(Do	ate & Time)		Receive	d By (Print)	& Sign) (De	ate & Time	2)			Verte
9 -	m	8/8/12	1130 Am		d By (Print	adis	(pu)		8/8/12	ə :15	pr
Special Instruction	ns:			Stop P	ositive:			E-mail to Addition	al Party:		
				1	Nes)	No					

Turn Around Time - (Circle)
*Please select based on
laboratory being used

3hr 6hr 24hr 48hr (72hr

Andersen Envi Project No.:	ronmental	Project Name:	Sampling By:	Numl Samp	ber of oles:	Date(s) Collected;	Page No.:		Total Pages
1207- 78	54	13444 Bali Way	Freddy Torre	s 3	2	8-	1-2012	1	Of	4
Sample No.:	Sample	Location & Comments		Start Flow Rate End Flow Rate	Start Stop		Total Volume Area/SQFT	Type Sample	of Ana Serial N	
8112 IA	Join	Compand 1st Flo	or Men's Bestroom. Temp: East					Analysis Type: Serial No.:	174	1 BULK
1 B		1st.Flo %RH:	or Storage Temp: South	•				Analysis Type: Serial No.:		
IC		15t Flow %RH:	oc Entry					Analysis Type: Serial No.:		
10)	2nd Flow %RH:	or North					Analysis Type: Serial No.:		
16		2nd F1 %RH:						Analysis Type: Serial No.:		ļ
IF		Znd F %RH:	Nor South					Analysis Type: Serial No.:		
16		1st Floor %RH:	South Hallway					Analysis Type: Serial No.:		
2A	Dryu	العر عاد العر العرابي العربي	or Storage Temp.					Analysis Type: Serial No.:		
1 28	3	15t Flo %RH:	or Men's Restroom					Analysis Type: Serial No.:		
Relinquished Bert	rint & Sign)(D	- Fredy Town	8-2-12	Received By (Prins	& Sign D	ate & Tin	The state of the s	12 810	< A.u.	
Refinquished By (P	gint & Sign) (I		0272	Received By (Print	& Sign) (D	ate & Tin	10 0/10	112_ 8/O	J-Tyr	
Special Instruc	tions:			Stop Positive:			E-mail to Addition	al Party:		
				Yes	No		2	/		

Turn Around Time - (Circle) *Please select based on laboratory being used

24hr 3hr 48hr (72hr

Andersen Environmental Project No.:	Project Name:	Sampling By:	Number of Samples:	Date(s) Collected:	Page No.:		Total Pages
1207 - 784	13444 Bali Way	Freddy Torres	32	8-1-2012	2	Of	4

Sample No.:	Sample Location & Comments	Location & Comments Start Flow Rate End Flow Rate		Total Volume Area/SQFT	Type of Analysis Sample Serial Number
8112 20	Drywall 2nd Floor North RH: Temp:				Analysis Type: PLM BULK Serial No.:
3A	PLASTER 2nd Floor Kitchen %RH: Temp:				Analysis Type: Serial No.:
36	%RH: Temp:				Analysis Type: Serial No.:
30	HVAC CLOSST %RH: Temp:				Analysis Type: Serial No.:
3D	%RH: Temp:				Analysis Type: Serial No.:
3E	%RH: Temp:				Analysis Type: Serial No.:
	The state of the s				Analysis Type: Serial No.:
48	1 -1 -1				Analysis Type: Serial No.:
\$	BROWN VINTL 1st Floor South Hallway. COVE BASE SRH: Temp: East				Analysis Type: Serial No.:
Relinquished By (Pri	nt & Sign)(Date & Time)	Received By (Print	& Sign) (Date & Tim	e)	
Relinquished By (Pri	nt & Sign) (Date & Time)	Received By (Print	& Sign) (Date & Tim		

Special Instructions:	Stop Positive:	E-mail to Additional Party:
	Yes No	
	Visit in the second	

Turn Around Time - (Circle)

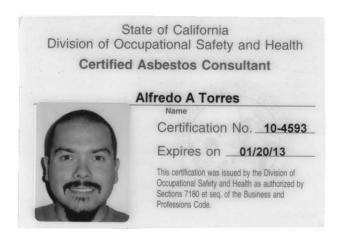
*Please select based on
laboratory being used

3hr 6hr 24hr 48hr 72hr

Andersen Environmental Project No.:	Project Name:	Sampling By:	Number of Samples:	Date(s) Collected:	Page No.:		Total Pages
1207 - 184	13444 Bali Way	Freddy Torres	32	8-1-2012	3	Of	4

	Brown Vinyl 2nd Floo		End Flow Rate	Stop Time	Area/SQFT	Type of Analysis Sample Serial Number
	Brown Vinyl 2nd Floo Cove Base %RH:	Morth Temp:				Analysis Type: PLM BUG
1 6A	STUCCO ENT.	South Temp:				Analysis Type: Serial No.:
68	%RH:	East Temp:				Analysis Type: Serial No.:
60	%RH:	West Temp:				Analysis Type: Serial No.:
	200F MASTIC MAIN Bldg					Analysis Type: Serial No.:
7B	%RH:	South.				Analysis Type: Serial No.:
70	Restroom F %RH:	Bldy Roof Temp: East				Analysis Type: Serial No.:
1D-	%RH:	Temp: West				Analysis Type: Serial No.:
- IN 2	SROWN ASHPAULT Main BY 200F SHINGLES "RH	dg. Roof Temp: South				Analysis Type: Serial No.:
Relinquished By (Print &			Received By (Print e	Sign) (Date & Tim	9	
Relinguished By (Print &	Sign) (Date & Time)		Received By (Print &	Sign) (Date & Tim	9	

Special Instructions:	Stop Positive:	E-mail to Additional Party:
	Yes No	


Turn Around Time - (Circle)

*Please select based on
laboratory being used

3hr 6hr 24hr 48hr 72hr

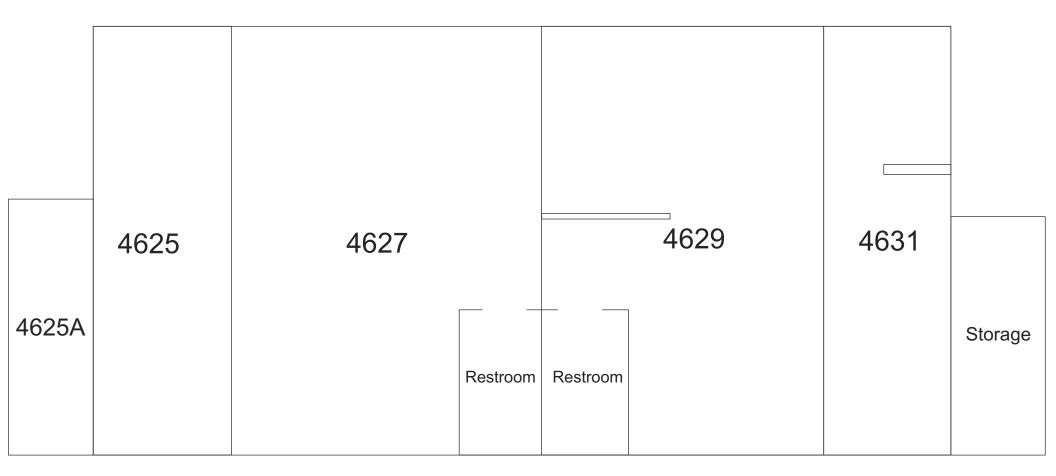
Andersen En Project No.:	vironmental	Project Name:	Sampling By:	Numl Samp	er of les:	Date(s) Collected:	Page No.:		Total Pages
1201 - 7	84	13444 Bali Way	Freddy Torra	·s 3	2	8-1-2012	4	Of	4
Sample No.:					Time Total Volume Time Area/SQFT	Type of Analysis Sample Serial Number		Number	
8112 8	B Brown	Asphault Mai Shingles "RH	n Bldg. Roof Emp: East				Analysis Type: Serial No.:	PLN	1 BULK
	C	%RH	: Temp: Center				Analysis Type: Serial No.:		
f	A BLACK	- Asphault lestran	m Bldg Roof 1: Temp: Fast				Analysis Type: Serial No.:	/	
\q	B	%RH					Analysis Type: Serial No.:		
1 9	2	%RF	Temp: Wist				Analysis Type: Serial No.:	1	
		%RH	: Temp:				Analysis Type: Serial No.:		
		%RH	: Temp:				Analysis Type: Serial No.:		
		%RH	: Temp:				Analysis Type: Serial No.:		
		%RH	: Temp:	************			Analysis Type: Serial No.:	******	
Relinquished By	(Print & Sign)(D	Pate & Time)		Received By (Print	& Sign) (1	Date & Time)			
Relinquished By	(Print & Sign) (I	Date & Time)		Received By (Print	& Sign) (I	Date & Time)			
Special Instru	ictions:			Stop Positive:		E-mail to Additio	nal Party:		
				Yes	No				

Alfredo Torres California DOSH Certified Asbestos Consultant (CAC) #10-4593 California DPH Certified Lead Inspector Assessor (CLIA) #17424

State of California Division of Occupational Safety and Health **Certified Asbestos Consultant**

Benjamin P Curry

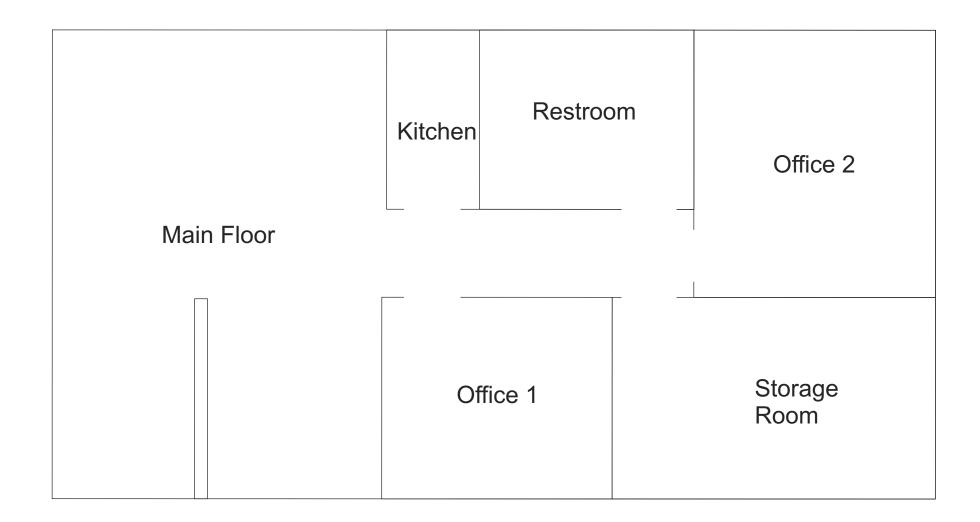
Certification No. 09-4549


Expires on ____07/23/13

This certification was issued by the Division of Occupational Safety and Health as authorized by Sections 7180 et seq. of the Business and Professions Code.

3 - 2 story

First Floor



Second Floor

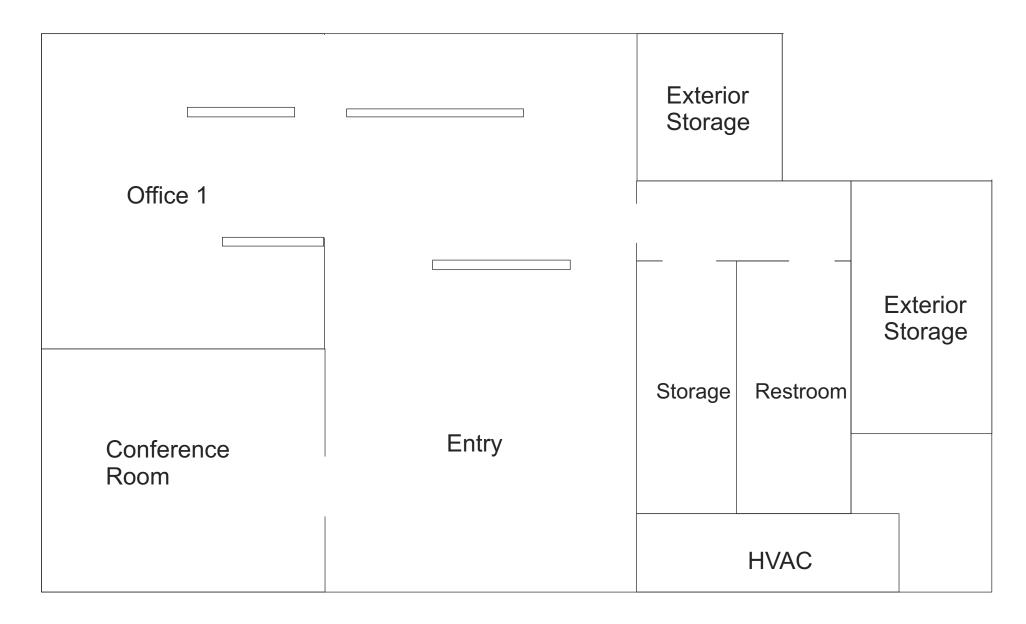
4633	Men's Restroom	Women's Restroom	4635	4637

Office 1	Entry	Office 2
Office 3	Storage Storage Closet 2 Closet 1 Restroom	Office 4

		Women's Restroom					len's estroom
Parts Room 3			arts oom 4		Storage Closet		Janitor Storage
Office 1	Pari Roc		ts om 1		Part Roo		

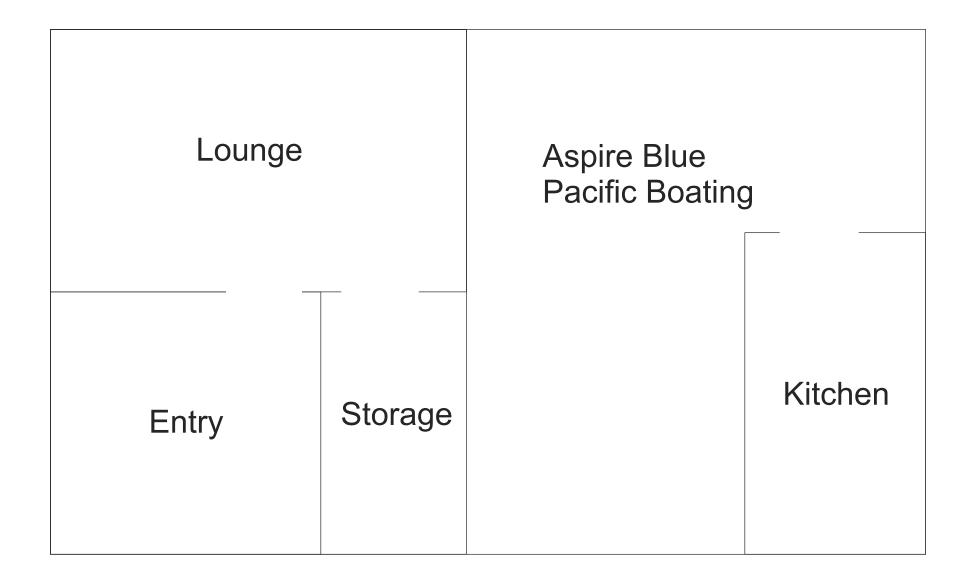
First Floor

Women's Restroom	Changing Room	Shower	Laundry
Men's	Changing	Shower	HVAC
Restroom	Room		Room



Second Floor

Storage Bar Room Kitchen



First Floor

Second Floor

Marina Restrooms

5261 W. Imperial Highway, Los Angeles, CA 90045 Toll Free: (888) 705-6300 Tel: (310) 854-6300 Fax: (310) 854-0199

LIMITED LEAD-BASED PAINT INSPECTION REPORT

PERFORMED AT

PIER 44 4601, 4625-4637 & 4695 Admiralty Way 13441 & 13445 Mindanao Way 13444 & 13446 Bali Way Marina Del Rey, CA 90292

Project No.: 1207-784

PREPARED FOR

Pacific Marina Ventures, LLC 13737 Fiji Way, C-10 Marina Del Rey, CA 90292

August 24, 2012

TABLE OF CONTENTS

DESC	<u>CRIPTION</u> <u>PA</u>	<u>GE NO.</u>
1.0	INTRODUCTION	3
2.0	SCOPE OF WORK	3
3.0	PROPERTY DESCRIPTION	3
4.0	INSPECTOR'S QUALIFICATIONS	3
5.0	TESTING PROTOCOL	3
6.0	METHOD OF TESTING	4
7.0	SUMMARY OF RESULTS	5
8.0	RECOMMENDATIONS	5
9.0	TITLE X REQUIREMENTS	7
10.0	INSPECTION LIMITATIONS	7
<u>APPE</u>	<u>ENDICES</u>	
APPEN APPEN	ENDIX A XRF FIELD DATA ENDIX C INSPECTOR'S CERTIFICATE(S) ENDIX D DHS 8552 ENDIX E MAP(S)	

1.0 INTRODUCTION

Mr. Michael Pashaie of Pacific Marina Ventures, LLC (referred to hereunder as the client) retained Andersen Environmental to perform a pre-demolition lead-based paint (LBP) inspection of the seven structures located at 4601, 4625-4637 & 4695 Admiralty Way; 13441 & 13445 Mindanao Way and 13444 & 13446 Bali Way including a restroom building (otherwise known as Pier 44) in Marina del Rey, CA 90292. This document is prepared for the sole use of the client, and any regulatory agencies that are directly involved in this project. No other party should rely on the information contained herein without prior written consent of the client. The scope of services, inspection methodology, and results are presented below.

2.0 SCOPE OF WORK

The purpose of this inspection is to identify and assess the Lead-Based Paint (LBP) present on painted components at the subject property.

On August 1 & 2, 2012, Andersen Environmental performed an inspection for lead-based paint at the subject property in Marina Del Rey, California. To comply with EPA and HUD guidelines, painted and varnished surfaces in every accessible "room equivalent" were sampled for the presence of LBP. The intent was to ascertain the presence of lead-based paint above the federal action level. If LBP was found, the inspection would identify individual architectural components and their respective concentrations of lead in such a manner that this report would be used to characterize the presence of LBP at this property.

3.0 PROPERTY DESCRIPTION

The subject property consists of four single story buildings and three two-story buildings. The buildings are of wood-framed construction with pitched and sit on concrete slab foundations. The exterior finishes include either wood siding or concrete masonry unit exterior walls. At the time of this inspection, most of the painted surfaces were in fair to good condition.

4.0 INSPECTOR'S QUALIFICATIONS

Freddy Torres of Andersen Environmental performed the inspection at the site using a Niton XRF spectrum analyzer instrument.

At the time of this report, the California Department of Health Services, Childhood Lead Poisoning Branch, has implemented a State Certification Model Accreditation Plan adopted from the EPA. Freddy Torres has received certification. Personnel certificate(s) have been provided in *Appendix C*.

5.0 TESTING PROTOCOL

XRF Testing: Testing of the painted surfaces was patterned after the inspection protocol in Chapter 7 of the <u>HUD Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing</u>. In every "room equivalent" within the tested property, one representative surface of each "testing combination" was tested. Multiple readings were collected to resolve inconsistencies in the test results.

Regulatory Compliance: Several public (government) agencies have a published "regulatory action level" to classify LBP. To further complicate matters, some of the established "levels" are quantified in different units of measurement. Listed below are the current regulatory agencies that have defined LBP, along with the respective action level:

<u>Agency</u>	Ordinance #	Action level (mg / cm ²)	Action level (ppm ⁱⁱ)
HUD / EPA	24 CFR 35.86 & 40 CFR 745.103	$1.0 \text{ mg} / \text{cm}^2$	5,000 ppm
L.A. County	Title 11, 11.28.010	$0.7 \text{ mg} / \text{cm}^2$	600 ppm ⁱⁱ
OSHA / CAL OSHA	29 CFR 1926.62 & Title 8, 1532.1	Not Specified	600 ppm ⁱⁱⁱ

HUD / EPA have recently issued the following guidance regarding units of measurement for paint samples:

"Report lead paint amounts in mg/cm² because this unit of measurement does not depend on the number of layers of non-lead-based paint and can usually be obtained without damaging the painted surface. All measurements of lead in paint should be in mg/cm², unless the surface area cannot be measured or if all paint cannot be removed from the measured surface area. In such cases, concentrations may be reported in weight percent (%) or parts per million by weight (ppm)."

Furthermore, EPA has previously issued guidance on lead content classification as follows:

"... The rule, at 24 CFR 35.86 and 40 CFR 745.103 states that a lead-based paint free finding must demonstrate that the building is free of 'paint or other surface coatings that contain lead in excess of 1.0 milligrams per square centimeter $(1.0 \text{ mg} / \text{cm}^2)$ or 0.5 percent by weight (5000 ppm)." The State standards are not applicable, whether more or less stringent, since a State cannot amend Federal requirements."

In recognition of the various action levels the testing results are classified as follows for this report:

- Painted surfaces with readings at or above 0.7 mg/cm² are considered Positive
- Painted surfaces with readings below 0.7 mg/cm² are considered Negative

The individual readings have been provided on all field data sheets. Any future change in action levels by one of the regulating agencies may affect the classification of results.

6.0 METHOD OF TESTING

<u>Paint Testing:</u> The method employed was X-ray fluorescence (XRF) using a Niton XLp 303A by Thermo Scientific, this unit uses a radioactive source of Cadmium 109. It was calibrated to NIST standard lead concentration samples prior to and after its use. Uncoated surfaces and other bare materials were not tested. The instrument was operated in "Quick Mode," where the duration for each test result is determined by a combination of:

- The actual reading relative to the designated action level;
- Age of the radioactive source:
- The substrate on which the test was taken.

The instrument's calibration was verified according to the manufacturer's specifications in compliance with the Performance Characteristic Sheet (PCS) developed for this instrument.

The readings from this instrument produce a 95% confidence level that the "lead" reading accurately reflects the actual level of lead in the tested surfaces, relative to the federal action level.

7.0 SUMMARY OF RESULTS

<u>Paint Sampling:</u> Throughout the subject property, several of the painted components indicated the presence of lead-based paint (LBP) at or above the action level. The following summary lists the specific components that tested above the action level and their respective locations:

Interior

- 4629 Admiralty Way, Restroom, Ceramic Wall Tile
- 4627 Admiralty Way, Restroom, Ceramic Wall Tile
- 13444 Bali Way, Restrooms & Storage, Ceramic Wall Tile
- Bali Way Restroom Building, Men's Room, Ceramic Floor & Wall Tile
- Bali Way Restroom Building, Women's Room, Ceramic Wall Tile
- 13445 Mindanao Way, Restrooms, Ceramic Wall & Shower Tile
- 13441 Mindanao Way, Restrooms, Ceramic Wall Tile

Exterior

• 13445 Mindanao Way, Concrete Ballard

The field data and results for paint sampling may be found in *Appendices A*.

8.0 RECOMMENDATIONS

Numerous components and painted surfaces throughout the interior and exterior of the subject property were determined to contain lead concentrations above the regulated amount. All LBP and components were found in good condition.

LBP components in good condition may remain in place subsequent to renovation/demolition or they may be removed intact by lead trained personnel in accordance with all applicable federal, state and local regulations.

During the removal of the Lead Based Paint, Andersen Environmental should be on-site to perform area monitoring for lead dust in areas outside of the containments to ensure that adjacent areas are not being impacted by the removal of the lead-based paint. Additionally, Andersen Environmental recommends collecting post abatement clearance wipe sampling prior to re-occupancy of the areas by un-licensed personnel.

Should the contractor choose not to remove the lead-based paint materials and demolish portions of the structure with the lead-based paint components in place, it is recommended that samples, representative of the entire mass of the prospective waste stream, be collected by Andersen Environmental as a third party verification. These samples should then be analyzed according to the CAL EPA protocols for waste characterization as follows:

To characterize all waste streams, the following should be performed:

- Collect a representative sample of the waste material.
- For a pile of waste take one sample of a proportionate combination of Component in the pile. If a large quantity of waste is generated no less than four samples may be required.

Analysis for the waste characterization samples shall be performed as follows:

- Waste generated by chemical stripping shall, in addition to the requirements for determining the solid and soluble lead concentrations, shall be tested for corrosiveness and other contaminants, as applicable, resulting from the chemical stripping process.
- Analyze samples for Total Threshold Limit Concentration (TTLC)
 - If results are less than 50mg/kg, the waste is not hazardous and shall be disposed as general construction waste
 - o If sample results are between 50 and 1,000 mg/kg, the waste shall be tested for Soluble Threshold Limit Concentration (STLC)
 - o If the sample results are above 1,000 mg/kg the waste is considered California Regulated hazardous Waste, and no further testing is needed

Where waste is required to be tested for STLC, the following shall apply:

- If the STLC results are less than 5 mg/L, and had a TTLC of less than 350 mg/kg, the
 material shall be disposed at a Class II waste landfill. Evidence of such results of the STLC
 testing will be required by the landfill before waste is accepted. No further testing is
 required.
- If the STLC results are 5 mg/L or greater, or had a TTLC between 350 mg/kg and 1,000 mg/kg, the waste is a California regulated waste and the material shall be tested using the federally mandated Toxicity Characterization Leaching Procedure (TCLP).

Where waste is required to be tested by TCLP the following shall apply:

- If the TCLP is less than 5 mg/L, the waste is California regulated hazardous solid waste (non-RCRA). This material may be disposed as Non-RCRA Waste. However, it must be wrapped in plastic, profiled and a waste manifest is required.
- If the TCLP is equal to or greater than 5 mg/L, the waste is a federally regulated hazardous waste solid (RCRA). The waste shall then require treatment before being disposed in a Class I hazardous waste landfill.

9.0 RENOVATION, REPAIR AND PAINTING (RRP) RULE

Anyone performing renovation, repair and painting projects that disturb painted surfaces in residences, child care facilities, and schools built before 1978 must be EPA RRP certified and follow specific lead safe work practices to prevent lead contamination. The rule applies where more than 6 square feet per room or 20 square feet outside will be "disturbed" by workers(s) being compensated.

10.0 TITLE X REQUIREMENTS

A copy (or summary) of this report must be provided to new lessees (tenants) and purchasers of this property under Federal law (24 CFR part 35 and 40 CFR part 745) before they become obligated under a lease or sales contract. The complete report must also be provided to new purchasers and it must be made available to new tenants. Landlords (lessors) and sellers are also required to distribute an educational pamphlet approved by the U.S. Environmental Protection Agency and include standard warning language in their leases or sales contracts to ensure that parents have the information they need to protect their children from lead-based paint hazards. This report should be maintained and updated as a permanent maintenance record for this property.

11.0 INSPECTION LIMITATIONS

This inspection was planned, developed, and implemented based on Andersen Environmental's previous experience in performing lead-based paint inspections/risk assessments. This inspection was patterned after Chapter 7 of the *HUD Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing (1997 Revision)*. Andersen Environmental utilized state-of-the-art-practices and techniques in accordance with regulatory standards while performing this inspection/risk assessment. Andersen Environmental's evaluation of the relative risk of exposure to lead identified during this inspection/risk assessment is based on conditions observed at the time of the inspection. Andersen Environmental cannot be responsible for changing conditions that may alter the relative exposure risk or for future changes in accepted methodology.

Enclosed are the diagram(s), actual test results, and all relevant certifications and licenses.

Sincerely,

Benjamin Curry

DHS Certified Lead Inspector / Risk Assessor / Supervisor No.: 20747

i 1997 Revision

ii Applies to sale and application of LBP.

iii Applies to construction related activities

iv Chapter 7 of the HUD Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing (1997 Revision).

Office of Pollution Prevention and Toxics, (August 20, 1996)

Shot	Date	Address	Room	Component	Sub-Component	Substrate	Side	Condition	Results	PbC
1	8/1/2012	Shutter. Cal	Res. 391.07							
2	8/1/2012	Calibration							Positive	1.2
3	8/1/2012	Calibration							Positive	1
4	8/1/2012	Calibration							Positive	1.1
5	8/1/2012	4629 Admiralty Way	Main	Wall		Drywall	Α	Intact	Negative	0.09
6	8/1/2012	4629 Admiralty Way	Main	Wall		Drywall	В	Intact	Negative	0.05
7	8/1/2012	4629 Admiralty Way	Main	Wall		Drywall	С	Intact	Negative	0.05
8	8/1/2012	4629 Admiralty Way	Main	Wall		Drywall	D	Intact	Negative	0.02
9	8/1/2012	4629 Admiralty Way	Main	Ceiling	Beam	Wood		Intact	Negative	0.17
10	8/1/2012	4629 Admiralty Way	Office 1	Wall		Drywall	Α	Intact	Negative	0.04
11	8/1/2012	4629 Admiralty Way	Office 1	Wall		Drywall	В	Intact	Negative	0.06
12	8/1/2012	4629 Admiralty Way	Office 1	Wall		Drywall	С	Intact	Negative	0.06
13	8/1/2012	4629 Admiralty Way	Office 1	Wall		Wood	D	Intact	Negative	0.01
14	8/1/2012	4629 Admiralty Way	Office 1	Door	Frame	Wood	Α	Intact	Negative	0.4
15	8/1/2012	4629 Admiralty Way	Office 1	Door	Jamb	Wood	Α	Intact	Negative	0.5
16	8/1/2012	4629 Admiralty Way	Restroom	Wall		Drywall	Α	Intact	Negative	0.3
17	8/1/2012	4629 Admiralty Way	Restroom	Wall		Drywall	В	Intact	Negative	0.01
18	8/1/2012	4629 Admiralty Way	Restroom	Wall		Drywall	С	Intact	Negative	0.13
19	8/1/2012	4629 Admiralty Way	Restroom	Wall		Drywall	D	Intact	Negative	0.06
20	8/1/2012	4629 Admiralty Way	Restroom	Ceiling	Beam	Wood		Intact	Negative	0.13
21	8/1/2012	4629 Admiralty Way	Restroom	Door	Frame	Wood	Α	Intact	Negative	0.3
22	8/1/2012	4629 Admiralty Way	Restroom	Door	Jamb	Wood	Α	Intact	Negative	0.4
23	8/1/2012	4629 Admiralty Way	Restroom	Floor	Tile	Ceramic		Intact	Negative	0.04
24	8/1/2012	4629 Admiralty Way	Restroom	Wall	Tile	Ceramic	C	Intact	Positive	10.4
25	8/1/2012	4625 Admiralty Way	Main	Wall		Drywall	Α	Intact	Negative	0.03
26	8/1/2012	4625 Admiralty Way	Main	Wall		Drywall	В	Intact	Negative	0.6
27	8/1/2012	4625 Admiralty Way	Main	Wall		Drywall	С	Intact	Negative	0.06
28	8/1/2012	4625 Admiralty Way	Main	Wall		Drywall	D	Intact	Negative	0.04
29	8/1/2012	4625 Admiralty Way	Main	Ceiling	Beam	Wood		Intact	Negative	0.19
30	8/1/2012	4625A Admiralty Way	Main	Wall		Drywall	Α	Intact	Negative	0.04
31	8/1/2012	4625A Admiralty Way	Main	Wall		Drywall	В	Intact	Negative	0.13
32	8/1/2012	4625A Admiralty Way	Main	Wall		Drywall	С	Intact	Negative	0.06
33	8/1/2012	4625A Admiralty Way	Main	Wall		Drywall	D	Intact	Negative	0.01

Shot	Date	Address	Room	Component	Sub-Component	Substrate	Side	Condition	Results	PbC
34	8/1/2012	4625A Admiralty Way	Main	Ceiling		Drywall		Intact	Negative	0.03
35	8/1/2012	4625A Admiralty Way	Main	Crown Molding		Wood	С	Intact	Negative	0.3
36	8/1/2012	4625A Admiralty Way	Main	Baseboard		Wood	Α	Intact	Negative	0.3
37	8/1/2012	4625A Admiralty Way	Main	Door	Frame	Wood	D	Intact	Negative	0.4
38	8/1/2012	4625A Admiralty Way	Main	Door	Jamb	Wood	D	Intact	Negative	0.28
39	8/1/2012	4637 Admiralty Way	Main	Wall		Drywall	Α	Intact	Negative	0.06
40	8/1/2012	4637 Admiralty Way	Main	Wall		Drywall	В	Intact	Negative	0.13
41	8/1/2012	4637 Admiralty Way	Main	Wall		Drywall	С	Intact	Negative	0.01
42	8/1/2012	4637 Admiralty Way	Main	Wall		Drywall	D	Intact	Negative	0.12
43	8/1/2012	4637 Admiralty Way	Main	Door	Frame	Wood	В	Intact	Negative	0.4
44	8/1/2012	4637 Admiralty Way	Main	Door	Jamb	Wood	В	Intact	Negative	0.3
45	8/1/2012	4635 Admiralty Way	Main	Wall		Drywall	Α	Intact	Negative	0.01
46	8/1/2012	4635 Admiralty Way	Main	Wall		Drywall	В	Intact	Negative	0.04
47	8/1/2012	4635 Admiralty Way	Main	Wall		Drywall	С	Intact	Negative	0.09
48	8/1/2012	4635 Admiralty Way	Main	Wall		Drywall	D	Intact	Negative	0.1
49	8/1/2012	4635 Admiralty Way	Main	Ceiling	Beam	Wood		Intact	Negative	0.22
50	8/1/2012	4635 Admiralty Way	Main	Door	Frame	Wood	Α	Intact	Negative	0.4
51	8/1/2012	4635 Admiralty Way	Main	Door	Jamb	Wood	Α	Intact	Negative	0.4
52	8/1/2012	4695 Admiralty Way	Main	Wall		Wood	Α	Intact	Negative	0.1
53	8/1/2012	4695 Admiralty Way	Main	Wall		Wood	В	Intact	Negative	0.03
54	8/1/2012	4695 Admiralty Way	Main	Wall		Wood	С	Intact	Negative	0.01
55	8/1/2012	4695 Admiralty Way	Main	Wall		Wood	D	Intact	Negative	0.01
56	8/1/2012	4695 Admiralty Way	Kitchen	Wall		Wood	Α	Intact	Negative	0.02
57	8/1/2012	4695 Admiralty Way	Kitchen	Wall		Wood	В	Intact	Negative	0.01
58	8/1/2012	4695 Admiralty Way	Kitchen	Wall		Wood	С	Intact	Negative	0.08
59	8/1/2012	4695 Admiralty Way	Kitchen	Wall		Wood	D	Intact	Negative	0.06
60	8/1/2012	4695 Admiralty Way	Kitchen	Door	Frame	Wood	С	Intact	Negative	0.4
61	8/1/2012	4695 Admiralty Way	Kitchen	Door	Jamb	Wood	С	Intact	Negative	0.13
62	8/1/2012	4695 Admiralty Way	Office 1	Wall		Wood	Α	Intact	Negative	0.01
63	8/1/2012	4695 Admiralty Way	Office 1	Wall		Wood	В	Intact	Negative	0.15
64	8/1/2012	4695 Admiralty Way	Office 1	Wall		Wood	С	Intact	Negative	0.08
65	8/1/2012	4695 Admiralty Way	Office 1	Wall		Wood	D	Intact	Negative	0.26
66	8/1/2012	4695 Admiralty Way	Office 1	Door	Frame	Wood	Α	Intact	Negative	0.16

Shot	Date	Address	Room	Component	Sub-Component	Substrate	Side	Condition	Results	PbC
67	8/1/2012	4695 Admiralty Way	Office 1	Door	Jamb	Wood	Α	Intact	Negative	0.15
68	8/1/2012	4695 Admiralty Way	Restroom	Wall		Wood	Α	Intact	Negative	0.01
69	8/1/2012	4695 Admiralty Way	Restroom	Wall		Wood	В	Intact	Negative	0.02
70	8/1/2012	4695 Admiralty Way	Restroom	Wall		Wood	С	Intact	Negative	0.02
71	8/1/2012	4695 Admiralty Way	Restroom	Wall		Wood	D	Intact	Negative	0.01
72	8/1/2012	4695 Admiralty Way	Restroom	Door	Frame	Wood	С	Intact	Negative	0.26
73	8/1/2012	4695 Admiralty Way	Restroom	Door	Jamb	Wood	С	Intact	Negative	0.4
74	8/1/2012	4695 Admiralty Way	Restroom	Floor	Tile	Ceramic		Intact	Negative	0.03
75	8/1/2012	4695 Admiralty Way	Office 2	Wall		Drywall	Α	Intact	Negative	0.06
76	8/1/2012	4695 Admiralty Way	Office 2	Wall		Drywall	В	Intact	Negative	0.02
77	8/1/2012	4695 Admiralty Way	Office 2	Wall		Drywall	С	Intact	Negative	0.02
78	8/1/2012	4695 Admiralty Way	Office 2	Wall		Drywall	D	Intact	Negative	0.03
79	8/1/2012	4695 Admiralty Way	Office 2	Door	Frame	Wood	D	Intact	Negative	0.19
80	8/1/2012	4695 Admiralty Way	Office 2	Door	Jamb	Wood	D	Intact	Negative	0.19
81	8/1/2012	4695 Admiralty Way	Storage	Wall		Drywall	Α	Intact	Negative	0.06
82	8/1/2012	4695 Admiralty Way	Storage	Wall		Drywall	В	Intact	Negative	0.18
83	8/1/2012	4695 Admiralty Way	Storage	Wall		Drywall	С	Intact	Negative	0.01
84	8/1/2012	4695 Admiralty Way	Storage	Wall		Drywall	D	Intact	Negative	0.02
85	8/1/2012	4695 Admiralty Way	Storage	Door	Frame	Wood	В	Intact	Negative	0.19
86	8/1/2012	4695 Admiralty Way	Storage	Door	Jamb	Wood	В	Intact	Negative	0.27
87	8/1/2012	4695 Admiralty Way	Exterior	Wall	Siding	Metal	Α	Intact	Negative	0.01
88	8/1/2012	4695 Admiralty Way	Exterior	Overhang	Facia	Metal	Α	Intact	Negative	0.01
89	8/1/2012	4695 Admiralty Way	Exterior	Railing		Wood	Α	Intact	Negative	0.05
90	8/1/2012	4695 Admiralty Way	Exterior	Ramp		Wood	Α	Intact	Negative	0.01
91	8/1/2012	4695 Admiralty Way	Exterior	Stair	Riser	Wood	Α	Intact	Negative	0.03
92	8/1/2012	4695 Admiralty Way	Exterior	Stair	Tread	Wood	Α	Intact	Negative	0.01
93	8/1/2012	4695 Admiralty Way	Exterior	Lower Wall		Stucco	Α	Intact	Negative	0.03
94	8/1/2012	4695 Admiralty Way	Exterior	Overhang	Facia	Metal	В	Intact	Negative	0.02
95	8/1/2012	4695 Admiralty Way	Exterior	Wall	Siding	Metal	В	Intact	Negative	0.01
96	8/1/2012	4695 Admiralty Way	Exterior	Wall	Siding	Metal	С	Intact	Negative	0.01
97	8/1/2012	4695 Admiralty Way	Exterior	Lower Wall		Stucco	D	Intact	Negative	0.01
98	8/1/2012	4601 Admiralty Way	Exterior	Wall	Siding	Wood	Α	Intact	Negative	0.08
99	8/1/2012	4601 Admiralty Way	Exterior	Overhang	Facia	Wood	Α	Intact	Negative	0.02

Shot	Date	Address	Room	Component	Sub-Component	Substrate	Side	Condition	Results	PbC
100	8/1/2012	4601 Admiralty Way	Exterior	Overhang	Beam	Wood	Α	Intact	Negative	0.1
101	8/1/2012	4601 Admiralty Way	Exterior	Overhang	Ceiling	Wood	Α	Intact	Negative	0.01
102	8/1/2012	4601 Admiralty Way	Exterior	Railing		Wood	Α	Intact	Negative	0.03
103	8/1/2012	4601 Admiralty Way	Exterior	Corner Molding		Wood	Α	Intact	Negative	0.24
104	8/1/2012	4601 Admiralty Way	Exterior	Wall	Siding	Wood	В	Intact	Negative	0.04
105	8/1/2012	4601 Admiralty Way	Exterior	Wall		Wood	С	Intact	Negative	0.07
106	8/1/2012	4601 Admiralty Way	Exterior	Overhang	Facia	Wood	С	Intact	Negative	0.01
107	8/1/2012	4601 Admiralty Way	Exterior	Overhang	Beam	Wood	С	Intact	Negative	0.01
108	8/1/2012	4601 Admiralty Way	Exterior	Overhang	Ceiling	Wood	С	Intact	Negative	0.05
109	8/1/2012	4601 Admiralty Way	Exterior	Wall		Wood	D	Intact	Negative	0.05
110	8/1/2012	4601 Admiralty Way	Exterior	Electric Box		Wood	D	Intact	Negative	0.07
111	8/1/2012	4601 Admiralty Way	Entry	Wall		Drywall	Α	Intact	Negative	0.03
112	8/1/2012	4601 Admiralty Way	Entry	Wall		Drywall	В	Intact	Negative	0.05
113	8/1/2012	4601 Admiralty Way	Entry	Wall		Drywall	С	Intact	Negative	0.09
114	8/1/2012	4601 Admiralty Way	Entry	Wall		Drywall	D	Intact	Negative	0.05
115	8/1/2012	4601 Admiralty Way	Entry	Door	Frame	Wood	С	Intact	Negative	0.21
116	8/1/2012	4601 Admiralty Way	Entry	Door	Jamb	Wood	С	Intact	Negative	0.5
117	8/1/2012	4601 Admiralty Way	Office 1	Wall		Drywall	Α	Intact	Negative	0.06
118	8/1/2012	4601 Admiralty Way	Office 1	Wall		Drywall	В	Intact	Negative	0.01
119	8/1/2012	4601 Admiralty Way	Office 1	Wall		Drywall	С	Intact	Negative	0.07
120	8/1/2012	4601 Admiralty Way	Office 1	Wall		Drywall	D	Intact	Negative	0.03
121	8/1/2012	4601 Admiralty Way	Office 1	Door	Frame	Wood	В	Intact	Negative	0.16
122	8/1/2012	4601 Admiralty Way	Office 1	Door	Jamb	Wood	В	Intact	Negative	0.4
123	8/1/2012	4601 Admiralty Way	Office 1	Window	Frame	Wood	Α	Intact	Negative	0
124	8/1/2012	4601 Admiralty Way	Office 2	Wall		Drywall	Α	Intact	Negative	0.11
125	8/1/2012	4601 Admiralty Way	Office 2	Wall		Drywall	В	Intact	Negative	0.3
126	8/1/2012	4601 Admiralty Way	Office 2	Wall		Drywall	С	Intact	Negative	0.05
127	8/1/2012	4601 Admiralty Way	Office 2	Wall		Drywall	D	Intact	Negative	0.03
128	8/1/2012	4601 Admiralty Way	Office 2	Window	Frame	Wood	Α	Intact	Negative	0
129	8/1/2012	4601 Admiralty Way	Office 2	Door	Jamb	Wood	D	Intact	Negative	0.4
130	8/1/2012	4601 Admiralty Way	Office 2	Door	Frame	Wood	D	Intact	Negative	0.11
131	8/1/2012	4601 Admiralty Way	Hallway	Wall		Drywall	Α	Intact	Negative	0.11
132	8/1/2012	4601 Admiralty Way	Hallway	Wall		Drywall	С	Intact	Negative	0.01

Shot	Date	Address	Room	Component	Sub-Component	Substrate	Side	Condition	Results	PbC
133	8/1/2012	4601 Admiralty Way	Office 3	Wall		Drywall	Α	Intact	Negative	0.03
134	8/1/2012	4601 Admiralty Way	Office 3	Wall		Drywall	В	Intact	Negative	0.08
135	8/1/2012	4601 Admiralty Way	Office 3	Wall		Drywall	С	Intact	Negative	0.09
136	8/1/2012	4601 Admiralty Way	Office 3	Wall		Drywall	D	Intact	Negative	0.05
137	8/1/2012	4601 Admiralty Way	Office 3	Door	Frame	Wood	В	Intact	Negative	0.16
138	8/1/2012	4601 Admiralty Way	Office 3	Door	Jamb	Wood	В	Intact	Negative	0.11
139	8/1/2012	4601 Admiralty Way	Office 4	Wall		Drywall	Α	Intact	Negative	0.05
140	8/1/2012	4601 Admiralty Way	Office 4	Wall		Drywall	В	Intact	Negative	0.03
141	8/1/2012	4601 Admiralty Way	Office 4	Wall		Drywall	С	Intact	Negative	0.14
142	8/1/2012	4601 Admiralty Way	Office 4	Wall		Drywall	D	Intact	Negative	0.5
143	8/1/2012	4601 Admiralty Way	Office 4	Door	Frame	Wood	D	Intact	Negative	0.11
144	8/1/2012	4601 Admiralty Way	Office 4	Door	Jamb	Wood	D	Intact	Negative	0.23
145	8/1/2012	4601 Admiralty Way	Restroom	Wall		Drywall	Α	Intact	Negative	0.01
146	8/1/2012	4601 Admiralty Way	Restroom	Wall		Drywall	В	Intact	Negative	0.05
147	8/1/2012	4601 Admiralty Way	Restroom	Wall		Drywall	С	Intact	Negative	0.08
148	8/1/2012	4601 Admiralty Way	Restroom	Wall		Drywall	D	Intact	Negative	0.04
149	8/1/2012	4601 Admiralty Way	Restroom	Door	Frame	Wood	Α	Intact	Negative	0.16
150	8/1/2012	4601 Admiralty Way	Restroom	Door	Jamb	Wood	Α	Intact	Negative	0.14
151	8/1/2012	13445 Mindanao Way	Bar Room	Wall		Drywall	Α	Intact	Negative	0.04
152	8/1/2012	13445 Mindanao Way	Bar Room	Wall		Drywall	В	Intact	Negative	0.06
153	8/1/2012	13445 Mindanao Way	Bar Room	Wall		Drywall	С	Intact	Negative	0.04
154	8/1/2012	13445 Mindanao Way	Bar Room	Wall		Drywall	D	Intact	Negative	0.05
155	8/1/2012	13445 Mindanao Way	Storage	Wall		Drywall	Α	Intact	Negative	0.01
156	8/1/2012	13445 Mindanao Way	Storage	Wall		Drywall	В	Intact	Negative	0.04
157	8/1/2012	13445 Mindanao Way	Storage	Wall		Drywall	С	Intact	Negative	0.01
158	8/1/2012	13445 Mindanao Way	Storage	Wall		Drywall	D	Intact	Negative	0.02
159	8/1/2012	13445 Mindanao Way	Storage	Door	Frame	Wood	С	Intact	Negative	0.15
160	8/1/2012	13445 Mindanao Way	Storage	Door	Jamb	Wood	С	Intact	Negative	0.12
161	8/1/2012	13445 Mindanao Way	Kitchen	Wall		Drywall	Α	Intact	Negative	0.08
162	8/1/2012	13445 Mindanao Way	Kitchen	Wall		Drywall	В	Intact	Negative	0.04
163	8/1/2012	13445 Mindanao Way	Kitchen	Wall		Drywall	С	Intact	Negative	0.04
164	8/1/2012	13445 Mindanao Way	Kitchen	Wall		Drywall	D	Intact	Negative	0.4
165	8/1/2012	13445 Mindanao Way	Kitchen	Door	Frame	Metal	В	Intact	Negative	0.01

Shot	Date	Address	Room	Component	Sub-Component	Substrate	Side	Condition	Results	PbC
166	8/1/2012	13445 Mindanao Way	Men's Restroom	Wall		Drywall	Α	Intact	Negative	0.01
167	8/1/2012	13445 Mindanao Way	Men's Restroom	Wall		Drywall	В	Intact	Negative	0.03
168	8/1/2012	13445 Mindanao Way	Men's Restroom	Wall		Drywall	С	Intact	Negative	0.07
169	8/1/2012	13445 Mindanao Way	Men's Restroom	Wall		Drywall	D	Intact	Negative	0.05
170	8/1/2012	13445 Mindanao Way	Men's Restroom	Door	Frame	Wood	В	Intact	Negative	0.16
171	8/1/2012	13445 Mindanao Way	Men's Restroom	Door	Jamb	Wood	В	Intact	Negative	0.14
172	8/1/2012	13445 Mindanao Way	Men's Restroom	Wall	Tile	Ceramic	C	Intact	Positive	11.1
173	8/1/2012	13445 Mindanao Way	Changing Room	Wall		Drywall	Α	Intact	Negative	0.07
174	8/1/2012	13445 Mindanao Way	Changing Room	Wall		Drywall	В	Intact	Negative	0.19
175	8/1/2012	13445 Mindanao Way	Changing Room	Wall		Drywall	С	Intact	Negative	0.12
176	8/1/2012	13445 Mindanao Way	Changing Room	Wall		Drywall	D	Intact	Negative	0.01
177	8/1/2012	13445 Mindanao Way	Changing Room	Ceiling		Drywall		Intact	Negative	0.05
178	8/1/2012	13445 Mindanao Way	Shower	Wall		Drywall	Α	Intact	Negative	0.08
179	8/1/2012	13445 Mindanao Way	Shower	Wall		Drywall	В	Intact	Negative	0.12
180	8/1/2012	13445 Mindanao Way	Shower	Wall		Drywall	С	Intact	Negative	0.05
181	8/1/2012	13445 Mindanao Way	Shower	Wall	Tile	Ceramic	D	Intact	Positive	12.3
182	8/1/2012	13445 Mindanao Way	Shower	Floor	Tile	Ceramic		Intact	Negative	0.14
183	8/1/2012	13445 Mindanao Way	Women's Restroom	Wall		Drywall	Α	Intact	Negative	0.09
184	8/1/2012	13445 Mindanao Way	Women's Restroom	Wall		Drywall	В	Intact	Negative	0.07
185	8/1/2012	13445 Mindanao Way	Women's Restroom	Wall		Drywall	С	Intact	Negative	0.5
186	8/1/2012	13445 Mindanao Way	Women's Restroom	Wall		Drywall	D	Intact	Negative	0.08
187	8/1/2012	13445 Mindanao Way	Women's Restroom	Door	Frame	Wood	В	Intact	Negative	0.07
188	8/1/2012	13445 Mindanao Way	Women's Restroom	Door	Jamb	Wood	В	Intact	Negative	0.13
189	8/1/2012	13445 Mindanao Way	Women's Restroom	Wall	Tile	Ceramic	Α	Intact	Positive	9.4
190	8/1/2012	13445 Mindanao Way	Changing Room	Wall		Drywall	Α	Intact	Negative	0.08
191	8/1/2012	13445 Mindanao Way	Changing Room	Wall		Drywall	В	Intact	Negative	0.04
192	8/1/2012	13445 Mindanao Way	Changing Room	Wall		Drywall	С	Intact	Negative	0.17
193	8/1/2012	13445 Mindanao Way	Changing Room	Wall		Drywall	D	Intact	Negative	0.09
194	8/1/2012	13445 Mindanao Way	Changing Room	Ceiling		Drywall		Intact	Negative	0.01
195	8/1/2012	13445 Mindanao Way	Shower	Wall		Drywall	Α	Intact	Negative	0.02
196	8/1/2012	13445 Mindanao Way	Shower	Wall		Drywall	В	Intact	Negative	0.03
197	8/1/2012	13445 Mindanao Way	Shower	Wall		Drywall	С	Intact	Negative	0.1
198	8/1/2012	13445 Mindanao Way	Shower	Wall	Tile	Ceramic	D	Intact	Positive	12.6

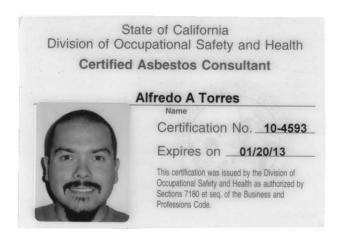
Shot	Date	Address	Room	Component	Sub-Component	Substrate	Side	Condition	Results	PbC
199	8/1/2012	13445 Mindanao Way	Shower	Floor	Tile	Ceramic		Intact	Negative	0.22
200	8/1/2012	13445 Mindanao Way	Exterior	Wall		Wood	Α	Intact	Negative	0.08
201	8/1/2012	13445 Mindanao Way	Exterior	Window	Sill	Wood	Α	Intact	Negative	0
202	8/1/2012	13445 Mindanao Way	Exterior	Door	Frame	Wood	Α	Intact	Negative	0.16
203	8/1/2012	13445 Mindanao Way	Exterior	Door	Jamb	Wood	Α	Intact	Negative	0.3
204	8/1/2012	13445 Mindanao Way	Exterior	Ballard		Concrete	Α	Intact	Positive	6.9
205	8/1/2012	13445 Mindanao Way	Exterior	Stair	Riser		D	Intact	Negative	0
206	8/1/2012	13445 Mindanao Way	Exterior	Stair	Railing	Wood	D	Intact	Negative	0.02
207	8/1/2012	13445 Mindanao Way	Exterior	Stair	Tread	Wood	D	Intact	Negative	0.01
208	8/1/2012	13445 Mindanao Way	Exterior	Wall		Wood	D	Intact	Negative	0.06
209	8/1/2012	13445 Mindanao Way	Exterior	Overhang	Beam	Wood	D	Intact	Negative	0.08
210	8/1/2012	13445 Mindanao Way	Exterior	Stair	Riser	Wood	В	Intact	Negative	0.13
211	8/1/2012	13445 Mindanao Way	Exterior	Stair	Railing	Wood	В	Intact	Negative	0.01
212	8/1/2012	13445 Mindanao Way	Exterior	Stair	Tread	Wood	В	Intact	Negative	0.16
213	8/1/2012	13445 Mindanao Way	Exterior	Wall		Wood	В	Intact	Negative	0.06
214	8/1/2012	13445 Mindanao Way	Exterior	Overhang	Beam	Wood	В	Intact	Negative	0.09
215	8/1/2012	13445 Mindanao Way	Exterior	Door	Frame	Wood	В	Intact	Negative	0.01
216	8/1/2012	13445 Mindanao Way	Exterior	Door	Jamb	Wood	В	Intact	Negative	0.26
217	8/1/2012	13445 Mindanao Way	Exterior	Wall		Wood	С	Intact	Negative	0.4
218	8/1/2012	13445 Mindanao Way	Exterior	Door	Frame	Wood	С	Intact	Negative	0.15
219	8/1/2012	13445 Mindanao Way	Exterior	Door	Jamb	Wood	С	Intact	Negative	0.2
220	8/1/2012	13445 Mindanao Way	Exterior	Window	Frame	Wood	С	Intact	Negative	0
221	8/1/2012	13445 Mindanao Way	Exterior	Balcony	Railing	Wood	С	Intact	Negative	0.3
222	8/1/2012	13445 Mindanao Way	Exterior	Balcony	Column	Wood	С	Intact	Negative	0.4
223	8/1/2012	13445 Mindanao Way	Laundry	Wall		Drywall	Α	Intact	Negative	0.03
224	8/1/2012	13445 Mindanao Way	Laundry	Wall		Drywall	В	Intact	Negative	0.4
225	8/1/2012	13445 Mindanao Way	Laundry	Wall		Drywall	С	Intact	Negative	0.03
226	8/1/2012	13445 Mindanao Way	Laundry	Wall		Drywall	D	Intact	Negative	0.06
227	8/1/2012	13445 Mindanao Way	Laundry	Door	Frame	Wood	С	Intact	Negative	0.11
228	8/1/2012	13445 Mindanao Way	Laundry	Door	Jamb	Wood	С	Intact	Negative	0.24
229	8/1/2012	13445 Mindanao Way	Laundry	Window	Frame	Wood	С	Intact	Negative	0
230	8/1/2012	Calibration							Positive	1.2
231	8/1/2012	Calibration							Positive	1.2

Shot	Date	Address	Room	Component	Sub-Component	Substrate	Side	Condition	Results	PbC
232	8/1/2012	Calibration							Positive	1.1
233	8/2/2012	Shutter. Cal	Res. 388.64							
234	8/2/2012	Calibration							Positive	1
235	8/2/2012	Calibration							Positive	1
236	8/2/2012	Calibration							Positive	0.9
237	8/2/2012	4633 Admiralty Way	Main	Wall		Drywall	Α	Intact	Negative	0.05
238	8/2/2012	4633 Admiralty Way	Main	Wall		Drywall	В	Intact	Negative	0.04
239	8/2/2012	4633 Admiralty Way	Main	Wall		Drywall	С	Intact	Negative	0.5
240	8/2/2012	4633 Admiralty Way	Main	Wall		Drywall	D	Intact	Negative	0.07
241	8/2/2012	4633 Admiralty Way	Main	Ceiling	Beam	Wood		Intact	Negative	0.4
242	8/2/2012	4633 Admiralty Way	Exterior	Wall		Wood	Α	Intact	Negative	0.19
243	8/2/2012	4633 Admiralty Way	Exterior	Railing		Metal	Α	Intact	Negative	0.01
244	8/2/2012	4633 Admiralty Way	Exterior	Column		Wood	Α	Intact	Negative	0.15
245	8/2/2012	4633 Admiralty Way	Exterior	Overhang	Facia	Wood	Α	Intact	Negative	0.04
246	8/2/2012	4633 Admiralty Way	Exterior	Overhang	Beam	Wood	Α	Intact	Negative	0.3
247	8/2/2012	4633 Admiralty Way	Exterior	Overhang	Ceiling	Wood	Α	Intact	Negative	0.4
248	8/2/2012	4633 Admiralty Way	Exterior	Corner Molding		Wood	Α	Intact	Negative	0.4
249	8/2/2012	4633 Admiralty Way	Exterior	Stair	Railing	Metal	Α	Intact	Negative	0.01
250	8/2/2012	4633 Admiralty Way	Exterior	Stair	Riser	Wood	Α	Intact	Negative	0.01
251	8/2/2012	4633 Admiralty Way	Exterior	Wall		Wood	В	Intact	Negative	0.19
252	8/2/2012	4633 Admiralty Way	Exterior	Wall		Wood	С	Intact	Negative	0.19
253	8/2/2012	4633 Admiralty Way	Exterior	Wall		Wood	D	Intact	Negative	0.27
254	8/2/2012	4633 Admiralty Way	Exterior	Overhang	Facia	Wood	D	Intact	Negative	0.03
255	8/2/2012	4633 Admiralty Way	Exterior	Overhang	Beam	Wood	D	Intact	Negative	0.02
256	8/2/2012	4633 Admiralty Way	Exterior	Overhang	Ceiling	Wood	D	Intact	Negative	0.03
257	8/2/2012	4627 Admiralty Way	Main	Wall		Drywall	Α	Intact	Negative	0.6
258	8/2/2012	4627 Admiralty Way	Main	Wall		Drywall	В	Intact	Negative	0.6
259	8/2/2012	4627 Admiralty Way	Main	Wall		Drywall	С	Intact	Negative	0.09
260	8/2/2012	4627 Admiralty Way	Main	Wall		Drywall	D	Intact	Negative	0.12
261	8/2/2012	4627 Admiralty Way	Main	Ceiling	Beam	Wood		Intact	Negative	0.4
262	8/2/2012	4627 Admiralty Way	Main	Ceiling		Drywall		Intact	Negative	0.07
263	8/2/2012	4627 Admiralty Way	Restroom	Wall		Drywall	Α	Intact	Negative	0.06
264	8/2/2012	4627 Admiralty Way	Restroom	Wall		Drywall	В	Intact	Negative	0.4

Shot	Date	Address	Room	Component	Sub-Component	Substrate	Side	Condition	Results	PbC
265	8/2/2012	4627 Admiralty Way	Restroom	Wall		Drywall	С	Intact	Negative	0.03
266	8/2/2012	4627 Admiralty Way	Restroom	Wall		Drywall	D	Intact	Negative	0.5
267	8/2/2012	4627 Admiralty Way	Restroom	Ceiling		Drywall		Intact	Negative	0.18
268	8/2/2012	4627 Admiralty Way	Restroom	Door	Frame	Wood	Α	Intact	Negative	0.4
269	8/2/2012	4627 Admiralty Way	Restroom	Door	Jamb	Wood	Α	Intact	Negative	0.3
270	8/2/2012	4627 Admiralty Way	Restroom	Wall	Tile	Ceramic	C	Intact	Positive	11.1
271	8/2/2012	4627 Admiralty Way	Public Women's RR	Wall		Drywall	Α	Intact	Negative	0.08
272	8/2/2012	4627 Admiralty Way	Public Women's RR	Wall		Drywall	В	Intact	Negative	0.6
273	8/2/2012	4627 Admiralty Way	Public Women's RR	Wall		Drywall	С	Intact	Negative	0.6
274	8/2/2012	4627 Admiralty Way	Public Women's RR	Wall		Drywall	D	Intact	Negative	0.6
275	8/2/2012	4627 Admiralty Way	Public Women's RR	Door	Frame	Wood	Α	Intact	Negative	0.01
276	8/2/2012	4627 Admiralty Way	Public Women's RR	Door	Jamb	Wood	Α	Intact	Negative	0.01
277	8/2/2012	4627 Admiralty Way	Public Women's RR	Floor	Tile	Ceramic		Intact	Negative	0.16
278	8/2/2012	4627 Admiralty Way	Public Men's RR	Wall		Drywall	Α	Intact	Negative	0.06
279	8/2/2012	4627 Admiralty Way	Public Men's RR	Wall		Drywall	В	Intact	Negative	0.04
280	8/2/2012	4627 Admiralty Way	Public Men's RR	Wall		Drywall	С	Intact	Negative	0.03
281	8/2/2012	4627 Admiralty Way	Public Men's RR	Wall		Drywall	D	Intact	Negative	0.09
282	8/2/2012	4627 Admiralty Way	Public Men's RR	Door	Jamb	Wood	Α	Intact	Negative	0.01
283	8/2/2012	4627 Admiralty Way	Public Men's RR	Door	Frame	Wood	Α	Intact	Negative	0.03
284	8/2/2012	4627 Admiralty Way	Public Men's RR	Floor	Tile	Ceramic		Intact	Negative	0.09
285	8/2/2012	13444 Bali Way 1st Flr	Entry	Wall		Drywall	Α	Intact	Negative	0.05
286	8/2/2012	13444 Bali Way 1st Flr	Entry	Wall		Drywall	В	Intact	Negative	0.04
287	8/2/2012	13444 Bali Way 1st Flr	Entry	Wall		Drywall	С	Intact	Negative	0.03
288	8/2/2012	13444 Bali Way 1st Flr	Entry	Wall		Drywall	D	Intact	Negative	0.06
289	8/2/2012	13444 Bali Way 1st Flr	Entry	Wall		Brick	Α	Intact	Negative	0.1
290	8/2/2012	13444 Bali Way 1st Flr	Entry	Wall		Brick	С	Intact	Negative	0.17
291	8/2/2012	13444 Bali Way 1st Flr	Entry	Ceiling		Drywall		Intact	Negative	0.02
292	8/2/2012	13444 Bali Way 1st Flr	Entry	Door	Frame	Wood	Α	Intact	Negative	0.02
293	8/2/2012	13444 Bali Way 1st Flr	Conference Room	Wall		Brick	Α	Intact	Negative	0.05
294	8/2/2012	13444 Bali Way 1st Flr	Conference Room	Wall		Wood	В	Intact	Negative	0.01
295	8/2/2012	13444 Bali Way 1st Flr	Conference Room	Wall		Drywall	С	Intact	Negative	0.1
296	8/2/2012	13444 Bali Way 1st Flr	Conference Room	Wall		Drywall	D	Intact	Negative	0.04
297	8/2/2012	13444 Bali Way 1st Flr	Conference Room	Ceiling		Drywall		Intact	Negative	0.01

Shot	Date	Address	Room	Component	Sub-Component	Substrate	Side	Condition	Results	PbC
298	8/2/2012	13444 Bali Way 1st Flr	Conference Room	Door	Frame	Wood	D	Intact	Negative	0.01
299	8/2/2012	13444 Bali Way 1st Flr	Conference Room	Door		Wood	D	Intact	Negative	0.4
300	8/2/2012	13444 Bali Way 1st Flr	Office 1	Wall		Drywall	Α	Intact	Negative	0.07
301	8/2/2012	13444 Bali Way 1st Flr	Office 1	Wall		Brick	В	Intact	Negative	0.01
302	8/2/2012	13444 Bali Way 1st Flr	Office 1	Wall		Drywall	С	Intact	Negative	0.07
303	8/2/2012	13444 Bali Way 1st Flr	Office 1	Ceiling		Wood	D	Intact	Negative	0.12
304	8/2/2012	13444 Bali Way 1st Flr	Office 1	Column		Wood		Intact	Negative	0.2
305	8/2/2012	13444 Bali Way 1st Flr	Office 1	Window	Frame	Wood	С	Intact	Negative	0
306	8/2/2012	13444 Bali Way 1st Flr	Office 1	Door	Frame	Wood	В	Intact	Negative	0.5
307	8/2/2012	13444 Bali Way 1st Flr	Hallway	Wall		Drywall	Α	Intact	Negative	0.04
308	8/2/2012	13444 Bali Way 1st Flr	Hallway	Wall		Brick	С	Intact	Negative	0.12
309	8/2/2012	13444 Bali Way 1st Flr	Restroom	Wall		Drywall	Α	Intact	Negative	0.1
310	8/2/2012	13444 Bali Way 1st Flr	Restroom	Wall		Drywall	В	Intact	Negative	0.07
311	8/2/2012	13444 Bali Way 1st Flr	Restroom	Wall		Drywall	С	Intact	Negative	0.06
312	8/2/2012	13444 Bali Way 1st Flr	Restroom	Wall		Drywall	D	Intact	Negative	0.04
313	8/2/2012	13444 Bali Way 1st Flr	Restroom	Wall	Tile	Ceramic	Α	Intact	Positive	10.8
314	8/2/2012	13444 Bali Way 1st Flr	Restroom	Door	Frame	Wood	С	Intact	Negative	0.04
315	8/2/2012	13444 Bali Way 1st Flr	Restroom	Door	Jamb	Wood	С	Intact	Negative	0.01
316	8/2/2012	13444 Bali Way 1st Flr	Storage	Wall		Drywall	Α	Intact	Negative	0.29
317	8/2/2012	13444 Bali Way 1st Flr	Storage	Wall		Drywall	В	Intact	Negative	0.03
318	8/2/2012	13444 Bali Way 1st Flr	Storage	Wall		Drywall	С	Intact	Negative	0.03
319	8/2/2012	13444 Bali Way 1st Flr	Storage	Wall		Drywall	D	Intact	Negative	0.04
320	8/2/2012	13444 Bali Way 1st Flr	Storage	Door	Frame	Wood	Α	Intact	Negative	0.03
321	8/2/2012	13444 Bali Way 1st Flr	Storage	Door	Jamb	Wood	Α	Intact	Negative	0.3
322	8/2/2012	13444 Bali Way 1st Flr	Storage	Wall	Tile	Ceramic	D	Intact	Positive	12.1
323	8/2/2012	13444 Bali Way 2nd Flr	Entry	Wall		Wood	Α	Intact	Negative	0.02
324	8/2/2012	13444 Bali Way 2nd Flr	Entry	Wall		Wood	В	Intact	Negative	0.21
325	8/2/2012	13444 Bali Way 2nd Flr	Entry	Wall		Wood	С	Intact	Negative	0.5
326	8/2/2012	13444 Bali Way 2nd Flr	Entry	Wall		Wood	D	Intact	Negative	0.16
327	8/2/2012	13444 Bali Way 2nd Flr	Entry	Ceiling		Wood		Intact	Negative	0.16
328	8/2/2012	13444 Bali Way 2nd Flr	Lounge	Wall		Drywall	Α	Intact	Negative	0
329	8/2/2012	13444 Bali Way 2nd Flr	Lounge	Wall		Drywall	В	Intact	Negative	0.01
330	8/2/2012	13444 Bali Way 2nd Flr	Lounge	Wall		Brick	С	Intact	Negative	0.11

Shot	Date	Address	Room	Component	Sub-Component	Substrate	Side	Condition	Results	PbC
331	8/2/2012	13444 Bali Way 2nd Flr	Lounge	Wall		Drywall	D	Intact	Negative	0
332	8/2/2012	13444 Bali Way 2nd Flr	Lounge	Ceiling	Beam	Wood		Intact	Negative	0.14
333	8/2/2012	13444 Bali Way 2nd Flr	Lounge	Door	Frame	Wood	D	Intact	Negative	0.4
334	8/2/2012	13444 Bali Way 2nd Flr	Lounge	Door	Jamb	Wood	D	Intact	Negative	0.4
335	8/2/2012	13444 Bali Way	Exterior	Wall		Brick	Α	Intact	Negative	0.01
336	8/2/2012	13444 Bali Way	Exterior	Beam		Wood	Α	Intact	Negative	0.24
337	8/2/2012	13444 Bali Way	Exterior	Overhang	Beam	Wood	Α	Intact	Negative	0.02
338	8/2/2012	13444 Bali Way	Exterior	Overhang	Facia	Wood	Α	Intact	Negative	0.04
339	8/2/2012	13444 Bali Way	Exterior	Overhang	Ceiling	Wood	Α	Intact	Negative	0.04
340	8/2/2012	13444 Bali Way	Exterior	Stair	Riser	Wood	Α	Intact	Negative	0.01
341	8/2/2012	13444 Bali Way	Exterior	Stair	Tread	Wood	Α	Intact	Negative	0.02
342	8/2/2012	13444 Bali Way	Exterior	Column		Wood	Α	Intact	Negative	0.11
343	8/2/2012	13444 Bali Way	Exterior	Window	Frame	Wood	Α	Intact	Negative	0
344	8/2/2012	13444 Bali Way	Storage	Wall		Brick	Α	Intact	Negative	0.03
345	8/2/2012	13444 Bali Way	Storage	Wall		Plaster	В	Intact	Negative	0.01
346	8/2/2012	13444 Bali Way	Storage	Wall		Plaster	С	Intact	Negative	0.01
347	8/2/2012	13444 Bali Way	Storage	Wall		Brick	D	Intact	Negative	0.11
348	8/2/2012	13444 Bali Way	Storage	Ceiling		Stucco		Intact	Negative	0.02
349	8/2/2012	13444 Bali Way	Exterior	Wall		Brick	D	Intact	Negative	0.15
350	8/2/2012	13444 Bali Way	Exterior	Wall		Stucco	D	Intact	Negative	0.01
351	8/2/2012	13444 Bali Way	Exterior	Stair	Railing	Wood	D	Intact	Negative	0.01
352	8/2/2012	13444 Bali Way	Exterior	Stair	Riser	Wood	D	Intact	Negative	0.06
353	8/2/2012	13444 Bali Way	Exterior	Stair	Tread	Wood	D	Intact	Negative	0.03
354	8/2/2012	13444 Bali Way	Exterior	Door	Frame	Wood	D	Intact	Negative	0.04
355	8/2/2012	13444 Bali Way	Exterior	Door	Jamb	Wood	D	Intact	Negative	0.01
356	8/2/2012	13444 Bali Way	Exterior	Overhang	Ceiling	Wood	D	Intact	Negative	0.4
357	8/2/2012	13444 Bali Way	Exterior	Overhang	Facia	Wood	D	Intact	Negative	0.04
358	8/2/2012	13444 Bali Way	Exterior	Overhang	Beam	Wood	D	Intact	Negative	0.02
359	8/2/2012	13444 Bali Way	Exterior	Balcony	Railing	Wood	D	Intact	Negative	0.15
360	8/2/2012	13444 Bali Way	Exterior	Balcony	Floor	Wood	D	Intact	Negative	0.3
361	8/2/2012	13444 Bali Way 2nd Flr	A.B.P.B Main	Wall		Drywall	Α	Intact	Negative	0
362	8/2/2012	13444 Bali Way 2nd Flr	A.B.P.B Main	Wall		Drywall	В	Intact	Negative	0.01
363	8/2/2012	13444 Bali Way 2nd Flr	A.B.P.B Main	Wall		Drywall	С	Intact	Negative	0.01


Shot	Date	Address	Room	Component	Sub-Component	Substrate	Side	Condition	Results	PbC
364	8/2/2012	13444 Bali Way 2nd Flr	A.B.P.B Main	Wall		Drywall	D	Intact	Negative	0.01
365	8/2/2012	13444 Bali Way 2nd Flr	A.B.P.B Main	Ceiling	Beam	Wood		Intact	Negative	0.13
366	8/2/2012	13444 Bali Way 2nd Flr	A.B.P.B Main	Door	Frame	Wood	D	Intact	Negative	0.28
367	8/2/2012	13444 Bali Way 2nd Flr	A.B.P.B Main	Door	Jamb	Wood		Intact	Negative	0.4
368	8/2/2012	13444 Bali Way 2nd Flr	Kitchen	Wall		Brick	Α	Intact	Negative	0.03
369	8/2/2012	13444 Bali Way 2nd Flr	Kitchen	Wall		Plaster	В	Intact	Negative	0.01
370	8/2/2012	13444 Bali Way 2nd Flr	Kitchen	Wall		Plaster	С	Intact	Negative	0.01
371	8/2/2012	13444 Bali Way 2nd Flr	Kitchen	Wall		Brick	D	Intact	Negative	0.14
372	8/2/2012	13444 Bali Way 2nd Flr	Kitchen	Window	Frame	Wood	D	Intact	Negative	0
373	8/2/2012	13444 Bali Way	Men's Restroom	Wall		Drywall	Α	Intact	Negative	0.01
374	8/2/2012	13444 Bali Way	Men's Restroom	Wall		Drywall	В	Intact	Negative	0.01
375	8/2/2012	13444 Bali Way	Men's Restroom	Wall		Drywall	С	Intact	Negative	0.02
376	8/2/2012	13444 Bali Way	Men's Restroom	Wall		Drywall	D	Intact	Negative	0.01
377	8/2/2012	13444 Bali Way	Men's Restroom	Wall	Tile	Ceramic	C	Intact	Positive	8.1
378	8/2/2012	13444 Bali Way	Men's Restroom	Ceiling		Drywall		Intact	Negative	0.05
379	8/2/2012	13444 Bali Way	Men's Restroom	Floor	Tile	Ceramic		Intact	Positive	12.2
380	8/2/2012	13444 Bali Way	Men's Restroom	Door	Frame	Wood	С	Intact	Negative	0.03
381	8/2/2012	13444 Bali Way	Women's Restroom	Wall		Drywall	Α	Intact	Negative	0.01
382	8/2/2012	13444 Bali Way	Women's Restroom	Wall		Drywall	В	Intact	Negative	0.02
383	8/2/2012	13444 Bali Way	Women's Restroom	Wall		Drywall	С	Intact	Negative	0.01
384	8/2/2012	13444 Bali Way	Women's Restroom	Wall		Drywall	D	Intact	Negative	0.01
385	8/2/2012	13444 Bali Way	Women's Restroom	Wall	Tile	Ceramic	В	Intact	Positive	8.6
386	8/2/2012	13444 Bali Way	Women's Restroom	Ceiling		Drywall		Intact	Negative	0.19
387	8/2/2012	13444 Bali Way	Women's Restroom	Floor	Tile	Ceramic		Intact	Negative	0.04
388	8/2/2012	13444 Bali Way	Women's Restroom	Door	Frame	Wood	С	Intact	Negative	0.03
389	8/2/2012	4631 Admiralty Way	Main	Wall		Drywall	Α	Intact	Negative	0.01
390	8/2/2012	4631 Admiralty Way	Main	Wall		Drywall	В	Intact	Negative	0.01
391	8/2/2012	4631 Admiralty Way	Main	Wall		Drywall	С	Intact	Negative	0.01
392	8/2/2012	4631 Admiralty Way	Main	Wall		Drywall	D	Intact	Negative	0.01
393	8/2/2012	4631 Admiralty Way	Main	Ceiling	Beam	Wood		Intact	Negative	0.16
394	8/2/2012	4631 Admiralty Way	Main	Door	Frame	Wood	Α	Intact	Negative	0.03
395	8/2/2012	4631 Admiralty Way	Main	Door	Jamb	Wood	Α	Intact	Negative	0.01
396	8/2/2012	4631 Admiralty Way	Storage	Wall		Drywall	Α	Intact	Negative	0.02

Shot	Date	Address	Room	Component	Sub-Component	Substrate	Side	Condition	Results	PbC
397	8/2/2012	4631 Admiralty Way	Storage	Wall		Drywall	В	Intact	Negative	0.01
398	8/2/2012	4631 Admiralty Way	Storage	Wall		Drywall	С	Intact	Negative	0.01
399	8/2/2012	4631 Admiralty Way	Storage	Wall		Drywall	D	Intact	Negative	0.01
400	8/2/2012	4631 Admiralty Way	Storage	Ceiling		Drywall		Intact	Negative	0.03
401	8/2/2012	4631 Admiralty Way	Storage	Door	Frame	Wood	В	Intact	Negative	0.07
402	8/2/2012	4631 Admiralty Way	Storage	Door	Jamb	Wood	В	Intact	Negative	0.02
403	8/2/2012	13441 Mindanao Way	Office 1	Wall		Drywall	Α	Intact	Negative	0.01
404	8/2/2012	13441 Mindanao Way	Office 1	Wall		Wood	В	Intact	Negative	0.01
405	8/2/2012	13441 Mindanao Way	Office 1	Wall		Wood	С	Intact	Negative	0.03
406	8/2/2012	13441 Mindanao Way	Office 1	Wall		Wood	D	Intact	Negative	0.4
407	8/2/2012	13441 Mindanao Way	Office 1	Door	Frame	Wood	D	Intact	Negative	0.02
408	8/2/2012	13441 Mindanao Way	Office 1	Door	Jamb	Wood	D	Intact	Negative	0.01
409	8/2/2012	13441 Mindanao Way	Parts Room 1	Wall		Wood	Α	Intact	Negative	0.4
410	8/2/2012	13441 Mindanao Way	Parts Room 1	Wall		Wood	В	Intact	Negative	0.01
411	8/2/2012	13441 Mindanao Way	Parts Room 1	Wall		Wood	С	Intact	Negative	0.08
412	8/2/2012	13441 Mindanao Way	Parts Room 1	Wall		Wood	D	Intact	Negative	0.03
413	8/2/2012	13441 Mindanao Way	Parts Room 2	Wall		Wood	Α	Intact	Negative	0.11
414	8/2/2012	13441 Mindanao Way	Parts Room 2	Wall		Wood	В	Intact	Negative	0.03
415	8/2/2012	13441 Mindanao Way	Parts Room 2	Wall		Wood	С	Intact	Negative	0.03
416	8/2/2012	13441 Mindanao Way	Parts Room 2	Wall		Wood	D	Intact	Negative	0.16
417	8/2/2012	13441 Mindanao Way	Parts Room 2	Ceiling		Wood		Intact	Negative	0.3
418	8/2/2012	13441 Mindanao Way	Storage Closet	Wall		Drywall	Α	Intact	Negative	0.01
419	8/2/2012	13441 Mindanao Way	Storage Closet	Wall		Drywall	В	Intact	Negative	0.01
420	8/2/2012	13441 Mindanao Way	Storage Closet	Wall		Drywall	С	Intact	Negative	0.3
421	8/2/2012	13441 Mindanao Way	Storage Closet	Wall		Drywall	D	Intact	Negative	0.01
422	8/2/2012	13441 Mindanao Way	Storage Closet	Ceiling		Drywall		Intact	Negative	0.07
423	8/2/2012	13441 Mindanao Way	Parts Room 3	Wall		Drywall	Α	Intact	Negative	0.01
424	8/2/2012	13441 Mindanao Way	Parts Room 3	Wall		Brick	В	Intact	Negative	0.09
425	8/2/2012	13441 Mindanao Way	Parts Room 3	Wall		Drywall	С	Intact	Negative	0.01
426	8/2/2012	13441 Mindanao Way	Parts Room 3	Wall		Drywall	D	Intact	Negative	0.01
427	8/2/2012	13441 Mindanao Way	Parts Room 4	Wall		Brick	D	Intact	Negative	0.03
428	8/2/2012	13441 Mindanao Way	Parts Room 4	Wall		Drywall	Α	Intact	Negative	0.01
429	8/2/2012	13441 Mindanao Way	Parts Room 4	Wall		Drywall	В	Intact	Negative	0.01

Shot	Date	Address	Room	Component	Sub-Component	Substrate	Side	Condition	Results	PbC
430	8/2/2012	13441 Mindanao Way	Parts Room 4	Wall		Stucco	С	Intact	Negative	0.01
431	8/2/2012	13441 Mindanao Way	Parts Room 4	Ceiling		Wood		Intact	Negative	0.26
432	8/2/2012	13441 Mindanao Way	Exterior	Wall		Brick	D	Intact	Negative	0.05
433	8/2/2012	13441 Mindanao Way	Exterior	Overhang	Ceiling	Wood	D	Intact	Negative	0.04
434	8/2/2012	13441 Mindanao Way	Exterior	Overhang	Facia	Wood	D	Intact	Negative	0.4
435	8/2/2012	13441 Mindanao Way	Exterior	Overhang	Beam	Wood	D	Intact	Negative	0.01
436	8/2/2012	13441 Mindanao Way	Exterior	Wall		Wood	С	Intact	Negative	0.01
437	8/2/2012	13441 Mindanao Way	Exterior	Door	Frame	Wood	С	Intact	Negative	0.09
438	8/2/2012	13441 Mindanao Way	Exterior	Door	Jamb	Wood	С	Intact	Negative	0.01
439	8/2/2012	13441 Mindanao Way	Exterior	Wall		Wood	С	Intact	Negative	0.01
440	8/2/2012	13441 Mindanao Way	Exterior	Wall		Brick	С	Intact	Negative	0.04
441	8/2/2012	13441 Mindanao Way	Exterior	Wall		Stucco	В	Intact	Negative	0.02
442	8/2/2012	13441 Mindanao Way	Exterior	Wall		Stucco	В	Intact	Negative	0.01
443	8/2/2012	13441 Mindanao Way	Exterior	Window	Frame	Wood	D	Intact	Negative	0
444	8/2/2012	13441 Mindanao Way	Exterior	Wall		Stucco	Α	Intact	Negative	0.01
445	8/2/2012	13441 Mindanao Way	Exterior	Overhang	Ceiling	Wood	Α	Intact	Negative	0.02
446	8/2/2012	13441 Mindanao Way	Exterior	Overhang	Beam	Wood	Α	Intact	Negative	0.02
447	8/2/2012	13441 Mindanao Way	Exterior	Overhang	Facia	Wood	Α	Intact	Negative	0.07
448	8/2/2012	13441 Mindanao Way	Janitor Closet	Wall		Drywall	Α	Intact	Negative	0.01
449	8/2/2012	13441 Mindanao Way	Janitor Closet	Wall		Drywall	В	Intact	Negative	0.02
450	8/2/2012	13441 Mindanao Way	Janitor Closet	Wall		Drywall	С	Intact	Negative	0.01
451	8/2/2012	13441 Mindanao Way	Janitor Closet	Wall		Drywall	D	Intact	Negative	0.02
452	8/2/2012	13441 Mindanao Way	Janitor Closet	Ceiling		Drywall		Intact	Negative	0.02
453	8/2/2012	13441 Mindanao Way	Men's Restroom	Wall		Brick	Α	Intact	Negative	0.05
454	8/2/2012	13441 Mindanao Way	Men's Restroom	Wall		Brick	В	Intact	Negative	0.04
455	8/2/2012	13441 Mindanao Way	Men's Restroom	Wall		Brick	С	Intact	Negative	0.11
456	8/2/2012	13441 Mindanao Way	Men's Restroom	Wall		Brick	D	Intact	Negative	0.09
457	8/2/2012	13441 Mindanao Way	Men's Restroom	Floor	Tile	Ceramic		Intact	Negative	0.15
458	8/2/2012	13441 Mindanao Way	Men's Restroom	Wall	Tile	Ceramic	Α	Intact	Positive	9.5
459	8/2/2012	13441 Mindanao Way	Women's Restroom	Wall		Brick	Α	Intact	Negative	0.08
460	8/2/2012	13441 Mindanao Way	Women's Restroom	Wall		Brick	В	Intact	Negative	0.03
461	8/2/2012	13441 Mindanao Way	Women's Restroom	Wall		Brick	С	Intact	Negative	0.14
462	8/2/2012	13441 Mindanao Way	Women's Restroom	Wall		Brick	D	Intact	Negative	0.02

Shot	Date	Address	Room	Component	Sub-Component	Substrate	Side	Condition	Results	PbC
463	8/2/2012	13441 Mindanao Way	Women's Restroom	Wall	Tile	Ceramic	D	Intact	Positive	9.7
464	8/2/2012	13441 Mindanao Way	Women's Restroom	Floor	Tile	Ceramic		Intact	Negative	0.08
465	8/2/2012	Calibration							Positive	1
466	8/2/2012	Calibration							Positive	1.1
467	8/2/2012	Calibration							Positive	1.2
T	otal Reading	gs	467			Action Level	-	0.7		
Po	sitive Readii	ngs	14			Units		mg/cm^2		

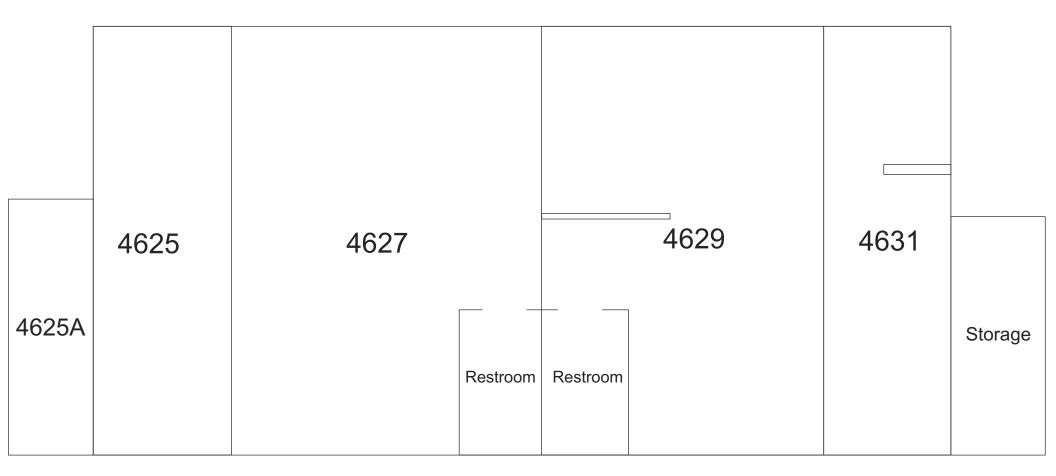
Alfredo Torres California DOSH Certified Asbestos Consultant (CAC) #10-4593 California DPH Certified Lead Inspector Assessor (CLIA) #17424

Section 1 — Date of Lead	Hazard Evaluation 08-01-	2012		
Section 2 — Type of Lead	Hazard Evaluation (Check	one box only)		
✓ Lead Inspection	Risk assessment C	earance Inspection	Other (specify)	
	nere Lead Hazard Evaluatio	n Was Conducted		
Address [number, street, apart	ment (if applicable)]	City	County	Zip Code
13445 Mindanao W	'ay	Marina Del Rey	Los Angeles	90292
Construction date (year) of structure	Type of structure Multi-unit building Single family dwelling	School or daycare Other_Commercial	Children living in structu ☐ Yes ✓ N ☐ Don't Know	
Section 4 — Owner of Str	ucture (if business/agency,	list contact person)		
Name			Telephone number	
Address [number, street, apart	ment (if applicable)]	City	State	Zip Code
Section 5 — Results of Lo	ead Hazard Evaluation (che	ck all that apply)		
No lead-based paint detecte No lead hazards detecte Section 6 — Individual Containe Alfredo Torres		State of the second state		pased paint detected
Address [number, street, apart	ment (if annlicable)]	City	State	Zip Code
1204 S Patton A		San Pedro,	Ca	90731
CDPH certification number 17424	Si	gnature A	2	Date 08-17-2012
Name and CDPH certification Section 7 — Attachments	number of any other individuals o	conducting sampling or testing	ı (if applicable)	
A. A foundation diagram or lead-based paint; B. Each testing method, de	sketch of the structure indica evice, and sampling procedure ing quality control data, labor	used;	,	
First copy and attachments ret	ained by inspector	Third copy only (no	attachments) mailed or faxed	to:
Second copy and attachments	retained by owner	California Departme Childhood Lead Pois 850 Marina Bay Parl Richmond, CA 9480 Fax: (510) 620-5656	soning Prevention Branch Re kway, Building P, Third Floor 4-6403	ports

Section 1 — Date of Lead Hazard E	valuation 08-01-	2012		
Section 2 — Type of Lead Hazard E	valuation (Check	one box only)		
✓ Lead Inspection ☐ Risk ass	essment Cl	earance Inspection	Other (specify)	
Section 3 — Structure Where Lead	Hazard Evaluation	n Was Conducted		
Address [number, street, apartment (if app		City	County	Zip Code
4695 Admiralty Way	. c .	Marina Del Rey	2 1 2 1 2 1 2 1	90292
The state of the s	structure	Widilia Berriey	Children living in structu	DAVE STANKES
of structure M	ulti-unit building	School or daycare Other Commercia	☐ Yes ✓ N	
Section 4 — Owner of Structure (if	business/agency,	list contact person)	,	
Name			Telephone number	
Address [number, street, apartment (if app	licable)]	City	State	Zip Code
Section 5 — Results of Lead Hazar	d Evaluation (che	ck all that apply)	1	
The state of the s	enes : 1 1.75 francisco de la companya del la companya de la compa			
✓ No lead-based paint detected	Intact lead-l	pased paint detected	Deteriorated lead-b	pased paint detected
No lead hazards detected Le	ead-contaminated du	et found Lead-cont	aminated soil found	ther
No lead mazards detected E	ad Contamilated da	Striodrid Ecod doint	aminated son loand e	
Section 6 - Individual Conducting	Lead Hazard Eval	uation		
Name			Telephone number	
Alfredo Torres			310-200-4006	
Address [number, street, apartment (if app	licable)]	City	State	Zip Code
1204 S Patton Ave		San Pedro,	Ca	90731
CDPH certification number	Sig	gnature 🧀	1	Date
17424		1800	_	08-17-2012
	un or a de a un incalitation a la ca		or (if anylinable)	00 17 2012
Name and CDPH certification number of a	ny other marviduais d	orducing sampling of testin	ig (ii applicable)	
Section 7 — Attachments				
A. A foundation diagram or sketch of the lead-based paint; B. Each testing method, device, and second control of the leading diagram or sketch of the lead-based paint;	sampling procedure	used;		
First copy and attachments retained by ins	spector	Third copy only (no	attachments) mailed or faxed	to:
Second copy and attachments retained by owner California Department of Public Health Childhood Lead Poisoning Prevention Branch Reports 850 Marina Bay Parkway, Building P, Third Floor Richmond, CA 94804-6403 Fax: (510) 620-5656				

Section 1 — Date of Lead	Hazard Evaluation 08-02-	2012			
Section 2 — Type of Lead	I Hazard Evaluation (Check	one box only)			
✓ Lead Inspection	Risk assessment C	earance Inspection	Other (specify)		
Section 3 — Structure Wi	nere Lead Hazard Evaluatio	n Was Conducted			
Address [number, street, apart	ment (if applicable)]	City	County	Zip Code	
4625-4637 Admiralt	y Way	Marina Del Rey	Los Angeles	90292	
Construction date (year) of structure	Type of structure Multi-unit building Single family dwelling	School or daycare Other Commercial			
Section 4 — Owner of Str	ucture (if business/agency,	list contact person)	-		
Name	79250 1 999	3000	Telephone number		
Address [number, street, apart	ment (if applicable)]	City	State	Zip Code	
Section 5 — Results of Lo		based paint detected		pased paint detected	
Section 6 — Individual Co	onducting Lead Hazard Eva				
Alfredo Torres			Telephone number 310-200-4006		
Address [number, street, apart	ment (if applicable)]	City	State	Zip Code	
1204 S Patton A	ve	San Pedro,	Ca	90731	
CDPH certification number	Si	gnature	1	Date 08-17-2012	
Name and CDPH certification	number of any other individuals o	onducting sampling or testin	g (if applicable)	1	
Section 7 — Attachments					
lead-based paint; B. Each testing method, de	sketch of the structure indica vice, and sampling procedure ing quality control data, labor	used;			
First copy and attachments ret	ained by inspector	Third copy only (no	attachments) mailed or faxed	to:	
Second copy and attachments retained by owner California Department of Public Health Childhood Lead Poisoning Prevention Branch Reports 850 Marina Bay Parkway, Building P, Third Floor Richmond, CA 94804-6403 Fax: (510) 620-5656					

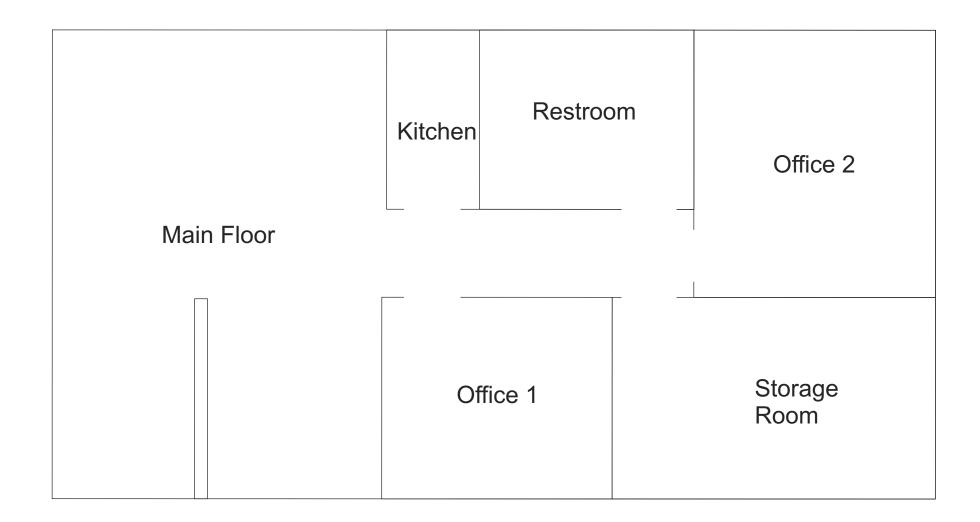
Section 1 — Date of Lead Hazard E	valuation 08-01-	2012		
Section 2 — Type of Lead Hazard E	valuation (Check	one box only)		
✓ Lead Inspection ☐ Risk asse	T.	earance Inspection	Other (specify)	
Section 3 — Structure Where Lead	Hazard Evaluation	n Was Conducted		
Address [number, street, apartment (if appl		City	County	Zip Code
4601 Admiralty Way		Marina Del Rey	2 1 2 1 2 1 2 1	90292
	structure	Widilia Berriey	Children living in structu	DANES HANGE
of structure Mu	ulti-unit building	School or daycare Other Commercia	☐ Yes ✓ N	
Section 4 — Owner of Structure (if I	ousiness/agency,	list contact person)	,	
Name			Telephone number	
Address [number, street, apartment (if appl	icable)]	City	State	Zip Code
Section 5 — Results of Lead Hazard	l Evaluation (che	ck all that apply)	1	
Sign et communication (Communication Communication Communi				
✓ No lead-based paint detected	Intact lead-l	pased paint detected	Deteriorated lead-b	pased paint detected
No lead hazards detected Le	ad-contaminated du	st found Lead-cont	aminated soil found C	ther
Section 6 — Individual Conducting	Lead Hazard Eval	uation		
Name			Telephone number	
Alfredo Torres			310-200-4006	
Address [number, street, apartment (if app	icable)]	City	State	Zip Code
1204 S Patton Ave		San Pedro,	Ca	90731
CDPH certification number	Sig	gnature 🧀 .	1	Date
17424		Chilles 1	_	08-17-2012
Name and CDPH certification number of ar	y other individuals o	onducting compling or tacting	ag (if applicable)	
Traile and ODF Freetineauor number of a	ry other marviduals o	ortacing sampling or testing	у (п аррисавте)	
Section 7 — Attachments				
A. A foundation diagram or sketch of the lead-based paint; B. Each testing method, device, and some C. All data collected, including quality	ampling procedure	used;		
First copy and attachments retained by ins	pector	Third copy only (no	attachments) mailed or faxed	to:
Second copy and attachments retained by owner California Department of Public Health Childhood Lead Poisoning Prevention Branch Reports 850 Marina Bay Parkway, Building P, Third Floor Richmond, CA 94804-6403 Fax: (510) 620-5656				


Section 1 — Date of Lead	Hazard Evaluation 08-02	2-2012			
Section 2 — Type of Lead	d Hazard Evaluation (Check	one box only)			
✓ Lead Inspection	Risk assessment C	Clearance Inspection	Other (specify)		
Section 3 — Structure W	here Lead Hazard Evaluation	on Was Conducted			
Address [number, street, apar	tment (if applicable)]	City	County	Zip Code	
13444 Bali Way		Marina Del Rey	Los Angeles	90292	
Construction date (year) of structure	Type of structure Multi-unit building Single family dwelling	School or daycare Other Commercial	Children living in structure? daycare		
Section 4 — Owner of St	ructure (if business/agency	, list contact person)			
Name			Telephone number		
Address [number, street, apar	tment (if applicable)]	City	State	Zip Code	
Section 5 — Results of L	ead Hazard Evaluation (che	eck all that apply)			
Section 6 - Individual Consume Alfredo Torres	onducting Lead Hazard Eva	aluation	Telephone number 310-200-4006		
Address [number, street, apar	tment (if applicable)]	City	State	Zip Code	
1204 S Patton A	ve	San Pedro,	Ca	90731	
CDPH certification number	S	signature	_	Date 08-17-2012	
Name and CDPH certification Section 7 — Attachments	number of any other individuals	conducting sampling or testing	յ (if applicable)		
lead-based paint; B. Each testing method, de	sketch of the structure indicates and sampling procedured in guality control data, labo	e used;			
First copy and attachments re	tained by inspector	Third copy only (no	attachments) mailed or faxed	to:	
Second copy and attachments	s retained by owner	Childhood Lead Poi 850 Marina Bay Par	California Department of Public Health Childhood Lead Poisoning Prevention Branch Reports 850 Marina Bay Parkway, Building P, Third Floor Richmond, CA 94804-6403 Fax: (510) 620-5656		

Section 1 — Date of Lead Hazard Evaluation	08-02-2012		
Section 2 — Type of Lead Hazard Evaluation (C	Check one box only)		
✓ Lead Inspection	Clearance Inspection	Other (specify)	
Section 3 — Structure Where Lead Hazard Eva	luation Was Conducted		
Address [number, street, apartment (if applicable)]	City	County	Zip Code
13441 Mindanao Way	Marina Del Rey	Los Angeles	90292
Construction date (year) of structure Type of structure Multi-unit buildin Single family dw	ng School or daycare	Children living in struct	ture?
Section 4 — Owner of Structure (if business/ag	gency, list contact person)		
Name		Telephone number	
Address [number, street, apartment (if applicable)]	City	State	Zip Code
Section 5 — Results of Lead Hazard Evaluation	(check all that apply)		
No lead hazards detected Lead-contamina Section 6 — Individual Conducting Lead Hazar Name Alfredo Torres Address [number, street, apartment (if applicable)]		Telephone number 310-200-4006	Other
1204 S Patton Ave	San Pedro,	Ca	90731
CDPH certification number 17424 Name and CDPH certification number of any other indivi	Signature	_	Date 08-17-2012
Section 7 — Attachments A. A foundation diagram or sketch of the structure lead-based paint; B. Each testing method, device, and sampling proc. All data collected, including quality control data. First copy and attachments retained by inspector Second copy and attachments retained by owner	cedure used; , laboratory results, including lal Third copy only (no California Departm Childhood Lead Po	ooratory name, address, a attachments) mailed or faxed ent of Public Health isoning Prevention Branch Re rkway, Building P, Third Floor	and phone number. d to:

3 - 2 story

First Floor



Second Floor

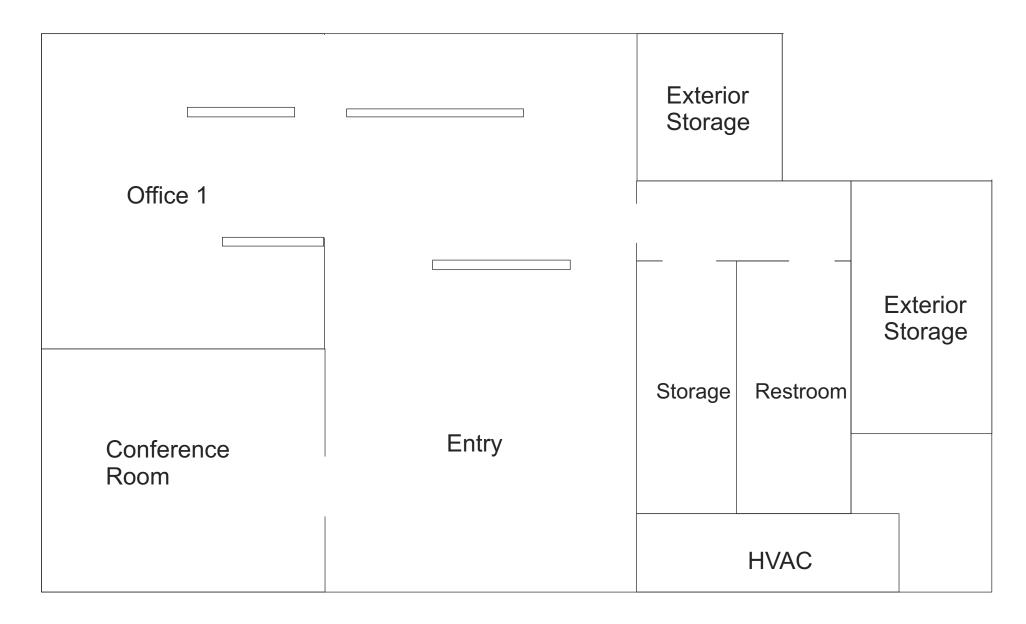
4633	Men's Restroom	Women's Restroom	4635	4637

Office 1	Entry	Office 2
Office 3	Storage Storage Closet 2 Closet 1 Restroom	Office 4

		Wome			len's estroom
Parts Room 3		arts oom 4		orage oset	Janitor Storage
Office 1	Par Roc	ts om 1	_	Part Roo	

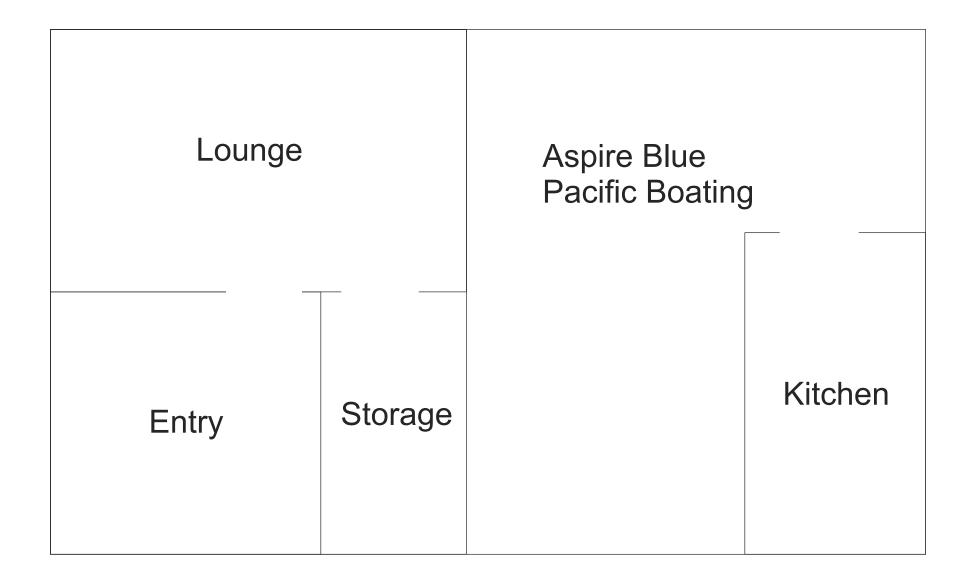
First Floor

Women's Restroom	Changing Room	Shower	Laundry
Men's	Changing	Shower	HVAC
Restroom	Room		Room



Second Floor

Storage Bar Room Kitchen



First Floor

Second Floor

Marina Restrooms

